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Abstract

We consider the fractional Hartree equation in the L2-supercritical case, and find a sharp threshold 

of the scattering versus blow-up dichotomy for radial data: If M[u0] s−sc
sc E[u0] < M[Q] s−sc

sc E[Q] and 

M[u0] s−sc
sc ‖u0‖2

Ḣ s
< M[Q] s−sc

sc ‖Q‖2
Ḣ s

, then the solution u(t) is globally well-posed and scatters; if 

M[u0] s−sc
sc E[u0] < M[Q] s−sc

sc E[Q] and M[u0] s−sc
sc ‖u0‖2

Ḣ s
> M[Q] s−sc

sc ‖Q‖2
Ḣ s

, the solution u(t) blows 
up in finite time. This condition is sharp in the sense that the solitary wave solution eitQ(x) is global but 
not scattering, which satisfies the equality in the above conditions. Here, Q is the ground-state solution for 
the fractional Hartree equation.
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1. Introduction

In this paper, we study the fractional Hartree equation, which is the L2-supercritical, nonlin-
ear, fractional Schrödinger equation.

iut − (−�)su + (
1

|x|γ ∗ |u|2)u = 0, (1.1)

with 0 < s < 1 and 2s < γ < min{N, 4s}, where i is the imaginary unit and u = u(t, x): R ×
R

N → C is a complex valued function. The operator (−�)s is defined by

(−�)su = 1

(2π)
N
2

∫
eix·ξ |ξ |2s û(ξ)dξ =F−1[|ξ |2sF[u](ξ)],

where F and F−1 are the Fourier transform and the Fourier inverse transform in RN , respec-
tively. The fractional Schrödinger equations were first proposed by Laskin in [28,29] using the 
theory of functionals over functional measures generated from the Lévy stochastic process and 
by expanding the Feynman path integral from the Brownian-like to the Lévy-like quantum me-
chanical paths. Here, s is the Lévy index. If s = 1

2 and γ = 1, then (1.1) models the dynamics of 
(pseudo-relativistic) boson stars, where 1

|x| is the Newtonian gravitational potential in the appro-
priate physical units, which is also called the pseudo-relativistic Hartree equation (see [10,30]). 
The global existence and blow-up have been widely studied in [13,31]. For the classical Hartree 
equation, a large amount of work has been devoted to the theory of scattering and blow-up, see 
for example [34–37].

Eq. (1.1) is the L2-supercritical, nonlinear, fractional Schrödinger equation. Indeed, we re-
mark on the scaling invariance of Eq. (1.1). If u(t, x) is a solution of Eq. (1.1), then uλ(t, x) =
λ

N−γ+2s
2 u(λ2s t, λx) is also a solution of Eq. (1.1). This implies that

(1) ‖uλ‖Lpc = ‖u‖Lpc , where pc = 2N
N−γ+2s

. When γ > 2s, we see that pc > 2, and Eq. (1.1) is 

called the L2-supercritical, nonlinear, fractional Schrödinger equation.
(2) Ḣ sc -norm is invariant for Eq. (1.1), i.e., ‖uλ‖Ḣ sc = ‖u‖Ḣ sc , where sc = γ−2s

2 .

Now, we impose the initial data,

u(0, x) = u0 ∈ Hs, (1.2)

onto (1.1) and consider the Cauchy problem (1.1)–(1.2). Cho et al. in [7,8] established the local 
well-posedness in Hs as follows: Let N ≥ 2, 1

2 ≤ s < 1 and 0 < γ < min{N, 4s}. If the initial 
data u0 ∈ Hs , then there exists a unique solution u(t, x) of the Cauchy problem (1.1)–(1.2) on 
the maximal time interval I = [0, T ) such that u(t, x) ∈ C(I ; Hs) 

⋂
C1(I ; H−s) and either T =

+∞ (global existence) or both 0 < T < +∞ and lim
t→T

‖u(t, x)‖Hs = +∞ (blow-up). Moreover, 

for all t ∈ I , u(t, x) satisfies the following conservation laws.
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(i) Conservation of energy:

E[u(t)] = 1

2

∫
RN

u(−�)sudx − 1

4

∫
RN

∫
RN

|u(x)|2|u(y)|2
|x − y|γ dxdy = E[u0]. (1.3)

(ii) Conservation of mass:

M[u(t)] =
∫
RN

|u(t, x)|2dx = M[u0]. (1.4)

Now, even less is known about the global well-posedness and scattering results. To the au-
thors’ knowledge, Cho et al. in [8] gave some small data results. First, they addressed the 
energy-supercritical case, i.e., 4s ≤ γ < N , and set some α >

γ−2s
2 . Assume that the initial 

data ‖u0‖Hα are sufficiently small; then, there exists a unique solution u ∈ Cb([0, ∞); Hα) ∩
L2(0, ∞; Hα+s−1

2N
N−2

), where Hα
q = (−�)− α

2 Lq . Moreover, there is φ+ ∈ Hα such that

‖u(t) − e−i(−�)s φ+‖Hα → 0, as t → +∞.

Moreover, for the energy-subcritical case and for sufficiently small radial data u0 ∈ Hs
r (the

radial functions in Hs ), they presented some global well-posedness results: for N
2N−1 ≤ s < 1, 

2s < γ < min{4s, N}, there exists a unique solution

u(t, x) ∈ Cb([0,∞);Hs
rad) ∩ L

6s
γ−2s

loc (0,∞;Hs
2N

N− 2γ−4s
3

).

However, they did not consider the scattering results in this case. On the other hand, as a typ-
ical dispersive wave equation, under certain conditions, the solution of the nonlinear fractional 
Schrödinger equation (1.1) may blow-up in finite time. In light of the above phenomena, a natu-
ral question would be how small of initial data will induce the global existence of the solution. 
Furthermore, does this global solution scatter at either side of time?

Motivated by this problem, we study the scattering versus blow-up dichotomy of the solutions 
for the focusing L2-supercritical, nonlinear, fractional Schrödinger equation (1.1). Similar to 
studies on the classical semi-linear Schrödinger equation (see [5,33,38]), we attempt to use the 
variational method to find a sharp threshold of blow-up and global existence of the solutions to 
(1.1). The first topic is the ground-state solution of the equation

(−�)sQ + Q − (
1

|x|γ ∗ |Q|2)Q = 0, Q ∈ Hs(RN). (1.5)

The existence of a non-trivial solution of Eq. (1.5) has been studied in [19,40], and the stability 
of related standing waves has been obtained in [9,14,39]. In [40], the second author of this paper 
obtained a sharp Gagliardo–Nirenberg inequality, which reveals the variational characteristic of 
the ground-state solutions for Eq. (1.5): Let N ≥ 2, 0 < s < 1 and 0 < γ < min{N, 4s}. Then, 
for all v ∈ Hs ,
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∫ ∫ |v(x)|2|v(y)|2
|x − y|γ dxdy ≤ CGN ‖v‖

4s−γ
s

2 ‖v‖
γ
s

Ḣ s , (1.6)

where Q is a solution of (1.5),

CGN = 4s

γ

1

‖Q‖
4s−γ

s

2 ‖Q‖
γ−2s

s

Ḣ s

=
(

4s − γ

γ

) γ
2s 4s

(4s − γ )‖Q‖2
2

. (1.7)

Given the fractional operator (−�)s , the classical Virial identity argument fails, and the existence 
of blow-up solutions for (1.1) presents a particular difficulty. The numerical observations of 
blow-up solutions have been studied in [1,2], when s = 1

2 , γ = 1. The theoretical proof of the 
existence of the blow-up solutions of (1.1) has been presented by Cho et al. in [7]. They proved 
that if γ = 2s ≥ 1 and the initial energy is negative, then the life span [0, T ) of the corresponding 
solutions must be finite (i.e., T < +∞). In [40], by establishing some new estimates, Zhu proved 
the existence of a finite-time blow-up solution for (1.1) with γ = 2s and the dynamics of blow-up 
solutions. We note that the sharp threshold of blow-up and global existence for (1.1) with γ > 2s

remains unknown.
In the present paper, we first construct two invariant flows by injecting the sharp Gagliardo–

Nirenberg inequality proposed by Zhu in [40], which strongly depend on the scaling index 
sc = γ−2s

2 and conservation laws. Then, we obtain the sharp criteria of blow-up and scatter-
ing for the L2-supercritical, nonlinear, fractional Schrödinger Eq. (1.1) in terms of the arguments 
in [15,20,21,26]. The main theorem is as follows.

Theorem 1.1. Let N ≥ 2 and 2s < γ < min{N, 4s}. Assume that u0 ∈ Hs is radial and 

M[u0]
s−sc
sc E[u0] < M[Q] s−sc

sc E[Q], where Q is the ground-state solution of (1.5).

(i) If N
2N−1 ≤ s < 1 and

M[u0]
s−sc
sc ‖u0‖2

Ḣ s < M[Q] s−sc
sc ‖Q‖2

Ḣ s ,

then the corresponding solution u(t) of (1.1)–(1.2) exists globally in Hs . Moreover, u(t)

scatters in Hs . Specifically, there exists φ± ∈ Hs such that lim
t→±∞‖u(t) −e−it (−�)s φ±‖Hs =

0.
(ii) Further, if the initial data u0 ∈ Hs0 with s0 = max{2s, γ+1

2 } and

M[u0]
s−sc
sc ‖u0‖2

Ḣ s > M[Q] s−sc
sc ‖Q‖2

Ḣ s

satisfies |x|u0 ∈ L2 and x · ∇u0 ∈ L2, then the solution u(t) of (1.1)–(1.2) must blow up in 
finite time 0 < T < +∞.

This paper is organized as follows. In Section 2, using the Strichartz estimates, we estab-
lish the small data theory and the long-time perturbation theory. We review properties of the 
ground state Q in Section 3 in connection with the sharp Gagliardo–Nirenberg estimate. We can 
construct the invariant flows generated by the Cauchy problem of (1.1) and (1.2) and prove The-
orem 1.1 for the blow-up part (ii). In Section 4, we introduce the local virial identity and prove 
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Theorem 1.1, except for the scattering claim in part (i). By assuming that the threshold for scat-
tering is strictly below the threshold claimed, we construct a “critical element”, uc, that stands 
exactly at the boundary between scattering and non-scattering. This is done through a profile 
decomposition lemma in Hs . We then show that time slices of uc(t), as a collection of functions 
in Hs , form a precompact set in Hs (and thus, uc has something in common with the soliton 
Q(x)). This enables us to prove that uc remains localized uniformly in time. In Section 5, by 
using the localization in Section 4, we deduce a contradiction with the conservation of mass at 
large times.

