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Abstract

We study the stationary Stokes and Navier-Stokes equations with nonhomogeneous Navier boundary 
conditions in a bounded domain � ⊂ R3 of class C1,1. We prove the existence and uniqueness of weak 
and strong solutions in W 1,p(�) and W 2,p(�) for all 1 < p < ∞, considering minimal regularity on the 
friction coefficient α. Moreover, we deduce uniform estimates for the solution with respect to α which 
enables us to analyze the behavior of the solution when α → ∞.
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1. Introduction

Let � be a bounded domain (open and connected) in R3 with boundary �, which might be 
disconnected, of class C1,1 (any other regularity of the boundary will be precised in the context). 
Let us consider the flow of a viscous fluid in � which is given by the stationary Navier-Stokes 
equations

−�u + (u · ∇)u + ∇π = f , div u = χ in �, (1.1)

where u and π are the velocity field and the pressure of the fluid, respectively; f is the external 
force acting on the fluid and χ stands for the compressibility condition.

This equation, in a domain with boundary, has been studied extensively with the classical 
Dirichlet boundary condition

u = 0 on �,

which was formulated by G. Stokes in 1845. An alternative was suggested even before by C.L. 
Navier in 1823 [41]. Along with the usual impermeability condition

u · n = 0 on �, (1.2)

Navier proposed a slip boundary condition with friction which states that the tangent component 
of the fluid velocity, instead of being zero, should be proportional to the tangential component of 
the normal stress at the surface, i.e.,

2 [(Du)n]τ + αuτ = 0 on �, (1.3)
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where n is the unit outward normal vector on �, Du = 1
2 (∇u + ∇uT ) is the strain tensor, the 

subscript τ denotes the tangential component of a vector, i.e., vτ := v − (v · n)n and α is the 
scalar coefficient which measures the tendency of a fluid to slip over the boundary (in literature, 
it is called friction coefficient or the inverse of the slip length). Equations (1.2) and (1.3), jointly, 
are known as the Navier (slip) boundary conditions (with friction). Note that, formally, if α = ∞, 
(1.2) and (1.3) are reduced to the Dirichlet boundary condition, which is also known as the no-
slip condition, and when α = 0, (1.2) and (1.3) are referred as the Navier slip conditions without 
friction (also called full slip condition).

Although the no-slip hypothesis seems to be in good agreement with experiments, it leads 
to certain rather surprising conclusions. One of them refers to the absence of collisions of 
rigid bodies immersed in a linearly viscous fluid [31]. In contrast with the no-slip condition, 
Navier boundary condition provides a solution which is, physically speaking, more acceptable 
and nearer to the reality, at least to some of the paradoxical phenomena, resulting from the no-
slip condition (for instance, see [37]). For further discussion on Navier boundary condition, see 
[46], [24], [33] and the references therein.

In a 1959 paper, today classic, S. Agmon, A. Douglas & L. Nirenberg [1] devised a new 
methodology to address existence, uniqueness and regularity of solutions in Lp-spaces for a 
broad class of linear elliptic boundary-value equations. The method they introduced is based on 
the theory of potential, mainly on estimates of singular integrals by A.P. Calderón & A. Zyg-
mund [17]. Their results were later generalized and adapted to linear elliptic boundary-value 
systems by various authors. The 1964 paper of these same authors [2] is possibly the most signif-
icant work in this direction. In the context of fluid mechanics, in particular, for the Stokes linear 
system with a homogeneous Dirichlet boundary condition, the pioneering work of L. Cattabriga 
[18] has resulted seminal in this area. In the current paper, we primarily develop a W 1,p-theory 
for the solutions of the non-homogeneous Navier-Stokes system (1.1) with the boundary condi-
tions (1.2)-(1.3). As detailed below, to do this, we introduce a new methodology, which makes 
use of methods different from those developed in the previous classic works.

Let us briefly give here an overview of some related works. Concerning the nonstationary 
Navier-Stokes equations with Navier boundary condition, there are considerably many works, 
among other reasons, for studying the limiting viscosity case, e.g., [19], [35], [13], [32], [16], 
[40]. On the contrary, for the stationary problem, comparatively less works are known. The first 
paper about basic existence and regularity results is by Solonnikov and Scadilov [48], where they 
treated the problem for α = 0. They proved the existence of weak solutions in H1(�), which are 
regular (belongs to H 2

loc(�)) up to some part of the boundary (except in a neighborhood of the 
intersection of the two parts) for the stationary Stokes system in R3 with Dirichlet boundary 
condition on some part of the boundary and Navier boundary conditions (1.2)-(1.3), with α = 0, 
on the other part. Also, it is worth mentioning the work of Beirão Da Veiga [12], where he 
proved existence of weak and strong solutions of generalized Stokes problem in R3 in the L2-
setting and with α ≥ 0 constant. He did not precise the dependence of the constant with respect 
to α in the estimate. Recently, Berselli [14] gave some results about very weak solutions, in 
general Lp-setting, in the special case of a flat domain in R3 and α = 0, which is based on the 
regularity theory of Poisson equation. In the paper of Amrouche and Rejaiba [7], they proved 
the existence and regularity of weak, strong and very weak solutions in a bounded domain in 
R3 for all p ∈ (1, ∞) for nonsmooth data, but for α = 0 (full-slip condition). In [20], Conca 
studied a similar system in a smooth perforated bounded domain in R2, where he discussed the 
well-posedness of both, linear and nonlinear problems with (1.2)-(1.3), assuming α ≥ 0. He also 
proved some convergence results based on homogenization theory. In the work of Medková [39], 
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we can find various other forms of Navier boundary conditions. Furthermore, the numerical study 
has been done in, e.g., [49] (for α = 0) and in [34] (for α ≥ 0 a function).

