期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:285 |
Stokes and Navier-Stokes equations with Navier boundary conditions | |
Article | |
Acevedo Tapia, P.1  Amrouche, C.2  Conca, C.3,4  Ghosh, A.2,5  | |
[1] Escuela Politec Nacl, Dept Matemat, Fac Ciencias, Ladron de Guevara E11-253,POB 17-01-2759, Quito, Ecuador | |
[2] UMR CNRS 5142, LMAP, Batiment IPRA,Ave Univ,BP 1155, F-64013 Pau, France | |
[3] Univ Chile, Ctr Math Modelling, Dept Math Engn, CNRS UChile UM12807, Santiago, Chile | |
[4] Univ Chile, Ctr Biotechnol & Bioengn, Santiago, Chile | |
[5] Univ Basque Country, Dept Matemat, Fac Ciencias & Tecnol, Barrio Sarriena S-N, Lejona 48940, Vizcaya, Spain | |
关键词: Stokes equations; Nonhomogeneous Navier boundary conditions; Weak solution; L-p-regularity; Navier-Stokes equations; Inf-sup condition; | |
DOI : 10.1016/j.jde.2021.02.045 | |
来源: Elsevier | |
【 摘 要 】
We study the stationary Stokes and Navier-Stokes equations with nonhomogeneous Navier boundary conditions in a bounded domain Omega subset of R-3 of class C-1,C-1. We prove the existence and uniqueness of weak and strong solutions in W-1,W-p(Omega) and W-2,W-p(Omega) for all 1 < p < infinity, considering minimal regularity on the friction coefficient alpha. Moreover, we deduce uniform estimates for the solution with respect to alpha which enables us to analyze the behavior of the solution when alpha -> infinity. (C) 2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2021_02_045.pdf | 738KB | download |