We conclude this section by introducing some notations. Lq := Lq(RN), ‖ · ‖q := ‖ · ‖Lq(RN), 

the time-space mixed norm ‖u‖LqX := (∫
R

‖u(t, ·)‖q
X

) 1
q , Hs := Hs(RN), Ḣ s := Ḣ s(RN), and ∫ ·dx := ∫

RN ·dx. Fv = v̂ denotes the Fourier transform of v, which for v ∈ L1(RN) is given by 
Fv = v̂(ξ) := ∫ e−ix·ξ v(x)dx for all ξ ∈ R

N , and F−1v is the inverse Fourier transform of v(ξ). 
�z and 
z are the real and imaginary parts of the complex number z, respectively. z denotes the 
complex conjugate of the complex number z. The various positive constants will be denoted by 
C or c.

2. Local theory and Strichartz estimate

In this paper, we study the Cauchy problem (1.1)–(1.2) in the form of the following integral 
equation:

u(t) = U(t)u0 + i

t∫
0

U(t − t1)(
1

|x|γ ∗ |u|2)u(t1)dt1

where

U(t)φ(x) = e−i(−�)s tφ(x) = 1

(2π)
N
2

∫
ei(x·ξ−|ξ |2s )φ̂(ξ)dξ.

In this section, we first recall the local theory for Eq. (1.1) by the radial Strichartz estimate (see 
[17,25]).

Definition 2.1. For the given θ ∈ [0, s), we state that the pair (q, r) is θ -level admissible, denoted 
by (q, r) ∈ 
θ , if

q, r ≥ 2,
2s

q
+ N

r
= N

2
− θ (2.1)

and

4N + 2

2N − 1
≤ q ≤ ∞,

1

q
≤ 2N − 1

2
(
1

2
− 1

r
), or 2 ≤ q <

4N + 2

2N − 1
,

1

q
<

2N − 1

2
(
1

2
− 1

r
).

(2.2)

Correspondingly, we denote the dual θ -level admissible pair by (q ′, r ′) ∈ 
′
θ if (q, r) ∈


−θ with (q ′, r ′) is the Hölder dual to (q, r).
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Proposition 2.2 (See [17]). Assume that N ≥ 2 and that φ, f are radial; then for qj , rj ≥ 2, j =
1, 2,

‖U(t)φ‖Lq1Lr1 ≤ C‖Dθφ‖2, (2.3)

where Dθ = (−�)
θ
2 ,

‖
t∫

0

U(t − t1)f (t1)dt1‖Lq1Lr1 ≤ C‖f ‖
L

q′
2L

r′2 , (2.4)

in which θ ∈ R, the pairs (qj , rj ) satisfy the range conditions (2.2) and the gap condition

2s

q1
+ N

r1
= N

2
− θ,

2s

q2
+ N

r2
= N

2
+ θ.

Definition 2.3. We define the following Strichartz norm

‖u‖S(
sc ) = sup
(q,r)∈
sc

‖u‖LqLr .

Let (q ′, r ′) be the Hölder dual to (q, r), and define the dual Strichartz norm

‖u‖S′(
−sc ) = inf
(q ′,r ′)∈
′

sc

‖u‖
Lq′

Lr′ = inf
(q,r)∈
−sc

‖u‖
Lq′

Lr′ .

Remark 2.4. Notice that if

s ∈ [ N

2N − 1
,1) ⊂ (

1

2
,1),

the gap condition (2.1) with θ = 0 right implies the range condition (2.2), which further means 
that 
0 is nonempty. That is we have a full set of 0-level admissible Strichartz estimates without 
loss of derivatives in radial case. Moreover, denoting

qc = rc = 2N + 4s

N + 2s − γ
, (2.5)

we check that (qc, rc) ∈ 
sc �= ∅ is an sc-level admissible pair.

By Proposition 2.2, for u0, f = ( 1
|x|γ ∗ |u|2)u radial, we then have that

‖U(t)u0‖S(
0) ≤ C‖u0‖2

and ∥∥∥∥∥∥
t∫
U(t − t1)(

1

|x|γ ∗ |u|2)u(t1)dt1

∥∥∥∥∥∥ ≤ C‖( 1

|x|γ ∗ |u|2)u‖S′(
0).
0 S(
0)
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Together with Sobolev embedding, we obtain

‖U(t)φ‖S(
sc ) ≤ c‖φ‖Ḣ sc ,∥∥∥∥∥∥
t∫

0

U(t − t1)(
1

|x|γ ∗ |u|2)u(t1)dt1

∥∥∥∥∥∥
S(
sc )

≤ C‖Dsc((
1

|x|γ ∗ |u|2)u)‖S′(
0)

and ∥∥∥∥∥∥
t∫

0

U(t − t1)(
1

|x|γ ∗ |u|2)u(t1)dt1

∥∥∥∥∥∥
S(
sc )

≤ C‖( 1

|x|γ ∗ |u|2)u‖S′(
−sc ).

Next, we write S(
θ ; I ) to indicate its restriction to a time subinterval I ⊂ (−∞, +∞).

Proposition 2.5 (Small data). Let ‖u0‖Ḣ sc ≤ A be radial. Then, there exists δsd = δsd(A) > 0
such that if ‖U(t)u0‖S(
sc ) ≤ δsd , then u = u(t) solving (1.1) is global, and

‖u‖S(
sc ) ≤ 2‖U(t)u0‖S(
sc ), (2.6)

‖Dscu‖S(
0) ≤ 2c‖u0‖Ḣ sc . (2.7)

(Note that by the Strichartz estimates, the hypotheses are satisfied if ‖u0‖Ḣ sc ≤ Cδsd .)

Proof. Set

�u0(v) = U(t)u0 + i

t∫
0

U(t − t1)(
1

| · |γ ∗ |v|2)v(t1)dt1.

By the Strichartz estimates, we have

‖Dsc�u0(v)‖S(
0) ≤ c‖u0‖Ḣ sc + c‖Dsc [( 1

| · |γ ∗ |v|2)v]‖
Lq′

Lr′

and

‖�u0(v)‖S(
sc ) ≤ ‖U(t)u0‖S(
sc ) + c‖Dsc [( 1

| · |γ ∗ |v|2)v]‖
Lq′

Lr′ ,

with (q ′, r ′) ∈ 
′
0. Applying the fractional Leibnitz [8,23,24], the Hölder inequalities and the 

Hardy–Littlewood–Sobolev inequalities, we have

‖Dsc [( 1

| · |γ ∗ |v|2)v]‖
Lq′

Lr′ ≤ c‖Dscv(
1

| · |γ ∗ |v|2)‖
Lq′

Lr′ + c‖[ 1

| · |γ ∗ Re(v̄Dscv)]v‖
Lq′

Lr′

≤ c‖Dscv‖Lq1Lr1 ‖v‖2
qc rc + c‖v‖LqcLrc ‖v̄Dscv‖LaLb
L L
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≤ c‖Dscv‖Lq1Lr1 ‖v‖2
LqcLrc + c‖v‖LqcLrc ‖v‖LqcLrc ‖Dscv‖Lγ3Lρ3

≤ c‖v‖2
S(
sc )‖Dscv‖S(
0),

where the pairs (q, r), (q1, r1), (γ3, ρ3) ∈ 
0, satisfying that

1

q1
= 1 − 1

q
− 2

qc

,
1

r1
= 2 − γ

N
− 1

r
− 2

rc
,

1

a
= 1

qc

+ 1

γ3
= 1 − 1

q
− 1

qc

,
1

b
= 1

rc
+ 1

ρ3
= 1 − γ

N
+ 1 − 1

r
− 1

rc
,

1

γ3
= 1 − 1

q
− 2

qc

,
1

ρ3
= 2 − γ

N
+ 1 − 2

rc
.

Let δsd ≤ min
(

1√
8c

, 1
8c3A

)
, and

B = {v|‖v‖S(
sc ) ≤ 2‖U(t)u0‖S(
sc ),‖Dscv‖S(
0) ≤ 2c‖u0‖Ḣ sc

}
.

Then, �u0 : B → B and is a contraction on B; thus, the fixed point principle gives the result. �
Proposition 2.6. If u0 ∈ Hs is radial and u = u(t) is global with both bounded sc-level Strichartz 
norm ‖u‖S(
sc ) < ∞ and uniformly bounded Hs norm sup

t∈[0,+∞)

‖u‖Hs ≤ B , then u(t) scatters 

in Hs as t → +∞. Specifically, there exists φ+ ∈ Hs such that

lim
t→+∞‖u(t) − U(t)φ+‖Hs = 0.

Proof. We can obtain from the integral equation

u(t) = U(t)u0 + i

t∫
0

U(t − t1)(
1

| · |γ ∗ |u|2)u(t1)dt1 (2.8)

that

u(t) − U(t)φ+ = −i

∞∫
t

U(t − t1)(
1

| · |γ ∗ |u|2)u(t1)dt1, (2.9)

where φ+ = u0 + i
∫∞

0 U(−t1)( 1
|·|γ ∗ |u|2)u(t1)dt1. By the Hardy–Littlewood–Sobolev inequal-

ity and the Strichartz estimates, for 0 ≤ α ≤ s, there exist some (q, r) ∈ 
0, (q1, r1) ∈ 
′
0 such 

that∥∥∥∥∥∥Dα

⎛⎝∫
I

U(t − s)

(
(

1

| · |γ ∗ |u|2)u(s, x)

)
ds

⎞⎠∥∥∥∥∥∥
L

q
I Lr

≤ C

∥∥∥∥Dα

(
(

1

| · |γ ∗ |u|2)u
)∥∥∥∥

L
q1
I Lr1

≤ C‖Dαu‖L
q
I Lr ‖ 1

| · |γ ∗ |u|2‖
L

q2
I Lr2

≤ C‖Dαu‖L
q
I Lr ‖u‖2

L
qc
I Lrc

, (2.10)



JID:YJDEQ AID:9080 /FLA [m1+; v1.272; Prn:13/11/2017; 10:21] P.9 (1-31)

Q. Guo, S. Zhu / J. Differential Equations ••• (••••) •••–••• 9
where I ⊂ [0, +∞),

1

q1
= 1

q2
+ 1

q
= 2

qc

+ 1

q
,

1

r1
= 1

r
+ 1

r2
= 1

r
+ γ

N
+ 2

rc
− 1.