To the best of our knowledge, all the available works (in stationary and nonstationary prob-
lems) have let α be either a constant or a smooth function. In this article, we analyze the possible 
minimal regularity of α for the existence of weak and strong solutions in Lp-spaces for all 
p ∈ (1, ∞), see (2.2), which provides a more general result. In fact, this is the first work available 
in the literature about general Lp-well-posedness theory for the Navier slip boundary condition 
with friction. It turns out that the problem becomes more interesting and difficult when the do-
main is axially symmetric, due to the presence of a nonzero kernel of the homogeneous problem 
consisting of the nonzero vectors β satisfying Dβ = 0 in � and β · n = 0 on �. Deriving some 
nonstandard Korn-type inequalities (cf. Proposition 3.15), we discussed this nontrivial case in 
detail. Also, we have assumed the domain is merely C1,1 which might be optimal in most of the 
cases to obtain existence of solutions in W 1,p and W 2,p spaces for all p ∈ (1, ∞). Note that the 
restriction that α is nonnegative is usual, in order to ensure the conservation of energy. However, 
mathematically speaking, we can take into account the negative values of α as well. Some au-
thors have studied the evolution system with α negative (for example see [32], [38]), where there 
were no mathematical difficulties due to the availability of the Gronwall’s inequality, which is 
not the case for the stationary problem. We also prove existence of weak solutions considering a 
more general right hand side of the form Lr(p) + div Lp , where r(p) < p, than the one treated 
in [7] for the case α ≡ 0.

The main novelty of the present work is that we try to find the precise dependence on α of 
the solution of the Stokes (S) and Navier-Stokes (NS) problems (defined in Section 2), in order 
to allow α to tend either to ∞ or 0 in (1.3), and then to figure out how the solution behaves. As 
far as we know, there is not previous work on these issues, even whether α is a smooth function 
or a constant. We prove that the solution is uniformly bounded with respect to α in Theorem 4.3
and Theorem 6.11, taking into account the geometry of the domain. The proof of Theorem 6.11
is interesting in the sense that it exploits the uniform L2-estimate which follows from the varia-
tional formulation and the observation given by Z. Shen [47] that for any p > 2, W 1,p-estimate 
for (certain) elliptic equations is equivalent to the weak reverse Hölder inequality (6.10). More-
over, in Section 7, we prove that if α converges to 0, then the solution of the Stokes equations 
with Navier boundary conditions converges strongly to the solution of the Stokes equations cor-
responding to α = 0, and if α tends to ∞, then the solution converges strongly to the solution of 
the Stokes equations with Dirichlet boundary condition. Though these results might seem pre-
dictable, their proofs are far from being trivial due to the fact that we need to derive the adequate 
bounds for the solution of the linear problem with respect to α.

We start with presenting the main results of our work in section 2. In section 3, we introduce 
the necessary functional framework. We deal with the linear problem in Hilbert space in section 4. 
First, we deduce the existence of a weak solution by using Lax-Milgram theorem and then, the 
weak formulation yields the α-independent estimates in H 1(�). Later, the existence of a strong 
solution is deduced by using the classical method of difference quotients since it directly implies 
the uniform bounds in H 2(�) with the help of the uniform H 1-estimates. Then, we study the 
Lp-theory in section 5, which provides a more general existence result (Theorem 5.4) for the 
solution of the Stokes problem. In section 6, we discuss the estimates of the solution which 
will be independent of the friction coefficient α in W 1,p(�), with p 
= 2. In subsection 6.1, we 
deduce a first estimate, which later is improved in subsection 6.2. It is important to mention that 
the inf-sup condition, proved in Theorem 6.14, is an interesting result by itself, which arises from 
our work. Observe that we obtain uniform estimates for the solution for all α ∈ (0, ∞) when the 
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domain is not axially symmetric. Otherwise, we need α being sufficiently large. This is natural 
because of the presence of the nontrivial kernel of the Stokes operator in an axially symmetric 
domain. In section 7, the limit problems are studied as mentioned above. Finally, the nonlinear 
problem is discussed in section 8. Apart from obtaining the existence of a weak solution by 
using the classical Galerkin method, the W 1,p-existence result for p > 2 and the limiting cases 
are based on the theory developed for the linear problem. The existence of a weak solution in 
W 1,p , with p ∈ ( 3

2 ,2
)
, follows from the same construction given by Serre, see [45].

2. Main results

Before stating the main results, let us briefly introduce some notations, referring to the next 
sections for precise definitions and complete proofs. Since the case α ≡ 0 in (1.3) has already 
been studied in [7], from here onwards, we consider that α 
≡ 0 on �, i.e., if we do not state 
otherwise, we always assume

α ≥ 0 on �, α > 0 on some �0 ⊂ � with |�0| > 0 (2.1)

and the following regularity on α:

α ∈ Lt(p)(�) with t (p) =

⎧⎪⎨⎪⎩
2 if p = 2,

2 + ε if 3
2 ≤ p ≤ 3,p 
= 2,

2
3 max{p,p′} + ε otherwise,

(2.2)

where ε > 0 is arbitrarily small and p′ is the conjugate exponent of p. The idea is to choose t (p)

in such a way that the boundary integral 
´
�

αuτ · ϕτ becomes well-defined for u ∈ W 1,p(�) and 

ϕ ∈ W 1,p′
(�). This is required for the notion of weak solution, see Lemma 3.9.

We also need the following exponent to define the space for the external force f :

r(p) =
{

max
{

1,
3p

p+3

}
if p 
= 3

2 ,

1 + ε if p = 3
2 ,

(2.3)

where ε > 0 is arbitrarily small. Here as well, the motivation to choose r(p), as given before, 
is that the continuous embedding W 1,p′

(�) ↪→ Lr(p)′(�) holds for all p ∈ (1, ∞) which is es-
sential to deduce the Green formula and define the notion of weak solution of our problem, see 
Lemma 3.6. Let Lp

0 (�) denote the following space:

L
p
0 (�) :=

⎧⎨⎩v ∈ Lp(�) :
ˆ

�

v = 0

⎫⎬⎭ .

