JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:267 |
Global in time solvability of the Navier-Stokes equations in the half-space | |
Article | |
Chang, Tongkeun1  Jin, Bum Ja2  | |
[1] Yonsei Univ, Dept Math, Seoul 136701, South Korea | |
[2] Mokpo Natl Univ, Dept Math, Muan Gun 534729, South Korea | |
关键词: Stokes equations; Navier-Stokes equations; Homogeneous initial boundary value; Half-space; | |
DOI : 10.1016/j.jde.2019.04.037 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we study the initial value problem of the Navier-Stokes equations in the half-space. Let. a solenoidal initial velocity be given in the function space (B) over dot(pq,0)(alpha-2/2)(R-+(n)) for 0 < alpha < 2, 1 < p, q < infinity with alpha + 1 = n/p + 2/q and 2/q < 1 + n/p.We prove the global in time existence of weak solution u is an element of L-q (0, infinity; (B) over dot(pq)(alpha)(R-+(n) )) boolean AND L-q0 (0, infinity; L-p0(R-+(n)))for some p < p0 < infinity and q < q0 < infinity with n/p0 + 2/q0 = 1, when the given initial velocity has small norm in function space (B) over dot(p0q0,0)(-2/q0)(R-+(n) ) (superset of (B) over dot(pq,0)(alpha-2/q)(R-+(n))) The solution is unique in the class L-q0 (0, infinity; L-P0 (R-+(n))). Pressure estimates are also given. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2019_04_037.pdf | 424KB | download |