Since ‖u‖L
qc
[0,∞)

Lrc < ∞, we can partition [0, +∞) into a union of Ij = [tj , tj+1], 1 ≤ j ≤ N , 

such that for every 1 ≤ j ≤ N , ‖u‖L
qc
Ij

Lrc < δ(δ is sufficiently small). Thus, by (2.8) and (2.10), 

for 0 ≤ α ≤ s, ∀1 ≤ j ≤ N ,

‖Dαu‖L
q
Ij

Lr ≤ ‖U(t)u(tj )‖L
q
Ij

Lr +

∥∥∥∥∥∥∥Dα

⎛⎜⎝∫
Ij

U(t − s)

(
(

1

| · |γ ∗ |u|2)u(s, x)

)
ds

⎞⎟⎠
∥∥∥∥∥∥∥

L
q
Ij

Lr

≤ ‖U(t)u(tj )‖L
q
Ij

Lr + C‖Dαu‖L
q
Ij

Lr ‖u‖2
L

qc
Ij

Lrc

≤ CB + Cδ2‖Dαu‖L
q
Ij

Lr .

By choosing δ such that Cδ2 < 1
2 , we see that ‖Dαu‖L

q
Ij

Lr < ∞, 1 ≤ j ≤ N . So we have 

‖Dαu‖LqLr < ∞. By (2.9), we have for 0 ≤ α ≤ s,

‖Dα(u(t) − U(t)φ+)‖2 ≤ ‖u‖2
L

qc
[t,∞)

Lrc
‖Dαu‖L

q

[t,∞)
Lr .

Taking α = 0, α = s in the above inequality and sending t → +∞, we obtain the claim. �
Proposition 2.7 (Long-time perturbation theory). For any given A � 1, there exist ε0 =
ε0(A) � 1 and c = c(A) such that the following holds: Let u = u(t, x) ∈ Hs be radial and 
solve (1.1) for all t . Let ũ = ũ(t, x) ∈ Hs for all t , and set

e ≡ iũt − (−�)sũ + (
1

| · |γ ∗ |ũ|2)ũ.

If

‖ũ‖S(
sc ) ≤ A, ‖e‖S′(
−sc ) ≤ ε0 and ‖U(t − t0)(u(t0) − ũ(t0)‖S(
sc ) ≤ ε0,

then

‖u‖S(
sc ) ≤ c = c(A) < ∞.

Proof. Define w = u − ũ. Then, w solves the equation

iwt − (−�)sw + (
1

| · |γ ∗ |w + ũ|2)w + (
1

| · |γ ∗ |w + ũ|2)ũ − (
1

| · |γ ∗ |ũ|2)ũ + e = 0.

Specifically,
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iwt − (−�)sw + ( 1
|·|γ ∗ |w|2)w + ( 1

|·|γ ∗ (w̄ũ))w + ( 1
|·|γ ∗ (w ¯̃u))w

+( 1
|·|γ ∗ |w|2)ũ + ( 1

|·|γ ∗ |ũ|2)w + ( 1
|·|γ ∗ (w̄ũ))ũ + ( 1

|·|γ ∗ (w ¯̃u))ũ + e = 0.
(2.11)

Because ‖ũ‖S(
sc ) ≤ A, we can partition [t0, ∞) into N = N(A) intervals Ij = [tj , tj+1) such 
that for each 0 ≤ j ≤ N − 1, ‖ũ‖S(
sc ;Ij ) < δ with the sufficiently small δ to be specified later. 
The integral equation of (2.11) with initial time tj is

w(t) = U(t − tj )w(tj ) + i

t∫
tj

U(t − s)W(·, s)ds, (2.12)

where

W = (
1

| · |γ ∗ |w|2)w + (
1

| · |γ ∗ (w̄ũ))w + (
1

| · |γ ∗ (w ¯̃u))w

+ (
1

| · |γ ∗ |w|2)ũ + (
1

| · |γ ∗ |ũ|2)w + (
1

| · |γ ∗ (w̄ũ))ũ + (
1

| · |γ ∗ (w ¯̃u))ũ + e.

Applying the inhomogeneous Strichartz estimate (2.4) on Ij , we have for (q1, r1) ∈ 
−sc

‖w‖S(
sc ;Ij ) ≤ ‖ei(t−tj )�w(tj )‖S(
sc ;Ij ) + c‖( 1

| · |γ ∗ |w|2)w‖
L

q′
1

Ij
L

r′1
(2.13)

+ c‖( 1

| · |γ ∗ (w̄ũ))w‖
L

q′
1

Ij
L

r′1
+ c‖( 1

| · |γ ∗ (w ¯̃u))w‖
L

q′
1

Ij
L

r′1
+ c‖( 1

| · |γ ∗ |w|2)ũ‖
L

q′
1

Ij
L

r′1

+ c‖( 1

| · |γ ∗ |ũ|2)w‖
L

q′
1

Ij
L

r′1
+ c‖( 1

| · |γ ∗ (w̄ũ))ũ‖
L

q′
1

Ij
L

r′1
+ c‖( 1

| · |γ ∗ (w ¯̃u))ũ‖
L

q′
1

Ij
L

r′1

+ ‖e‖S′(
−sc ).

Under the condition N
2N−1 ≤ s < 1, we easily obtain that any (qi, ri), i = 1, 2 solving

⎧⎨⎩
1
q ′

1
= 2

qc
+ 1

q2
= 1 − γ

N+2s
+ 1

q2
,

1
r ′
1

= γ
N

+ 2
rc

+ 1
r2

− 1 = γ
N

− γ
N+2s

+ 1
r2

(2.14)

should satisfy the range condition (2.2). Hence, for the above pair (q1, r1) ∈ 
−sc , we can find 
(q2, r2) ∈ 
sc and apply the Hardy–Littlewood–Sobolev inequality and Hölder inequalities to 
find that

‖( 1

| · |γ ∗ |ũ|2)w‖
L

q′
1

Ij
L

r′1
≤ ‖ũ‖2

L
qc
Ij

Lrc
‖w‖

L
q2
Ij

Lr2 ≤ ‖ũ‖2
S(
sc ;Ij )‖w‖S(
sc ;Ij ) ≤ δ2‖w‖S(
sc ;Ij ),

‖( 1

| · |γ ∗ |w|2)ũ‖
L

q′
1

Ij
L

r′1
≤ ‖ũ‖

L
q2
Ij

Lr2 ‖w‖2
L

qc
Ij

Lrc
≤ ‖ũ‖S(
sc ;Ij )‖w‖2

S(
sc ;Ij ) ≤ δ‖w‖2
S(
sc ;Ij ).

(2.15)
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Similarly, we have other terms estimated in the same way, and we substitute all the estimates in 
(2.13) to obtain

‖w‖S(
sc ;Ij ) ≤ ‖U(t − tj )w(tj )‖S(
sc ;Ij ) + cδ2‖w‖S(
sc ;Ij ) (2.16)

+ cδ‖w‖S(
sc ;Ij ) + c‖w‖3
S(
sc ;Ij ) + c‖e‖S′(Ḣ−sc ;Ij )

≤ ‖U(t − tj )w(tj )‖S(
sc ;Ij ) + cδ2‖w‖S(
sc ;Ij )

+ cδ‖w‖2
S(
sc ;Ij ) + c‖w‖3

S(
sc ;Ij ) + cε0.

Now, if δ ≤ min(1, 1
2
√

c
) and

‖U(t − tj )w(tj )‖S(
sc ;Ij ) + cε0 ≤ min(1,
1

8
√

c
), (2.17)

we obtain

‖w‖S(
sc ;Ij ) ≤ 2‖U(t − tj )w(tj )‖S(
sc ;Ij ) + 2cε0. (2.18)

Next, we take t = tj+1 in (2.12) and apply U(t − tj+1) to both sides. We then obtain

U(t − tj+1)w(tj+1) = U(t − tj )w(tj ) + i

tj+1∫
tj

U(t − s)W(·, s)ds. (2.19)

Note that the Duhamel integral is confined to Ij . Similar to (2.16), we have the estimate

‖U(t − tj+1)w(tj+1)‖S(
sc ) ≤ ‖ei(t−tj )�w(tj )‖S(
sc ) + cδ2‖w‖S(
sc ;Ij )

+ cδ‖w‖S(
sc ;Ij ) + c‖w‖3
S(
sc ;Ij ) + cε0.

Then, (2.17) and (2.18) imply

‖U(t − tj+1)w(tj+1)‖S(
sc ) ≤ 2‖U(t − tj )w(tj )‖S(
sc ) + 2cε0.

Now, iterate the beginning with j = 0, and we obtain

‖U(t − tj )w(tj )‖S(
sc ) ≤ 2j‖U(t − t0)w(t0)‖S(
sc ) + (2j − 1)2cε0 ≤ 2j+2cε0.

Because the second part of (2.17) is needed for each Ij , 0 ≤ j ≤ N − 1, we require that

2N+2cε0 ≤ min(1,
1

2
√

6c
). (2.20)

Recall that δ is an absolute constant to satisfy (2.17); the given A determines the number of time 
intervals N . Then, by (2.20), ε0 is determined by N = N(A). Thus, the iteration completes our 
proof. �
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3. Variational characteristic and invariant sets

In this section, we first recall some variational characteristic of the ground state for Eq. (1.1)
given in [40]. Then, we can construct the invariant flows generated by the Cauchy problem of 
(1.1) and (1.2). Finally, we give some refined estimates of the invariant set of the global solutions, 
which are crucial for proving that the global solutions will be scattering.