We use the term axisymmetric to define a nonempty set which is generated by rotation around an 
axis. We also introduce the vector

β(x) = b × x, x ∈ R3 (2.4)
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when � is axisymmetric with respect to a constant vector b ∈R3.
We can always reduce the nonvanishing divergence problem{

−�u + ∇π = f + divF , divu = χ in �,

u · n = g, [(2Du + F)n]τ + αuτ = h on �,

where F is a 3 × 3 matrix and h is a tangential vector on the boundary, (i.e., h · n = 0 on �), to 
the case where div u = 0 in � and u · n = 0 on �, by solving the following Neumann problem:

�θ = χ in �, ∂θ
∂n = g on �,

and hence, we perform the change of unknowns w = u−∇θ and � = π −χ (we do not mention 
here the corresponding regularity results). Therefore, it is sufficient to study the following Stokes 
problem: {

−�u + ∇π = f + div F , div u = 0 in �

u · n = 0, [(2Du + F)n]τ + αuτ = h on �.
(S)

The first main result is the existence and uniqueness of weak and strong solutions of the Stokes 
problem (S).

Theorem 2.1 (Weak and strong solutions of Stokes problem). Let p ∈ (1, ∞). If

f ∈ Lr(p)(�), F ∈Lp(�), h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�),

where t (p) and r(p) are defined in (2.2) and (2.3), respectively, then the Stokes problem (S) has 
a unique solution (u, π) ∈ W 1,p(�) × L

p

0 (�).
Moreover, if F = 0 and

f ∈ Lp(�), h ∈ W
1− 1

p
,p

(�) and α ∈ W
1− 1

q
,q

(�)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then the solution (u, π) belongs to W 2,p(�) ×
W 1,p(�).

Also, we obtain uniform bounds for the weak solution with respect to α of the problem (S) in 
W 1,p(�) for all p ∈ (1, ∞).

Theorem 2.2 (Stokes estimates). Let p ∈ (1, ∞) and (u, π) ∈ W 1,p(�) ×L
p

0 (�) be the solution 
of the Stokes problem (S) given by Theorem 2.1. Then, it satisfies the following estimates:
(i) if � is nonaxisymmetric, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
.

(ii) if � is axisymmetric and α ≥ α∗ > 0, then
263
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‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�)

min{2, α∗}
(

‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖
W

− 1
p ,p

(�)

)
.

The next theorem shows the existence of weak and strong solutions, with corresponding esti-
mates, for the following Navier-Stokes problem:{

−�u + (u · ∇)u + ∇π = f + div F , div u = 0 in �,

u · n = 0, [(2Du + F)n]τ + αuτ = h on �.
(NS)

Theorem 2.3 (Weak and strong solutions of Navier-Stokes problem). Let p ∈ ( 3
2 , ∞) and

f ∈ Lr(p)(�), F ∈ Lp(�), h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�).

1. Then, the problem (NS) has a solution (u,π) ∈ W 1,p(�) × L
p

0 (�).
2. For any p ∈ (1, ∞), if F = 0 and

f ∈ Lp(�), h ∈ W
1− 1

p
,p

(�) and α ∈ W
1− 1

q
,q

(�)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then (u, π) ∈ W 2,p(�) × W 1,p(�).
3. For p = 2, the weak solution (u,π) ∈ H 1(�) × L2

0(�) satisfies the following estimates:
a) If � is nonaxisymmetric, then

‖u‖H 1(�) + ‖π‖L2(�) ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (2.5)

b) If � is axisymmetric and
(i) α ≥ α∗ > 0 on �, then

‖u‖H 1(�) + ‖π‖L2(�) ≤ C(�)

min{2, α∗}
(

‖f ‖
L

6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (2.6)

(ii) f , F and h satisfy the condition:

ˆ

�

f · β −
ˆ

�

F : ∇β + 〈h,β〉� = 0

with β as in (2.4), then the solution u satisfies 
´
�

αu · β = 0 and

‖Du‖2
L2(�)

+
ˆ

�

α|uτ |2 + ‖π‖2
L2(�)

≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)2

. (2.7)

In particular, if α is a constant, then 
´
�

u · β = 0 and

‖u‖H 1(�) + ‖π‖L2(�) ≤ C(�)

(
‖f ‖ 6

5
+ ‖F‖L2(�) + ‖h‖ − 1

2

)
. (2.8)
L (�) H (�)
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Remark 2.4. Note that in the case of u · n 
= 0 on �, when � has multiply connected boundary, 
the existence of solutions of the Navier-Stokes equations with Dirichlet boundary condition is not 
yet clear in a complete generality, e.g., see [36]. For this reason, although we are working with 
Navier boundary conditions, we do not consider � with multiply connected boundary either.

The last interesting result to mention is the strong convergence of (NS) to the Navier-Stokes 
equations with no-slip boundary condition when α tends to infinity.

Theorem 2.5 (Limit case for Navier-Stokes problem). Let p ≥ 2, α be a constant and (uα, πα)

be a solution of (NS), where

f ∈ Lr(p)(�), F ∈Lp(�) and h ∈ W
− 1

p
,p

(�).

Then, for any q < p if p 
= 2 and for q = 2 if p = 2, we have

(uα,πα) → (u∞,π∞) in W 1,q (�) × L
q

0(�) as α → ∞,

where (u∞, π∞) is a solution of the Navier-Stokes problem with Dirichlet boundary condition⎧⎪⎨⎪⎩
−�u∞ + (u∞ · ∇)u∞ + ∇π∞ = f + div F in �,

div u∞ = 0 in �,

u∞ = 0 on �.

(2.9)

3. Notations and preliminary results

In this section we review some of the basic notations and the functional framework that we 
shall require for the rest of the article. The vector fields and matrix fields (and the corresponding 
spaces) defined over � or over R3 are denoted by bold font and blackboard bold font, respec-
tively. We follow the convention that C is an unspecified positive constant that may vary among 
inequalities, but not among equalities. Generally, C depends on � and the dependence of C on 
other parameters will be specified within parenthesis when it is necessary.

The vector-valued Laplace operator of a vector field v = (v1, v2, v3) is equivalently defined 
by

�v = 2 div Dv − grad div v.

We denote by D(�) the space of smooth functions (infinitely differentiable) with compact sup-
port in �, and by D′(�) its dual space which is known as the space of distributions. Define

Dσ (�) := {v ∈D(�) : div v = 0 in �} .

If p ∈ (1, ∞), p′ denotes the conjugate exponent of p, i.e., 1
p

+ 1
p′ = 1. Also, for p < 3, p∗

denotes the Sobolev conjugate, i.e., 1
p∗ = 1

p
− 1

3 . For p, r ∈ (1, ∞), we introduce the following 
space

H r,p(div,�) := {
v ∈ Lr (�) : div v ∈ Lp(�)

}
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equipped with the norm

‖v‖H r,p(div,�) = ‖v‖Lr (�) + ‖div v‖Lp(�).

It can be proved that D(�) is dense in H r,p(div, �) (cf. [8, Lemma 13, (i)]). The closure of 
D(�) in H r,p(div, �) is denoted by H r,p

0 (div, �) and it can be characterized as

H
r,p

0 (div,�) = {
v ∈ H r,p(div,�) : v · n = 0 on �

}
.

This characterization can be proved as it was done for the case r = p = 2, see [28, Theorem 2.6]. 
Also, for p ∈ (1, ∞), the dual space of H r,p

0 (div, �), which is denoted by [H r,p
0 (div, �)]′, can 

be characterized as follows (cf. [44, Proposition 1.0.4]):

Proposition 3.1. Let � be a Lipschitz domain. A distribution f belongs to [H r,p
0 (div, �)]′ iff 

there exists ψ ∈ Lr ′
(�) and χ ∈ Lp′

(�) such that f = ψ +∇χ . Moreover, we have the estimate:

‖f ‖[H r,p
0 (div,�)]′ ≤ inf

f =ψ+∇χ
max{‖ψ‖

Lr′ (�)
,‖χ‖

Lp′
(�)

}.

We also recall the following result (cf. [10, Theorem 3.5]):

Proposition 3.2. Let v ∈ Lp(�) with div v ∈ Lp(�), curl v ∈ Lp(�) and v · n ∈ W
1− 1

p
,p

(�). 
Then v ∈ W 1,p(�) and satisfies the estimate:

‖v‖W 1,p(�) ≤ C

(
‖v‖Lp(�) + ‖curl v‖Lp(�) + ‖div v‖Lp(�) + ‖v · n‖

W
1− 1

p ,p
(�)

)
.

Further, we need to introduce the following spaces:

V p
σ,τ (�) :=

{
v ∈ W 1,p(�) : div v = 0 in � and v · n = 0 on �

}
equipped with the norm of W1,p(�),

H 1
τ (�) :=

{
v ∈ H 1(�) : v · n = 0 on �

}
,

and

Ep(�) :=
{
(v,π) ∈ W 1,p(�) × Lp(�) : −�v + ∇π ∈ Lr(p)(�)

}
,

with r(p) defined in (2.3). Note that Ep(�) is a Banach space with the norm

‖ (v,π)‖Ep(�) := ‖v‖W 1,p(�) + ‖π‖Lp(�) + ‖ − �v + ∇π‖Lr(p)(�).

Next, introducing the notation
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�v :=
3∑

j=1

(vτ )j ∇τnj ,

where vτ := v − (v · n)n and ∇τ is the tangential gradient, we recall the following relations 
which show the equivalence of the following two boundary conditions: (1.3) and the Navier-type 
boundary condition

curl u × n = 0. (3.1)

The name “Navier-type” for the above boundary condition comes from the equivalence relation 
(3.2) given below. The boundary condition (3.1) will be used later to prove some of our main 
results.

Lemma 3.3. [7, Appendix A] For any v ∈ W 2,p(�), we have the following identities:

2 [(Dv)n]τ = ∇τ (v · n) +
(

∂v

∂n

)
τ

− �v ,

curl v × n = −∇τ (v · n) +
(

∂v

∂n

)
τ

+ �v .

Note that � of class C1,1 is sufficient and, in contrast with the relations given in [7], there is a 
change in the sign of the second relation. These are the correct identities.

Remark 3.4. The reason why is enough to consider � of class C1,1 to prove the above lemma 
is clear because in the proof given in [7, Appendix A], C2,1 regularity is not required anywhere. 
For example, in a domain of class C1,1, D(�) is dense in W 2,p(�) and n ∈ W 1,∞(�). Then, all 
the calculations follow in the same way.

Remark 3.5. In the particular case v · n = 0 on �, for all v ∈ W 2,p(�), we obtain

2 [(Dv)n]τ =
(

∂v

∂n

)
τ

− �v and curl v × n =
(

∂v

∂n

)
τ

+ �v,

which implies that

2 [(Dv)n]τ = curl v × n − 2�v. (3.2)

Note that in the case of a flat boundary, � = 0 and hence, the Navier slip and the Navier-type 
boundary conditions become equal, provided α = 0.