Lemma 3.1 (See [40]). Let N ≥ 2, 0 < s < 1 and 0 < γ < min{N, 4s}. Suppose that Q is the 
ground-state solution of (1.5). Then, we have the following Pohozaev identities:∫

Q(−�)sQdx +
∫

|Q|2dx −
∫ ∫ |Q(x)|2|Q(y)|2

|x − y|γ dxdy = 0, (3.1)

N − 2s

2

∫
Q(−�)sQdx + N

2

∫
|Q|2dx − 2N − γ

4

∫ ∫ |Q(x)|2|Q(y)|2
|x − y|γ dxdy = 0. (3.2)

Remark 3.2. Let Q be the ground-state solution of (1.5). In terms of the Pohozaev identities 
(3.1) and (3.2), we can obtain the following properties.

(i) ∫ ∫ |Q(x)|2|Q(y)|2
|x − y|γ dxdy = 4s

γ
‖Q‖2

Ḣ s = 4s

4s − γ
‖Q‖2

2.

(ii)

E[Q] = 1

2

∫
Q(−�)sQdx − 1

4

∫ ∫ |Q(x)|2|Q(y)|2
|x − y|γ dxdy = γ − 2s

2(4s − γ )
‖Q‖2

2.

(iii)

E[Q]M[Q] s−sc
sc = γ − 2s

2(4s − γ )
‖Q‖

2s
sc

2 .

(iv)

‖Q‖2
Ḣ s M[Q] s−sc

sc = γ

4s − γ
‖Q‖

2s
sc

2 .

The general fractional Laplacian was first proposed by Caffarelli and Silvestre in [4], and many 
researchers have studied the related time-independent Schrödinger equations with the fractional 
Laplacian (see [6,11,12,16,22,32]).

For the Cauchy problem (1.1)–(1.2), we can construct the following two invariant evolution 
flows by the sharp G–N inequality (1.6) and the conservation laws. Let u ∈ Hs \ {0}, and define

K1 = {‖u‖2
s M[u] s−sc

sc < ‖Q‖2
s M[Q] s−sc

sc , E[u]M[u] s−sc
sc < E[Q]M[Q] s−sc

sc }

Ḣ Ḣ
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and

K2 = {‖u‖2
Ḣ s M[u] s−sc

sc > ‖Q‖2
Ḣ s M[Q] s−sc

sc , E[u]M[u] s−sc
sc < E[Q]M[Q] s−sc

sc }.

Proposition 3.3. Let N ≥ 2 and Q be the ground-state solution of (1.5). If 0 < s < 1 and 2s <

γ < min{N, 4s}, then K1 and K2 are invariant manifolds of (1.1).

Proof. Denote

V (u) :=
∫ ∫ |u(t, x)|2|u(t, y)|2

|x − y|γ dxdy.

Multiplying the definition of energy by M[u] s−sc
sc and using (1.6), we have

M[u] s−sc
sc E[u] = 1

2
‖u(t)‖

2(s−sc)
sc

2 ‖Dsu(t)‖2
2 − 1

4
V (u)‖u‖

2(s−sc)
sc

2

≥ 1

2
(‖u(t)‖

s−sc
sc

2 ‖Dsu(t)‖2)
2 − CGN

4
(‖u(t)‖

s−sc
sc

2 ‖Dsu(t)‖2)
γ
s .

Define f (y) = 1
2y2 − 1

4CGNy
γ
s . Then, f ′(y) = y

(
1 − CGN

γ
4s

y
γ−2s

s

)
, and thus, f ′(y) = 0 when 

y0 = 0 and y1 = ‖Q‖
s−sc
sc

2 ‖DsQ‖2. The graph of f has a local minimum at y0 and a local max-

imum at y1. Remark 3.2 implies that fmax = f (y1) = M[Q] s−sc
sc E[Q]. This combined with 

energy conservation gives

f (‖u(t)‖
s−sc
sc

2 ‖Dsu(t)‖2) ≤ M[u(t)] s−sc
sc E[u(t)] = M[u0]

s−sc
sc E[u0] < f (y1). (3.3)

Next, we shall prove Proposition 3.3 in the following two cases:

Case I: If the initial data u0 ∈ K1, i.e., ‖u0‖
s−sc
sc

2 ‖Dsu0‖2 < y1, then by (3.3) and the continu-
ity of ‖Dsu(t)‖2 in t , we have for all time t ∈R,

‖u(t)‖2
Ḣ s M[u(t)] s−sc

sc < ‖Q‖2
Ḣ s M[Q] s−sc

sc . (3.4)

Indeed, if (3.4) is not true, then there exists t1 ∈ I such that ‖u(t1)‖
s−sc
sc

2 ‖Dsu(t1)‖2 ≥ y1. Be-
cause the corresponding solution u(t, x) ∈ C(I ; Hs) is continuous with respect to t , there exists 

0 < t0 ≤ t1 such that ‖u(t0)‖
s−sc
sc

2 ‖Dsu(t0)‖2 = y1. Thus, injecting the conservation of energy 

E[u(t0)] = E[u0] and ‖u(t0)‖
s−sc
sc

2 ‖Dsu(t0)‖2 = y1 into (3.3), we deduce that

f (y1) > M[u0]
s−sc
sc E[u0] = M[u(t0)]

s−sc
sc E[u(t0)] ≥ f (‖u(t0)‖

s−sc
sc

2 ‖Dsu(t0)‖2) = f (y1).

This is a contradiction. Hence, (3.4) is true, which implies that K1 is an invariant set.

Case II: If the initial data u0 ∈ K2, i.e., ‖u0‖
s−sc
sc

2 ‖Dsu0‖2 > y1, then by (3.3) and the conti-
nuity of ‖Dsu(t)‖2 in t , we have for all time t ∈ I that
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‖u(t)‖2
Ḣ s M[u(t)] s−sc

sc > ‖Q‖2
Ḣ s M[Q] s−sc

sc , (3.5)

which implies that K2 is an invariant set. The proof is similar to Case I. �
Remark 3.4. From the argument above, we can refine this analysis to obtain the follow-

ing. If the condition ‖u0‖2
Ḣ s M[u0]

s−sc
sc < ‖Q‖2

Ḣ s M[Q] s−sc
sc holds, then there exists δ > 0

such that M[u] s−sc
sc E[u] < (1 − δ)M[Q] s−sc

sc E[Q], and thus, there exists δ0 = δ0(δ) such that 

‖u(t)‖
s−sc
sc

2 ‖Dsu(t)‖2 < (1 − δ0)‖Q‖
s−sc
sc

2 ‖DsQ‖2, where u = u(t) is the corresponding solution 
to Eq. (1.1).

Theorem 3.5 (Global versus blow-up dichotomy). Let u0 ∈ Hs , and let I = (T−, T+) be the 
maximal time interval of existence of u = u(t) solving (1.1).

(i) If u0 ∈ K1, then I = (−∞, +∞), i.e., the solution exists globally in time.
(ii) If u0 ∈ K2

⋂
Hs0 is radial, |x|u0 ∈ L2 and x · ∇u0 ∈ L2, where s0 = max{2s, γ+1

2 }, then the 
corresponding solution u(t) of (1.1) must blow up in a finite time 0 < T < +∞.

Proof. (i) By the invariance of K1, we see that (3.4) is true. In particular, the Hs -norm of the 
solution u is bounded, which proves the global existence of the solution in this case.

(ii) Denote A :=
((

γ
4s−γ

)sc ‖Q‖2s
2

M[u0]s−sc

) 1
2sc

. Using the invariance of K2, we have ‖u(t)‖2
Ḣ s>A2

for all t ∈ I . It follows from [7,40] that |x|u(t) ∈ L2 and x · ∇u(t) ∈ L2, and for all t ∈ I (the 
maximal time interval), 

∫
ux(−�)1−sxudx is non-negative and

∫
ux(−�)1−sxudx ≤

t∫
0

t∫
0

(
2γE[u(τ)] − (γ − 2s)‖u(τ)‖2

Ḣ s

)
dτdt + Ct + C. (3.6)

Applying the fact that for all t ∈ I , E[u(t)] = E[u0] < γ−2s
2γ

A2 and ‖u(t)‖2
Ḣ s > A2 to (3.6), we 

deduce that for all t ∈ I

∫
ux(−�)1−sxudx <

t∫
0

t∫
0

(
2γ

γ − 2s

2γ
A2 − (γ − 2s)A2

)
dτdt + Ct + C.

Hence, there exists a constant C0 > 0 such that for all t ∈ I

∫
ux(−�)1−sxudx ≤ −C0t

2 + Ct + C.

For sufficiently large |t |, the left-hand side is negative, while 
∫

ux(−�)1−sxudx is non-negative, 
which means that both T− and T+ are finite. Specifically, the solution u(t, x) of the Cauchy 
problem (1.1)–(1.2) blows up in finite time. �
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Lemma 3.6. Let u0 ∈ K1. Furthermore, take δ > 0 such that M[u0]
s−sc
sc E[u0] <

(1 − δ)M[Q] s−sc
sc E[Q]. If u = u(t) is a solution to problem (1.1) with initial data u0, then 

there exists Cδ > 0 such that for all t ∈ R,

‖Dsu‖2
2 − γ

4s
V (u) ≥ Cδ‖Dsu‖2

2. (3.7)

Proof. By Remark 3.4, there exists δ0 = δ0(δ) > 0 such that for all t ∈ R,

‖u(t)‖
s−sc
sc

2 ‖Dsu(t)‖2 < (1 − δ0)‖Q‖
s−sc
sc

2 ‖DsQ‖2. (3.8)

Let

h(t) = 1

‖Q‖
2(s−sc)

sc

2 ‖DsQ‖2
2

(‖u(t)‖
2(s−sc)

sc

2 ‖Dsu(t)‖2
2 − γ

4s
V (u)‖u(t)‖

2(s−sc)
sc

2 )

and g(y) = y2 − y
γ
s . By the Gagliardo–Nirenberg estimate (1.6) with the sharp constant CGN

(1.7), we can obtain h(t) ≥ g

(
‖u(t)‖

s−sc
sc

2 ‖Dsu(t)‖2

‖Q‖
s−sc
sc

2 ‖DsQ‖2

)
. By (3.8), we restrict our attention to 0 ≤ y ≤

1 − δ0. The elementary argument gives a constant Cδ such that g(y) ≥ Cδy
2 if 0 ≤ y ≤ 1 − δ0. 