Next, we give the following Green formula to define the tangential trace of the strain tensor of 
a vector field. The proof of the density result is similar to [29, Lemma 1.5.3.9], while the Green 
formula follows by proving it firstly for smooth functions by using integration by parts, and then 
extending the result by density (cf. [7, Lemma 2.4]).
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Lemma 3.6. (i) The space D(�) ×D(�) is dense in Ep(�), and
(ii) the linear mapping (v,π) �→ [(Dv)n]τ , defined on D(�) × D(�) can be extended to a 

linear, continuous map from Ep(�) to W− 1
p

,p
(�). Moreover, we have the following relation: for 

all (v,π) ∈ Ep(�) and ϕ ∈ V
p′
σ,τ (�),

ˆ

�

(−�v + ∇π) · ϕ = 2
ˆ

�

Dv :Dϕ − 2 〈[(Dv)n]τ ,ϕ〉� , (3.3)

where 〈·, ·〉� will denote, from now onwards, 〈·, ·〉
W

− 1
p ,p

(�)×W
1
p ,p′

(�)
.

Remark 3.7. 1. The following Green formula also can be obtained in the same way as it was 
done for (3.3), which will be used later: for (v, π) ∈ W 1,p(�) × Lp(�), F ∈ Lp(�) such that 
−div(2Dv + F) + ∇π ∈ Lr(p)(�) and ϕ ∈ V

p′
σ,τ (�),

ˆ

�

(−div(2Dv + F) + ∇π) · ϕ = 2
ˆ

�

Dv : Dϕ +
ˆ

�

F : ∇ϕ − 〈[(2Dv + F)n]τ ,ϕ〉� . (3.4)

2. In fact, we can obtain Lemma 3.6 for any v ∈ F p(�), where

F p(�) :=
{
v ∈ W 1,p(�) : �v ∈ [H r(p)′,p′

0 (div,�)]′
}

.

Thus, (3.2) can be extended to W− 1
p

,p
(�) as follows: for � a bounded domain of class C1,1 and 

for any v ∈ W 1,p(�) with �v ∈ Lr(p)(�) and v · n = 0 on �,

2 [(Dv)n]τ = curl v × n − 2�v in W
− 1

p
,p

(�). (3.5)

We will also need the following density result:

Lemma 3.8. The space 
{
v ∈ V 2

σ,τ (�) : �v ∈ [H 6,2
0 (div,�)]′

}
is dense in V 2

σ,τ (�).

Proof. Let v ∈ V 2
σ,τ (�). There exists a sequence um ∈D(�) such that um → v in H 1(�). Now 

consider the problem {
�χm = div um in �
∂χm

∂n = um · n on �.

Since � is of class C1,1, there exists a unique solution of the above problem χm ∈ H 2(�) ∩
L2

0(�). Also χm → 0 in H 2(�). Now, considering vm = um − ∇χm, we have vm ∈ V 2
σ,τ (�)

with �vm = �um − ∇ (div um) ∈ [H 6,2
0 (div, �)]′ and vm → v in H 1(�). This completes the 

proof. �
Lemma 3.9. Let p ∈ (1, ∞). For α ∈ Lt(p)(�) with t (p) defined in (2.2), u ∈ W 1,p(�) and 
ϕ ∈ W 1,p′

(�), the integral over the boundary 
´

αuτ · ϕτ is well-defined.

�
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Proof. We use the following Sobolev embeddings ϕτ ∈ W
1− 1

p′ ,p′
(�) ↪→ Lm(�), where

1

m
=

⎧⎪⎨⎪⎩
1 − 3

2p
if p > 3

2

any positive real number < 1 if p = 3
2

0 if p < 3
2

(3.6)

and uτ ∈ W
1− 1

p
,p

(�) ↪→ Ls(�) with

1

s
=

⎧⎪⎨⎪⎩
3

2p
− 1

2 if p < 3

any positive real number < 1 if p = 3

0 if p > 3.

(3.7)

It is enough to show that αuτ ∈ Lm′
(�) by distinguishing four cases: p = 2, 32 ≤ p ≤ 3, p > 3

and p < 3
2 .

First, let us consider p = 2. Since α ∈ L2(�), αuτ ∈ Lq(�) with 1
q

= 1
2 + 1

4 = 3
4 by Hölder 

inequality. But 1
m′ = 1 − 1

m
= 3

4 , i.e., q = m′. So the integral is well-defined.
The other cases can be proved in the same way. �

Definition 3.10. Given f ∈ Lr(p)(�), F ∈ Lp(�), h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�), a function 
u ∈ V

p
σ,τ (�) is called a weak solution of the Stokes system (S) if it satisfies that for all ϕ ∈

V
p′
σ,τ (�),

2
ˆ

�

Du : Dϕ +
ˆ

�

αuτ · ϕτ =
ˆ

�

f · ϕ −
ˆ

�

F : ∇ϕ + 〈h,ϕ〉� . (3.8)

Proposition 3.11. Let p ∈ (1, ∞) and

f ∈ Lr(p)(�),F ∈ Lp(�),h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�)

with r(p) and t (p) defined by (2.3) and (2.2), respectively. Then, the following two statements 
are equivalent:
(i) u ∈ V

p
σ,τ (�) is a weak solution of (S), in the sense of Definition 3.10, and

(ii) there exists π ∈ L
p
0 (�) such that (u, π) ∈ W 1,p(�) × L

p
0 (�) satisfies⎧⎨⎩

−�u + ∇π = f + div F , div u = 0 in the sense of distributions,
u · n = 0 in the sense of traces,

2[(Du)n]τ + αuτ = h in W−1/p,p(�).