This indeed implies (3.7). �
Lemma 3.7 (Comparability of gradient and energy). Let u0 ∈ K1. Then,

γ − 2s

2γ
‖Dsu(t)‖2

2 ≤ E[u(t)] ≤ 1

2
‖Dsu(t)‖2

2.

Proof. The expression of E[u(t)] gives the second inequality immediately. The first inequality 
is obtained from

1

2
‖Dsu‖2

2 − 1

4
V (u) ≥ 1

2
‖Dsu‖2

2

⎛⎜⎜⎝1 − 2s

γ

⎛⎝ ‖Dsu‖2‖u‖
s−sc
sc

2

‖DsQ‖2‖Q‖
s−sc
sc

2

⎞⎠
2sc
s

⎞⎟⎟⎠≥ γ − 2s

2γ
‖Dsu‖2

2,

where we have used (1.6), (1.7) and (3.4). �
To establish the scattering theory, we need the existence result of the wave operator �+ :

φ+ �→ v0.

Proposition 3.8 (Existence of wave operators). Suppose that φ+ ∈ Hs and

1

2
M[φ+] s−sc

sc ‖Dsφ+‖2
2 < M[Q] s−sc

sc E[Q]. (3.9)

Then, there exists v0 ∈ Hs such that v = v(t) globally solves (1.1) satisfying
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‖Dsv(t)‖2‖v(t)‖
s−sc
sc

2 ≤ ‖DsQ‖2‖Q‖
s−sc
sc

2 , M[v] = ‖φ+‖2
2, E[v] = 1

2
‖Dsφ+‖2

2,

and

lim
t→+∞‖v(t) − U(t)φ+‖Hs = 0.

Moreover, if ‖U(t)φ+‖S(
sc ) ≤ δsd , where δsd is defined in Proposition 2.5, then

‖v‖S(
sc ) ≤ 2‖U(t)φ+‖S(
sc ), ‖Dscv‖S(
0) ≤ 2c‖φ+‖Ḣ sc .

Proof. In this paper, we always use v(t) := FNLS(t)v0 to denote the solution v = v(t) of 
Eq. (1.1) with the initial data v(0) = v0. First, similar to the proof of the small data scattering 
theory Proposition 2.5, we can solve the integral equation

v(t) = U(t)φ+ − i

∞∫
t

U(t − t1)(
1

| · |γ ∗ |v|2)v(t1)dt1 (3.10)

for t ≥ T with T large. In fact, there exists T � 1 such that ‖U(t)φ+‖S(
sc ;[T ,+∞)) ≤ δsd . 
Now, from (3.10), we again obtain by the Strichartz estimate and the Hardy–Littlewood–Sobolev 
inequality that

‖Dsv(t)‖S(
0;[T ,∞)) ≤ c‖Dsφ+‖L2 + c‖Ds[( 1

| · |γ ∗ |v|2)v]‖
L

q′
[T ,+∞)

Lr′

≤ c‖Dsφ+‖L2 + c‖Dsv‖
L

q1[T ,+∞)
Lr1 ‖v‖2

L
q2[T ,+∞)

Lr2

+ c‖v‖
L

γ1[T ,+∞)
Lρ1 ‖v‖

L
γ2[T ,+∞)

Lρ2 ‖Dsv‖
L

γ3
[T ,+∞)

Lρ3

≤ c‖Dsφ+‖L2 + c‖v‖2
S(
sc ;[T ,+∞))‖Dsv(t)‖S(
0;[T ,+∞)),

where (q, r), (q1, r1), (γ3, ρ3) ∈ 
0, (q2, r2), (γ1, ρ1), (γ2, ρ2) ∈ 
sc , which indeed can be cho-
sen as (q2, r2) = (γ1, ρ1) = (γ2, ρ2) = (qc, rc) ∈ 
sc , with (qc, rc) defined by (2.5). Similarly,

‖v(t)‖S(
0;[T ,+∞)) ≤ c‖φ+‖L2 + c‖v‖2
S(
sc ;[T ,+∞))‖v(t)‖S(
0;[T ,+∞)).

Following Proposition 2.5, we obtain for sufficiently large T

‖v‖S(
0;[T ,+∞)) + ‖Dsv‖S(
0;[T ,+∞)) < 2c‖φ+‖Hs .

Using a similar approach with t > T , we obtain

‖v − U(t)φ+‖S(
0;[T ,+∞)) + ‖Ds(v − eit�φ+)‖S(
0;[T ,+∞)) → 0, as T → +∞,

which implies v(t) − U(t)φ+ → 0 in Hs , and thus, M[v] = ‖φ+‖2
2. Because U(t)φ+ → 0

in Lp for any p ∈ (2, 2N
N−2s

] as t → +∞, by the Hardy–Littlewood–Sobolev inequality, 
V (U(t)φ+) → 0. This together with the fact that ‖DsU(t)φ+‖2 is conserved implies
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E[v] = lim
t→+∞(

1

2
‖DsU(t)φ+‖2

2 − 1

4
V (U(t)φ+)) = 1

2
‖Dsφ+‖2

2.

Considering (3.9), we immediately obtain M[v] s−sc
sc E[v] < E[Q]M[Q] s−sc

sc . Note that

lim
t→+∞‖v(t)‖

2(s−sc)
sc

2 ‖Dsv(t)‖2
2 = lim

t→+∞‖U(t)φ+‖
2(s−sc)

sc

2 ‖DsU(t)φ+‖2
2

= ‖φ+‖
2(s−sc)

sc

2 ‖Dsφ+‖2
2 ≤ 2E[Q]M[Q] s−sc

sc

= γ − 2s

γ
‖Q‖

2(s−sc)
sc

2 ‖DsQ‖2
2,

where we used (3.9) and Remark 3.2 in the last two steps. Thus, due to Theorem 3.5, we can 
evolve v(t) from T back to time 0 and complete our proof. �
4. Critical solution and compactness

From this section, we begin to prove the scattering part of Theorem 1.1. Let u = u(t) be the 
solution of (1.1) such that the assumption of Theorem 1.1 holds. Then, we know from Theo-
rem 3.5 that u(t) is globally well-posed. Thus, combined with Proposition 2.6, our goal is to 
show that

‖u‖S(
sc ) < ∞, (4.1)

which implies that the solution of (1.1) is Hs scattering.
We say that SC(u0) holds if (4.1) is true for the solution u = u(t) with the initial data u0.

We first claim that there exists δ > 0 such that if E[u0]M[u0]
s−sc
sc < δ and ‖u0‖

s−sc
sc

2 ‖Dsu0‖2 <

‖Q‖
s−sc
sc

2 ‖DsQ‖2, then (4.1) holds. Indeed, if

E[u0]M[u0]
s−sc
sc <

sc

γ
δ

2s
sc

sd ,

where δsd is simply the Cδsd appearing in Proposition 2.5, and ‖u0‖
s−sc
sc

2 ‖Dsu0‖2 <

‖Q‖
s−sc
sc

2 ‖DsQ‖2, we obtain from Lemma 3.7 that

‖u0‖2
Ḣ sc

≤ ‖u0‖
2(s−sc)

s

2 ‖Dsu0‖
2sc
s

2 ≤
(

γ

sc
E[u0]M[u0]

s−sc
sc

) sc
s ≤ δ2

sd ,

which implies that SC(u0) holds by the small data theory. The claim holds for δ = sc
γ

δ
2s
sc

sd . Now, 
for each δ, we define the set Sδ to be the collection of all such initial data in Hs :

Sδ = {u0 ∈ Hs : E[u0]M[u0]
s−sc
sc < δ and M[u0]

s−sc
sc ‖Dsu0‖2 < M[Q] s−sc

sc ‖DsQ‖2}.
2 2
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We also define that (ME)c = sup{δ : u0 ∈ Sδ ⇒ SC(u0) holds}. If (ME)c = M[Q] s−sc
sc E[Q], 

then we are done. Thus, we assume now that

(ME)c < M[Q] s−sc
sc E[Q]. (4.2)

Then, there exists a sequence of solutions un to (1.1) with Hs initial data un,0 (note from 
the beginning of the above section that we can rescale them to satisfy ‖un‖2 = 1) such that 

‖Dsun,0‖2 < ‖Q‖
s−sc
sc

2 ‖DsQ‖2 and E[un,0] ↓ (ME)c as n → ∞, and SC(u0) does not hold for 
any n.

Our goal in this section is to show the existence of an Hs solution uc to (1.1) with initial data 

uc,0 such that ‖uc,0‖
s−sc
sc

2 ‖Dsuc,0‖2 < ‖Q‖
s−sc
sc

2 ‖DsQ‖2 and M[uc,0]
s−sc
sc E[uc,0] = (ME)c for 

which SC(uc,0) does not hold. Moreover, we will show that {uc(t, ·)|0 ≤ t < ∞} is precompact 
in Hs . This will play an important role in the rigidity theorem in the next section, which will 
ultimately leads to a contradiction.

Prior to fulfilling our main task, we will first introduce a profile decomposition lemma that is 
highly similar to that in [20], which is for the cubic Schrödinger equation in the spirit of Keraani’s 
arguments in [27].

Lemma 4.1 (Profile expansion). Let φn(x) be a radial and uniformly bounded sequence in Hs . 
Then, for each M , there exists a subsequence of φn, also denoted by φn, and

(1) for each 1 ≤ j ≤ M , there exists a (fixed in n) profile ψj(x) in Hs ,
(2) for each 1 ≤ j ≤ M , there exists a sequence (in n) of time shifts t jn ,
(3) there exists a sequence (in n) of remainders WM

n (x) in Hs such that

φn(x) =
M∑

j=1

U(−t
j
n )ψj (x) + WM

n (x).