(3.9)

Proof. Let u ∈ V
p
σ,τ (�) be a weak solution of (S). Choosing ϕ ∈ Dσ (�) as a test function in 

(3.8), we have

〈−�u,ϕ〉D′(�)×D(�) = 2
ˆ

Du : Dϕ =
ˆ

f · ϕ −
ˆ

F : ∇ϕ.
� � �
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Then, De Rham’s theorem implies that there exists π ∈ D′(�) such that

−�u + ∇π = f + div F in �, (3.10)

and since −�u − f − div F ∈ W−1,p(�), [6, Lemma 2.7] yields that π ∈ Lp(�), which is 
defined uniquely up to an additive constant. A different proof for the existence of a suitable 
pressure without using De Rham’s theorem is established in [23, Theorem III.5.3] (see also [43]). 
Also, u ∈ V

p
σ,τ (�) implies div u = 0 in � and u · n = 0 on �. Thus, it remains to prove that 

u satisfies the Navier boundary condition. As −div(2Du + F) + ∇π ∈ Lr(p)(�), taking dual 
product of equation (3.10) with ϕ ∈ V

p′
σ,τ (�), and using the Green’s formula (3.4), we have

〈[(2Du + F)n]τ ,ϕ〉� +
ˆ

�

αuτ · ϕτ = 〈h,ϕ〉� ∀ϕ ∈ V p′
σ,τ (�). (3.11)

Now, let μ ∈ W
1
p

,p′
(�). There exists ϕ ∈ W 1,p′

(�) such that div ϕ = 0 in � and ϕ = μτ on �. 

Then ϕ ∈ V
p′
σ,τ (�) and using (3.11), it follows

〈[(2Du + F)n]τ + αuτ − h,μ〉� = 〈[(2Du + F)n]τ + αuτ − h,μτ 〉�
= 〈[(2Du + F)n]τ + αuτ − h,ϕ〉� = 0.

Hence,

[(2Du + F)n]τ + αuτ = h in W−1/p,p(�).

Conversely, if (u, π) ∈ W 1,p(�) × Lp(�) satisfies (3.9), then using the Green formula (3.4), 
we can easily deduce that u is a weak solution of (S), in the sense of Definition 3.10. �

The next lemma provides a general pressure estimate.

Lemma 3.12. Suppose f ∈ Lr(p)(�), F ∈ Lp(�), h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�). If u ∈
V

p
σ,τ (�) is a weak solution of the Stokes system (S), then the pressure π ∈ L

p
0 (�), whose ex-

istence follows from Proposition 3.11, satisfies:

‖π‖Lp(�) ≤ C(�,p)
(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖�u‖W−1,p(�)

)
. (3.12)

Proof. Due to the properties of the gradient operator (cf. [6, ii) Corollary 2.5]), we can write,

‖π‖Lp(�) ≤ ‖∇π‖W−1,p(�) ≤ C(�)‖�u + f + div F‖W−1,p(�)

where the last inequality comes from (3.10). This concludes the proof. �
The following two propositions offer some Korn-type inequalities which will be useful in the 

context.
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Proposition 3.13. Let � be a bounded Lipschitz domain. Then, for all u ∈ H 1(�) with u · n = 0
on �, we have

‖u‖H 1(�) � ‖Du‖L2(�) if � is nonaxisymmetric, (3.13)

and

‖u‖H 1(�) � ‖Du‖L2(�) + ‖uτ‖L2(�) if � is axisymmetric. (3.14)

More generally, if � is axisymmetric and α ∈ L2(�) satisfies (2.1), then the following equiva-
lence holds

‖u‖H 1(�) � ‖Du‖L2(�) + ‖√α uτ‖L2(�0)
. (3.15)

Here, “�” denotes the equivalence of two norms.

Proof. The inequality ‖u‖H 1(�) ≤ C(�)‖Du‖L2(�) follows from [7, Lemma 3.3] and the re-
verse inequality is obvious, which gives (3.13).

To prove (3.14), it is enough to show the estimate

‖u‖H 1(�) ≤ C
(
‖Du‖L2(�) + ‖uτ‖L2(�)

)
which can be proved by classical contradiction argument (for example, see [22, Section 5.8.1, 
Theorem 1] or the following proof).

In order to show (3.15), we prove by contradiction, the following inequality:

‖u‖2
L2(�)

≤ C(�,α)
(
‖Du‖2

L2(�)
+ ‖√α uτ‖2

L2(�0)

)
.

Indeed, suppose that for all m ∈ IN , there exists um ∈ H 1(�) such that um ·n = 0 on �, |||um||| =
1, with |||u||| := ‖u‖L2(�) + ‖Du‖L2(�), and

1 > m

⎡⎢⎣‖Dum‖2
L2(�)

+
ˆ

�0

α|um|2
⎤⎥⎦ . (3.16)

Thus, {um}m is a bounded sequence in H 1(�) and there exist a subsequence, still denoted by 
{um}m, and u in H 1(�) such that um ⇀ u in H 1(�). This implies u ·n = 0 on � and um → u in 
L2(�); but, from (3.16), we deduce that Du = 0 in � which implies u = cβ for some c ∈ R and 
β as in (2.4). Also, um ⇀ u in H

1
2 (�) ↪→

compact
L2(�), and then um → u in L2(�). For a.e. x on �, 

we have, up to a subsequence, um(x) → u(x) and then, for a.e. x on �0, 
√

α um(x) → √
α u(x). 

However, from (3.16) we know that 
√

α um → 0 in L2(�0). Consequently, since α > 0 on �0, 
we have u = 0 almost everywhere on �0, which implies that the constant c is equal to zero and 
then u = 0 in �. Finally,

1 = |||um||| = ‖um‖ 2 + ‖Dum‖L2(�) → 0,
L (�)
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which is a contradiction. �
Remark 3.14. Let us consider, for given α, the kernel T α(�) of the Stokes operator with Navier 
slip boundary conditions, i.e., a function u ∈ H 1(�) belongs to T α(�) if there exists π ∈ L2

0(�)

such that (u, π) satisfies (S) in the weak sense of Definition 3.10, with f = 0, h = 0 and F = 0. 
Then, we have the energy estimate

2‖Du‖2
L2(�)

+
ˆ

�

α|uτ |2 = 0,

with α ≥ 0 on �. Hence, Du = 0 in � implies that u(x) = b × x + c a.e. x ∈ � (in fact, this 
identity holds for all x ∈ � when u ∈ H 2(�) ↪→ C0(�)), where b, c ∈ R3 are arbitrary constant 
vectors. Further, u · n = 0 on � yields c = 0.
a) If α > 0 on �0, then b × x = 0, for any x ∈ �0 and thus b = 0, i.e., T α(�) = {0}.
b) If α ≡ 0 on �, we can verify easily that

i) u(x) = b × x if � is axisymmetric, i.e., b is co-linear to the axis of � and dimT 0(�) = 1.
ii) u = 0 if � is nonaxisymmetric, i.e., T 0(�) = {0}.

Proposition 3.15. Let � be a Lipschitz bounded domain. For � axisymmetric, we have the fol-
lowing inequalities: for all u ∈ H 1(�), with u · n = 0 on �,

‖u‖2
L2(�)

≤ C

⎡⎢⎣‖Du‖2
L2(�)

+
⎛⎝ˆ

�

u · β
⎞⎠2

⎤⎥⎦ (3.17)

and

‖u‖2
L2(�)

≤ C

⎡⎢⎣‖Du‖2
L2(�)

+
⎛⎝ˆ

�

u · β
⎞⎠2

⎤⎥⎦ , (3.18)

with β as in (2.4).

Proof. (i) First, recall from (2.4) that β ∈ C∞(R3) and Dβ = 0 in R3. Then, (3.17) follows from 
the following result [7, Lemma 3.3]:

inf
w∈T 0(�)

‖u + w‖2
L2(�)

≤ C(�)

⎛⎝‖Du‖2
L2(�)

+
ˆ

�

|u · n|2
⎞⎠ , (3.19)

where T 0(�) is the kernel of the Stokes operator with Navier boundary conditions correspond-
ing to α ≡ 0 (cf. Remark 3.14). Since � is axisymmetric, w = cβ for some c ∈ R, therefore 

inf ‖u + w‖2
L2(�)

= inf ‖u + cβ‖2
L2(�)

and this infimum is attained at

w∈T 0(�) c ∈ R
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c = 1

‖β‖2
L2(�)

⎛⎝ˆ

�

u · β
⎞⎠ .

Then (3.17) follows from∥∥∥∥∥∥u − 1

‖β‖2
L2(�)

⎛⎝ˆ

�

u · β
⎞⎠β

∥∥∥∥∥∥
2

L2(�)

= ‖u‖2
L2(�)

− 1

‖β‖2
L2(�)

⎛⎝ˆ

�

u · β
⎞⎠2

.

(ii) Now, we prove the inequality (3.18) by the same contradiction argument as in (3.15). Let 
us assume that for all m ∈ IN , there exists um ∈ H 1(�) such that um · n = 0 on �, |||um||| = 1, 
where |||u||| := ‖u‖L2(�) + ‖Du‖L2(�), and

1 > m

⎡⎢⎣‖Dum‖2
L2(�)

+
⎛⎝ˆ

�

um · β
⎞⎠2

⎤⎥⎦ . (3.20)

Thus, {um}m is a bounded sequence in H 1(�), and then, there exist a subsequence, which we 
still call it {um}m and u in H 1(�) so that um ⇀ u in H 1(�). This implies that u · n = 0 on �
and um → u in L2(�); but, from (3.20), we have

Dum → 0 in L2(�) and
ˆ

�

um · β → 0.

Then, Du = 0 in � which implies that u = cβ for some c ∈ R. But, um ⇀ u in H
1
2 (�) and 

H
1
2 (�) is compactly embedded in L2(�), and then, um → u in L2(�). Therefore, we have 

um · β → u · β in L2(�), which yields c‖β‖2
L2(�)

= ´
�

u · β = 0. This implies c = 0, and hence, 

u = 0 in �. Finally,

1 = |||um||| = ‖um‖L2(�) + ‖Dum‖L2(�) → 0,

which is a contradiction. �
4. Stokes equations: L2-theory

In this section, we study the well-posedness, in the Hilbertian case, of solutions of the Stokes 
problem (S). First, we prove the existence and uniqueness of the weak solution.

Theorem 4.1 (Existence in H 1(�)). Let � be a Lipschitz bounded domain, and

f ∈ L
6
5 (�),F ∈L2(�),h ∈ H− 1

2 (�) and α ∈ L2(�),

where α > 0 on �0 ⊆ � with |�0| > 0. Then, the Stokes problem (S) has a unique weak solution 
u ∈ H 1(�) in the sense of Definition 3.10 which satisfies the estimate:
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‖u‖H 1(�) ≤ C(α)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (4.1)

Proof. The existence of a unique weak solution u ∈ H 1(�) of (S) follows from the Lax-Milgram 
theorem. The bilinear form

a(u,ϕ) = 2
ˆ

�

Du :Dϕ +
ˆ

�

αuτ · ϕτ (4.2)

is clearly continuous on V 2
σ,τ (�) since

|a(u,ϕ)| ≤ max{2,‖α‖L2(�)}
(
‖Du‖L2(�)‖Dϕ‖L2(�) + ‖uτ‖L4(�)‖ϕτ‖L4(�)

)
≤ C (α,�)‖u‖H 1(�)‖ϕ‖H 1(�).

Also it is coercive on V 2
σ,τ (�) due to Proposition 3.13. Moreover, the linear form � : V 2

σ,τ (�) →
R, defined as

�(ϕ) =
ˆ

�

f · ϕ −
ˆ

�

F : ∇ϕ + 〈h,ϕ〉
H

− 1
2 (�)×H

1
2 (�)

is continuous on V 2
σ,τ (�). Hence, the Lax-Milgram theorem gives the existence of a unique 

u ∈ V 2
σ,τ (�) satisfying (3.8). This completes the proof. The estimate (4.1) follows easily from 

the variational formulation (3.8). �
Remark 4.2. Note that if α > 0 on some �0 ⊆ � with |�0| > 0, then we get the uniqueness of 
the solution of the Stokes problem (S). However, for the case α ≡ 0 on �, there is a nontrivial 
kernel when � is axisymmetric (cf. [7, Theorem 3.4]). See Remark 3.14 for more details.