The time and space sequences have a pairwise divergence property, i.e., for 1 ≤ j �= k ≤ M , we 
have

lim
n→+∞|t jn − tkn | = +∞. (4.3)

The remainder sequence has the following asymptotic smallness property:

lim
M→+∞[ lim

n→+∞‖U(t)WM
n ‖S(
sc )] = 0. (4.4)

For fixed M and any 0 ≤ α ≤ s, we have the asymptotic Pythagorean expansion:

‖φn‖2
Ḣ α =

M∑
j=1

‖ψj‖2
Ḣ α + ‖WM

n ‖2
Ḣ α + on(1). (4.5)
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Remark 4.2. The proof of the linear profile decomposition could simply follow the proof in [15]
without any significant changes. Furthermore, from the proof, the vanishing property (4.4) could 
be improved to

lim
M→+∞[ lim

n→+∞‖U(t)WM
n ‖LqLr ] = 0, ∀(q, r) satisfies (2.1) with θ = sc, (4.6)

especially,

lim
M→+∞[ lim

n→+∞‖U(t)WM
n ‖

L∞L
2N

N−2sc
] = 0. (4.7)

Lemma 4.3 (Energy Pythagorean expansion). In the situation of Lemma 4.1, we have

E[φn] =
M∑

j=1

E[U(−t
j
n )ψj ] + E[WM

n ] + on(1). (4.8)

Proof. According to (4.5), it suffices to establish that for all M ≥ 1,

V (φn) =
M∑

j=1

V (U(−t
j
n )ψj ) + V (WM

n ). (4.9)

There are only two cases to consider. Case 1. There exists some j for which t jn converges to a 
finite number, which without loss of generality, we assume is 0. In this case, we will show that 

lim
n→+∞V (WM

n ) = 0 for M > j , lim
n→+∞V (U(−tkn)ψk) = 0 for all k �= j , and lim

n→+∞V (φn) =
V (ψj ), which gives (4.9). Case 2. For all j , |t jn | → +∞. In this case, we will show that 

lim
n→+∞V (U(−tkn)ψk) = 0 for all k and that lim

n→+∞V (φn) = lim
n→+∞V (WM

n ), which gives (4.9)

again.
For Case 1, we infer from the proof of Lemma 4.1 that Wj−1

n ⇀ ψj , as n → +∞. By 
the compactness of the embedding Hs

r ↪→ Lp, ∀p ∈ (2, 2N
N−2s

), it follows from that Hardy–

Littlewood–Sobolev inequalities that V (W
j−1
n ) → V (ψj ) as n → +∞. Let k �= j . Then, we 

obtain from (4.3) that |tkn | → +∞. As argued in the proof of Lemma 4.1, from the Sobolev em-
bedding and the Lp spacetime decay estimates (or the dispersive estimates; see [18]) of the linear 
flow, we find that V (U(−tkn)ψk) → 0, as n → +∞. Recalling that

W
j−1
n = φn − U(−t1

n)ψ1 − · · · − U(−t
j−1
n )ψj−1,

we conclude that V (φn) → V (ψj ). Because

WM
n = W

j−1
n − ψj − U(−t

j+1
n )ψj+1 − · · · − U(−tMn )ψM,

we also conclude that lim
n→+∞V (WM

n ) = 0 for M > j .

Case 2 follows similarly from the proof of Case 1. �
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Proposition 4.4 (Existence of a critical solution). There exists a global solution uc = uc(t) in 
Hs with initial data uc,0 such that ‖uc,0‖2 = 1,

E[uc] = (ME)c < M[Q] s−sc
sc E[Q], ‖Dsuc‖2

2 < M[Q] s−sc
sc ‖DsQ‖2

2, for all 0 ≤ t < ∞,

and

‖uc‖S(
sc ) = ∞.

Proof. Recall that we have obtained the sequence ‖un‖2 = 1 described at the beginning of this 

section satisfying ‖Dsun,0‖2
2 < M[Q] s−sc

sc ‖DsQ‖2
2 and E[un,0] ↓ (ME)c as n → +∞. Each un

is global and non-scattering ‖un‖S(
sc ) = ∞. We apply Lemma 4.1 to un,0, which is uniformly 
bounded in Hs , to obtain

un,0(x) =
M∑

j=1

U(−t
j
n )ψj (x) + WM

n (x). (4.10)

Then, by Lemma 4.3 (Energy Pythagorean expansion), we further have

M∑
j=1

lim
n→+∞E[U(−t

j
n )ψj ] + lim

n→+∞E[WM
n ] = lim

n→+∞E[un,0] = (ME)c.

Also by the profile expansion, we have

‖Dsun,0‖2
2 =

M∑
j=1

‖DsU(−t
j
n )ψj‖2

2 + ‖DsWM
n ‖2

2 + on(1),

and

1 = ‖un,0‖2
2 =

M∑
j=1

‖ψj‖2
2 + ‖WM

n ‖2
2 + on(1). (4.11)

We know from the proof of Lemma 3.7 that each energy is nonnegative, and thus,

lim
n→+∞E[U(−t

j
n )ψj ] ≤ (ME)c. (4.12)

Claim A: only one ψj �= 0.
If more than one ψj �= 0, we will show a contradiction in the following, and thus, the profile 

expansion will be reduced to the case in which only one profile is non-trivial.
For this, by (4.11), we must have M[ψj ] < 1 for each j , which together with (4.12), implies 

that for sufficiently large n,

M[U(−t
j
n )ψj ] s−sc

sc E[U(−t
j
n )ψj ] < (ME)c.



JID:YJDEQ AID:9080 /FLA [m1+; v1.272; Prn:13/11/2017; 10:21] P.21 (1-31)

Q. Guo, S. Zhu / J. Differential Equations ••• (••••) •••–••• 21
For a given j , if |t jn | → +∞, we assume t jn → +∞ or tjn → −∞ up to a subsequence. 
In this case, by the proof of Lemma 4.3, we have lim

n→+∞V (U(−tkn)ψk) = 0, and thus, 

1
2‖ψj‖

2(s−sc)
sc

2 ‖Dsψj‖2
2 = 1

2‖U(−t
j
n )ψj‖

2(s−sc)
sc

2 ‖DsU(−t
j
n )ψj‖2

2 < (ME)c . Then, we obtain 
from the existence of wave operators (Proposition 3.8) that there exists ψ̃j such that

‖FNLS(−t
j
n )ψ̃j − U(−t

j
n )ψj‖Hs → 0, as n → +∞

with

‖ψ̃j‖
s−sc
sc

2 ‖DsFNLS(t)ψ̃j‖2 < ‖Q‖
s−sc
sc

2 ‖DsQ‖2

‖ψ̃j‖2 = ‖ψj‖2, E[ψ̃j ] = 1

2
‖Dsψj‖2

2,

and thus,

M[ψ̃j ] s−sc
sc E[ψ̃j ] < (ME)c, ‖FNLS(t)ψ̃j‖S(
sc ) < ∞.

If, on the other hand, for the given j , t jn → t ′ finite, then by the continuity of the linear flow 
in Hs , we have

U(−t
j
n )ψj → U(−t ′)ψj strongly in Hs.

In this case, we set ψ̃j = FNLS(t ′)[U(−t ′)ψj ] so that FNLS(−t ′)ψ̃j = U(−t ′)ψj .
Above all, in either case, we have a new profile ψ̃j for the given ψj such that

‖FNLS(−t
j
n )ψ̃j − U(−t

j
n )ψj‖Hs → 0, as n → +∞.

As a result, we can replace U(−t
j
n )ψj by FNLS(−t

j
n )ψ̃j in (4.10) and obtain

un,0(x) =
M∑

j=1

FNLS(−t
j
n )ψ̃j (x) + W̃M

n (x),

where

lim
M→+∞[ lim

n→+∞‖U(t)W̃M
n ‖S(
sc )] = 0.

To use the perturbation theory to obtain a contradiction, we set vj (t) = FNLS(t)ψ̃j , un(t) =
FNLS(t)un,0 and

ũn(t) =
M∑

j=1

vj (t − t
j
n ).

Then, we have
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i∂t ũn − (−�)sũn + (
1

| · |γ ∗ |ũn|2)ũn = en,

where

en = (
1

| · |γ ∗ |ũn|2)ũn −
M∑

j=1

(
1

| · |γ ∗ |vj (t − t
j
n )|2)vj (t − t

j
n ).

In the near future, we will prove the following two claims to obtain the contradiction:

• Claim 1 – There exists a large constant A independent of M such that the following holds: 
For any M , there exists n0 = n0(M) such that for n > n0, ‖ũn‖S(
sc ) ≤ A.

• Claim 2 – For each M and ε > 0, there exist n1 = n1(M, ε) such that for n > n1, 
‖en‖

L
q′
1L

r′1 ≤ ε for some pair (q1, r1) ∈ 
−sc .

Note that if the two claims hold true, because ũn(0) − un(0) = W̃M
n , there exists M1 = M1(ε)

such that for each M > M1, there exists n2 = n2(M) satisfying ‖U(t)(ũn(0) −un(0))‖S(
sc ) ≤ ε. 
Thus, now by the long-time perturbation theory Proposition 2.7, we have for sufficiently large n
and M that ‖un‖S(
sc ) < ∞, which is a contradiction, giving Claim A. Thus, it suffices to show 
the above claims.

Let M0 be sufficiently large such that ‖U(t)W̃
M0
n ‖S(
sc ) ≤ δsd . Thus, we know from the def-

inition of W̃M0
n that for each j > M0, it holds that ‖U(t)vj (−t

j
n )‖S(
sc ) ≤ δsd . Similar to the 

small data scattering and Proposition 3.8, we obtain

‖vj (t − t
j
n )‖S(
sc ) ≤ 2‖U(t)vj (−t

j
n )‖S(
sc ) ≤ 2δsd , (4.13)

and

‖Dscvj (t − t
j
n )‖S(
0) ≤ c‖vj (−t

j
n )‖Ḣ sc for j > M0. (4.14)

Recall that ‖vj (−t
j
n ) − U(−t

j
n )ψj‖Ḣ sc → 0 as n → +∞. Then, (4.14) implies for n large and 

j > M0 that

‖Dscvj (t − t
j
n )‖S(
0) ≤ c‖U(−t

j
n )ψj‖Ḣ sc = c‖ψj‖Ḣ sc . (4.15)

Thus, by elementary calculation, we have that

‖ũn‖qc

LqcLqc =
M0∑
j=1

‖vj‖qc

LqcLqc +
M∑

j=M0+1

‖vj‖qc

LqcLqc + crossterms (4.16)

≤
M0∑
j=1

‖vj‖qc

LqcLqc + c

M∑
j=M0+1

‖ψj‖qc

Ḣ sc
+ crossterms.

Note first that by (4.3), the crossterm can be made bounded by taking n0 as sufficiently large. 
On the other hand, by (4.10) and Lemma 4.1,
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‖un,0‖2
Ḣ sc

=
M0∑
j=1

‖ψj‖2
Ḣ sc

+
M∑

j=M0+1

‖ψj‖2
Ḣ sc

+ ‖WM
n ‖2

Ḣ sc
+ on(1), (4.17)

which shows that the quantity 
∑M

j=M0+1 ‖ψj‖
2(N+2s)
N+2s−γ

Ḣ sc
is bounded independently of M . Hence, 

(4.16) gives that ‖ũn‖LqcLqc is bounded independently of M for n > n0. A similar argument will 
show that ‖ũn‖

L∞L
2N

N−2sc
is also bounded independently of M provided that n > n0 is sufficiently 

large. According to the definition of the Strichartz norm introduced in Section 2, the boundness 
of ‖ũn‖S(
sc ) can be obtained by interpolation between the two exponents. Then, finally, we have 
obtained that Claim 1 holds true.

Now, we turn to prove the second claim. We easily have the following expansion of en:

en =
⎛⎝ 1

| · |γ ∗ |
M∑

j=1

vj (t − t
j
n )|2

⎞⎠ M∑
j=1

vj (t − t
j
n ) −

M∑
j=1

(
1

| · |γ ∗ |vj (t − t
j
n )|2

)
vj (t − t

j
n )

=
⎛⎝ 1

| · |γ ∗
⎛⎝|

M∑
j=1

vj (t − t
j
n )|2 −

M∑
j=1

|vj (t − t
j
n )|2

⎞⎠⎞⎠ M∑
j=1

vj (t − t
j
n )

+
⎛⎝ 1

| · |γ ∗
M∑

j=1

|vj (t − t
j
n )|2

⎞⎠ M∑
j=1

vj (t − t
j
n ) −

M∑
j=1

(
1

| · |γ ∗ |vj (t − t
j
n )|2

)
vj (t − t

j
n )

=
⎛⎝ 1

| · |γ ∗
⎛⎝|

M∑
j=1

vj (t − t
j
n )|2 −

M∑
j=1

|vj (t − t
j
n )|2

⎞⎠⎞⎠ M∑
j=1

vj (t − t
j
n )

+
M∑

j=1

(
1

| · |γ ∗ |vj (t − t
j
n )|2

)∑
k �=j

vk(t − tkn).

The focus now is on how to estimate the cross terms. Assume first that j �= k and |t jn − tkn | →
+∞; then, taking one of the cross terms for example, we have

∥∥∥∥( 1

| · |γ ∗ |vj |2)(t − t
j
n )vk(t − tkn)

∥∥∥∥
L

q′
1 L

r′1
=
∥∥∥∥( 1

| · |γ ∗ |vj |2)(t)vk(t + t
j
n − tkn)

∥∥∥∥
L

q′
1L

r′1
. (4.18)

Using a similar argument as in (2.15), for the above pair (q1, r1) ∈ 
−sc , we can find 
(q2, r2) ∈ 
sc and apply the Hardy–Littlewood–Sobolev inequality and Hölder inequalities to 
obtain ∥∥∥∥( 1

| · |γ ∗ |vj |2)(t)vk(t + t
j
n − tkn)

∥∥∥∥
L

q′
1 L

r′1
≤ ‖vj‖2

LqcLrc ‖vk‖Lq2Lr2

≤ ‖vj‖2
S(
sc ;Ij )‖vk‖S(
sc ;Ij ).
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If j �= k, by (4.3), |t jn − tkn | → +∞, and then, we find that (4.18) goes to zero as n → ∞. 
Observe that all other cross terms will have the same property through similar estimates, and we 
have proved Claim 2.

Claim 1 and Claim 2 imply Claim A. We have reduced the profile expansion to the case 
in which ψ1 �= 0, and ψj = 0 for all j ≥ 2. We now begin to show the existence of a critical 
solution.

By (4.11), we have M[ψ1] ≤ 1, and by (4.12), we have lim
n→+∞E[U(−t1

n)ψ1] ≤ (ME)c . If 

t1
n converges and, without loss of generality, t1

n → 0 as n → +∞, we take ψ̃1 = ψ1, and then, 
we have ‖FNLS(−t1

n)ψ̃1 − U(−t1
n)ψ1‖Hs → 0 as n → +∞. If, on the other hand, t1

n → +∞, 
then by the proof of Lemma 4.3, we have again lim

n→+∞V (U(−t1
n)ψ1) = 0, and thus,

1

2
‖Dsψ1‖2

2 = lim
n→+∞E[U(−t1

n)ψ1] ≤ (ME)c.

Therefore, by Proposition 3.8, there exist ψ̃1 such that M[ψ̃1] = M[ψ1] ≤ 1, E[ψ̃1] =
1
2‖Dsψ1‖2

2 ≤ (ME)c, and ‖FNLS(−t1
n)ψ̃1 − U(−t1

n)ψ1‖Hs → 0 as n → +∞.
In either case, if we set W̃M

n = WM
n + (U(−t1

n)ψ1 − FNLS(−t1
n)ψ̃1), then by the Strichartz 

estimates, we have

‖U(t)W̃M
n ‖S(
sc ) ≤ ‖U(t)WM

n ‖S(
sc ) + c‖U(−t1
n)ψ1 − FNLS(−t1

n)ψ̃1‖S(
sc ),

and thus,

lim
n→+∞‖U(t)W̃M

n ‖S(
sc ) = lim
n→+∞‖U(t)WM

n ‖S(
sc ).

Therefore, we have

un,0 = FNLS(−t1
n)ψ̃1) + W̃M

n

with M(ψ̃1) ≤ 1, E(ψ̃1) ≤ (ME)c and lim
M→+∞[ lim

n→+∞‖U(t)W̃M
n ‖S(
sc )] = 0. Let uc = uc(t) be 

the solution to (1.1) with initial data uc,0 = ψ1. Now, if we claim that ‖uc‖S(
sc ) = ∞, then it 
must hold that M[uc] = 1 and E[uc] = (ME)c , which will complete the proof. Thus, it suffices 
to establish this claim. We argue by contradiction to suppose otherwise that

A ≡ ‖FNLS(t − t1
n)ψ̃1‖S(
sc ) = ‖FNLS(t)ψ̃1‖S(
sc ) = ‖uc‖S(
sc ) < ∞.

By the long-time perturbation theory Proposition 2.7, we obtain ε0 = ε0(A). Taking M as suf-
ficiently large and n2(M) as large enough that for n > n2, it holds that ‖WM

n ‖S(
sc ) ≤ ε0. 
Similar to the proof in the first case, Proposition 2.7 implies that there exists a large n such 
that ‖uc‖S(
sc ) < ∞, which is a contradiction. �
Proposition 4.5 (Precompactness of the flow of the critical solution). Let uc = uc(t) be as in 
Proposition 4.4; then, if ‖uc‖S([0,+∞);
sc ) = ∞,

{uc(t, ·)| t ∈ [0,+∞)} ⊂ Hs

is precompact in Hs . A corresponding conclusion is reached if ‖uc‖S((−∞,0];
 ) = ∞.

sc
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Proof. We will argue by contradiction and write u = uc for short. Otherwise, we will obtain an 
η > 0 and a sequence tn → +∞ such that for all n �= n′,

‖u(tn, ·) − u(tn′ , ·)‖Hs ≥ η. (4.19)

We take φn = u(tn) in the profile expansion Lemma 4.1 to obtain the profiles ψj and a remainder 
WM

n such that u(tn) =∑M
j=1 U(−t

j
n )ψj +WM

n with |tjn − tkn | → +∞ as n → +∞ for any j �= k. 
Then, Lemma 4.3 gives

M∑
j=1

lim
n→+∞E[U(−t

j
n )ψj ] + lim

n→+∞E[WM
n ] = E[u(tn)] = (ME)c.

Similar to the proof of Lemma 3.7, we know that each energy is non-negative, and thus, for 
any j ,

lim
n→+∞E[U(−t

j
n )ψj ] ≤ (ME)c.

Moreover, by (4.5), we have

M∑
j=1

M[ψj ] + lim
n→+∞M[WM

n ] = lim
n→+∞M[u(tn)] = 1.

If more than one ψj �= 0, following the proof in Proposition 4.4, we can show that this case 
will contradict the definition of the critical solution u = uc . Thus, we will address the case in 
which only ψ1 �= 0 and ψj = 0 for all j > 1, and thus,

u(tn) = U(−t1
n)ψ1 + WM

n . (4.20)

In addition, as in the proof of Proposition 4.4, we find that M[ψ1] = 1, lim
n→+∞E[U(−t1

n)ψ1] =
(ME)c , lim

n→+∞M[WM
n ] = 0 and lim

n→+∞E[WM
n ] = 0. Thus, by Lemma 3.7, we obtain

lim
n→+∞‖WM

n ‖Hs = 0. (4.21)

We claim now that t1
n converges to some finite t1 up to a subsequence. Note that if this holds, 

because U(−t1
n)ψ1 → e−it1�ψ1 in Hs and by (4.20), (4.21) implies that u(tn) converges in Hs , 

which contradicts (4.19); we thus conclude our proof.
Now, we show the above claim by contradiction. Suppose that t1

n → −∞. Then,

‖U(t)u(tn)‖S(
sc ;[0,+∞)) ≤ ‖U(t − t1
n)ψ1‖S(
sc ;[0,+∞)) + ‖U(t)WM

n ‖S(
sc ;[0,+∞)).

Because

lim ‖U(t − t1
n)ψ1‖S(
sc ;[0,+∞)) = lim ‖U(t)ψ1‖S(
sc ;[−t1

n ,+∞)) = 0

n→+∞ n→+∞



JID:YJDEQ AID:9080 /FLA [m1+; v1.272; Prn:13/11/2017; 10:21] P.26 (1-31)

26 Q. Guo, S. Zhu / J. Differential Equations ••• (••••) •••–•••
and ‖U(t)WM
n ‖S(
sc ) ≤ 1

2δsd , by taking n as sufficiently large, we obtain a contradiction to the 
small data scattering theory. If other t1

n → +∞, we similarly obtain

‖U(t)u(tn)‖S(
sc ;(−∞,0]) ≤ 1

2
δsd .

Thus, the small data scattering theory (Proposition 2.5) shows that

‖u‖S(
sc ;(−∞,tn]) ≤ δsd .

Because tn → +∞ by the assumption in the beginning of our proof, sending n → +∞, we 
obtain ‖u‖S(
sc ;(−∞,+∞)) ≤ δsd , which is a contradiction. �
Corollary 4.6. Let u = u(t) be a solution to (1.1) such that K+ = {u(t, ·)| t ∈ [0, +∞)} is pre-
compact in Hs

r . Then, for each ε > 0, there exists R > 0 such that∫
|x|>R

|Dsu(t, x)|2 + |u(t, x)|2 + (
1

| · |γ ∗ |u|2)|u|2(t, x)dx ≤ ε.

Proof. If not, for any R > 0, there exists ε0 > 0 and a sequence tn such that∫
|x|>R

|Dsu(tn, x)|2 + |u(tn, x)|2 + (
1

| · |γ ∗ |u|2)|u|2(tn, x)dx ≥ ε0.

By the precompactness of K+, there exists φ ∈ Hs such that, up to a subsequence of tn, we have 
u(tn, ·) → φ in Hs . Thus, for any R > 0, we obtain∫

|x|>R

|Dsφ(x)|2 + |φ(x)|2 + (
1

| · |γ ∗ |φ|2)|φ|2(x)dx ≥ ε0,

from which we can easily obtain a contradiction because φ ∈ Hs and V (φ) ≤ c‖φ‖4
Hs by the 

Hardy–Littlewood–Sobolev inequality. �
5. Rigidity theorem

In this section, we will prove the following Liouville-type theorem.

Theorem 5.1. Let N ≥ 2 and 2s < γ < min{N, 4s}. Suppose that u0 ∈ Hs is radial and that 
u0 ∈ K1, i.e.,

M[u0]
s−sc
sc E[u0] < M[Q] s−sc

sc E[Q], (5.1)

and

M[u0]
s−sc
sc ‖u0‖2

s < M[Q] s−sc
sc ‖Q‖2

s . (5.2)

Ḣ Ḣ
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Let u = u(t) be the global solution of (1.1) with initial data u0, and it holds that K+ = {u(t, ·)| t ∈
[0, +∞)} is precompact in Hs . Then, u0 = 0. The same conclusion holds if K− = {u(t, ·) : t ∈
(−∞, 0]} is precompact in Hs .

Before proving the rigidity theorem, we follow the same idea of [3] to introduce the localized 
virial estimate for the radial solutions of (1.1).

For u ∈ Hs with s ≥ 1
2 , we need the auxiliary function um = um(t, x), defined as

um := cs

1

−� + m
u(t) = csF−1 û(t, ξ)

|ξ |2 + m
(5.3)

with cs =
√

sinπs
π

, turns out to be a convenient normalization factor. By Balakrishnan’s formula 
in semi-group theory used in [3], for any u ∈ Hs , we have the identity

∞∫
0

ms

∫
RN

|∇um|2dxdm = s‖(−�)
s
2 u‖2

2. (5.4)

We obtain a counterpart of Corollary 4.6.

Corollary 5.2. Let u = u(t, x) be a solution to (1.1) such that K+ = {u(t, ·)| t ∈ [0, +∞)} is 
precompact in Hs

r . Then, for each ε > 0, there exists R > 0 such that

∞∫
0

ms

∫
|x|>R

|∇um|2dxdm +
∫

|x|>R

|u(t, x)|2 + (
1

| · |γ ∗ |u|2)|u|2(t, x)dx ≤ ε.

Proof of Theorem 5.1. It suffices to address the K+ case, since the K− case follows similarly. 
For some given real-valued function ϕ ∈ C∞

c , which is radial, with

ϕ(x) =
{

|x|2 for |x| ≤ 1

0 for |x| ≥ 2.

For R > 0, define the localized virial of u = u(t, x) ∈ Hs to be the quantity given by

MR(t) := 2Im

∫
RN

ū(t, x)R∇ϕ(
x

R
) · ∇u(t, x)dx.

Following the method used in [3], we have the identity

M′
R(t) =

∞∫
0

ms

∫
RN

(
4∂kum(∂2

klϕ(
x

R
))∂lum − (

1

R2 �2ϕ(
x

R
))|um|2

)
dxdm + I,

where
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I = 2R

∫
RN

∇φ(
x

R
)(∇(

1

| · |γ ) ∗ |u|2)|u|2dx

= −γR

∫ ∫
(∇φ(

x

R
) − ∇φ(

x

R
)) · x − y

|x − y|γ+2 |u(x)|2|u(y)|2

By the definition of ϕ, we have

M′
R(t) = 8

∞∫
0

ms

∫
|x|≤R

|∇um|2dx + 4

∞∫
0

ms

∫
R<|x|<2R

∂2
r ϕ
( x

R

)
|∇um|2dxdm (5.5)

− 1

R2

∞∫
0

ms

∫
|x|>R

�2ϕ
( x

R

)
|um|2dxdm + I.

We rewrite I as

I = −γR

∫ ∫ (
∇ϕ

( x

R

)
− ∇ϕ

( y

R

))
· x − y

|x − y|γ+2 |u(x)|2|u(y)|2dxdy

= −2γ

∫ ∫
{|x|≤R,|y|≤R}

|u(x)|2|u(y)|2
|x − y|γ dxdy

− γR

⎡⎣∫ ∫
�

+
∫ ∫




⎤⎦(∇ϕ
( x

R

)
− ∇ϕ

( y

R

)) x − y

|x − y|γ+2 |u(x)|2|u(y)|2dxdy,

where

� = {(x, y) ∈R
N ×R

N : R < |x| < 2R}
⋃

{(x, y) ∈R
N ×R

N : R < |y| < 2R}

and


 = {(x, y) ∈ R
N ×R

N : |x| > 2R, |y| < R}
⋃

{(x, y) ∈ R
N ×R

N : |x| < R, |y| > 2R}.

Then, by the properties of ϕ, we estimate I in the following form.

I = −2γ

∫ ∫ |u(x)|2|u(y)|2
|x − y|γ dxdy

+ O

⎛⎜⎝∫ ∫
{|x|≥R}

|u(x)|2|u(y)|2
|x − y|γ dxdy +

∫ ∫
{|y|≥R}

|u(x)|2|u(y)|2
|x − y|γ dxdy

⎞⎟⎠

+ O

⎛⎜⎜⎝R

∫ ∫
{|x|>R,|x−y|> R }

(
∇ϕ

( x

R

)
− ∇ϕ

( y

R

)) x − y

|x − y|γ+2 |u(x)|2|u(y)|2dxdy

⎞⎟⎟⎠

2
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+ O

⎛⎜⎜⎝R

∫ ∫
{|x|>R,|x−y|< R

2 }

(
∇ϕ

( x

R

)
− ∇ϕ

( y

R

)) x − y

|x − y|γ+2 |u(x)|2|u(y)|2dxdy

⎞⎟⎟⎠

= −2γ

∫ ∫ |u(x)|2|u(y)|2
|x − y|γ dxdy + O

⎛⎜⎝ ∫
|x|>R

(
1

| · |γ ∗ |u|2)|u|2dx

⎞⎟⎠ .

From (5.5), we obtain

M′
R(t) = 8

∞∫
0

ms

∫
|x|≤R

|∇um|2dx + 4

∞∫
0

ms

∫
R<|x|<2R

∂2
r ϕ
( x

R

)
|∇um|2dxdm

− 1

R2

∞∫
0

ms

∫
|x|>R

�2ϕ
( x

R

)
|um|2dxdm + I

≥
⎛⎜⎝8

∞∫
0

ms

∫
RN

|∇um|2dx − 2γV (u)

⎞⎟⎠+ AR(u)

= 2γ

(
4s

γ
‖Dsu‖2

2 − V (u)

)
+ AR(u),

where by Corollary 5.2,

AR(u(t)) ≤ c

⎛⎜⎝‖Dsu‖2
L2(|x|>R)

+ 1

R2 ‖u‖2
L2(|x|>R)

+
∫

|x|>R

(
1

| · |γ ∗ |u|2)|u|2dx

⎞⎟⎠ (5.6)

→ 0, as R → +∞.

Let δ ∈ (0, 1) be a positive constant satisfying E[u0] < (1 − δ)E[Q]M[Q] s−sc
sc . It follows from 

Lemma 3.6 and Lemma 3.7 that 4s
γ

‖Dsu‖2
2 − V (u) ≥ Cδ‖Dsu0‖2

2, and for large R,

M′
R(t) ≥ Cδ‖Dsu0‖2

2. (5.7)

Integrating (5.7) over [0, t], we obtain

|MR(t) −MR(0)| ≥ Cδt‖Dsu0‖2
2

On the other hand, by [3], we should have

|MR(t) −MR(0)| ≤ CR(‖u‖2

H
1
2

+ ‖u0‖2

H
1
2
) ≤ CR(‖u‖2

Hs + ‖u0‖2
Hs ) ≤ CR‖Q‖2

Hs ,

which is a contradiction for large t unless u0 = 0. �
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, 
Now, we can finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Note that by Proposition 4.5, the critical solution uc constructed in Sec-
tion 4 satisfies the hypotheses in Theorem 5.1. Therefore, to complete the proof of Theorem 1.1, 
we should apply Theorem 5.1 to uc and find that uc,0 = 0, which contradicts the fact that 
‖uc‖S(
sc ) = +∞. This contradiction shows that SC(u0) holds. Thus, by Proposition 2.6, we 
have shown that Hs scattering holds. �
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