In the next theorem, we improve the estimate (4.1) with respect to α in some particular cases.

Theorem 4.3 (Estimates in H 1(�)). With the same assumptions on f , F , h and α as in Theo-
rem 4.1, the solution (u, π) ∈ H 1(�) × L2

0(�) of the Stokes problem (S) satisfies the following 
estimates:
a) if � is nonaxisymmetric, then

‖u‖H 1(�) + ‖π‖L2(�) ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (4.3)

b) if � is axisymmetric and
(i) α ≥ α∗ > 0 on �, then

‖u‖H 1(�) + ‖π‖L2(�) ≤ C(�)

min{2, α∗}
(

‖f ‖
L

6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (4.4)

(ii) f , F and h satisfy the condition
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ˆ

�

f · β −
ˆ

�

F : ∇β + 〈h,β〉� = 0, (4.5)

then the solution u satisfies 
´
�

αu · β = 0 and

‖Du‖2
L2(�)

+
ˆ

�

α|uτ |2 + ‖π‖2
L2(�)

≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)2

. (4.6)

In particular, if α is a nonzero constant, then 
´
�

u · β = 0 and

‖u‖H 1(�) + ‖π‖L2(�) ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (4.7)

Remark 4.4. Note that in the case of � axisymmetric, if α is a nonzero constant, we can use the 
estimate (4.4) with α = α∗. In particular, if α = 1

n
, n ∈ N∗, the corresponding solution (un, πn)

satisfies

‖un‖H 1(�) + ‖πn‖L2(�) ≤ nC(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
.

However, this estimate is not optimal when we suppose (4.5). In fact, because of 
´
�

un · β = 0, 

we have a better estimate by using (4.7):

‖un‖H 1(�) + ‖πn‖L2(�) ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
,

where C(�) does not depend on n. This means that if α → 0, then (4.7) is a better estimate than 
(4.4).

Proof. The solution u satisfies

2
ˆ

�

|Du|2 +
ˆ

�

α|uτ |2 ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
‖u‖H 1(�). (4.8)

a) If � is nonaxisymmetric, then the estimate (3.13) shows that the norm ‖Du‖L2(�) is equivalent 
to the norm ‖u‖H 1(�) and from (4.8), it follows

‖u‖H 1(�) ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
. (4.9)

Then the estimate (4.3) follows from (4.9), together with the pressure estimate (3.12).
b) If � is axisymmetric and
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(i) α ≥ α∗ > 0, then the estimate (3.14) implies

‖u‖2
H 1(�)

≤ C(�)

min{2, α∗}

⎛⎝2
ˆ

�

|Du|2 +
ˆ

�

α|uτ |2
⎞⎠ .

Hence, the estimate (4.4) follows from (4.8).
(ii) f , F and h satisfy the condition (4.5), then from a(u, ϕ) = �(ϕ), we get

2
ˆ

�

|Du|2 +
ˆ

�

α|uτ |2 =
ˆ

�

f · (u + kβ) −
ˆ

�

F : ∇(u + kβ) + 〈h,u + kβ〉� ∀k ∈R

≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
inf
k∈R

‖u + kβ‖H 1(�).

Further, from Korn inequality and the inequality (3.19), we know that

inf
k∈R

‖u + kβ‖2
H 1(�)

≤ C(�)

(
inf
k∈R

‖u + kβ‖2
L2(�)

+ ‖Du‖2
L2(�)

)
≤ C(�) ‖Du‖2

L2(�)
,

which yields

2
ˆ

�

|Du|2 +
ˆ

�

α|uτ |2 ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
‖Du‖L2(�).

This implies

‖Du‖L2(�) ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
and then

ˆ

�

α|uτ |2 ≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)2

which proves the inequality (4.6).
Moreover, if α is a nonzero constant, the variational formulation (3.8) gives 

´
�

u · β = 0. 

Therefore, (3.18) shows that the norm ‖Du‖L2(�) is equivalent to the full norm ‖u‖H 1(�) and 
(4.7) is a consequence of (4.8). �

Next, we discuss the strong solutions of the system (S) and the corresponding bounds which 
do not depend on α.

Theorem 4.5 (Existence and estimate in H 2(�)). Assume that α is a constant. If

f ∈ L2(�) and h ∈ H
1
2 (�),
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then the solution (u, π) of the Stokes problem (S) with F = 0 belongs to H 2(�) × H 1(�). Also, 
it satisfies the following estimates:
(i) if � is nonaxisymmetric, then

‖u‖H 2(�) + ‖π‖H 1(�) ≤ C(�)

(
‖f ‖L2(�) + ‖h‖

H
1
2 (�)

)
. (4.10)

(ii) if � is axisymmetric, then

‖u‖H 2(�) + ‖π‖H 1(�) ≤ C(�)

min{2, α}
(

‖f ‖L2(�) + ‖h‖
H

1
2 (�)

)
. (4.11)

If moreover, f and h satisfy the condition:

ˆ

�

f · β + 〈h,β〉� = 0,

then

‖u‖H 2(�) + ‖π‖H 1(�) ≤ C(�)

(
‖f ‖L2(�) + ‖h‖

H
1
2 (�)

)
. (4.12)

Remark 4.6. 1. We will show the existence of u ∈ H 2(�) for more general α, not necessarily 
constant, in Theorem 5.10.

2. It is not sensible to consider a nonzero F ∈ H1(�) for the strong solution since we are 
considering any function f ∈ L2(�) in the RHS.

Proof. Method I: If α is a constant and f ∈ L2(�) and h ∈ H
1
2 (�), then u ∈ H 1(�) and 

therefore αuτ ∈ H
1
2 (�). So, using the regularity result for strong solutions of the Stokes system 

with full-slip boundary condition [7, Theorem 4.1], we get that u ∈ H 2(�).
Note that, with this method, we do not obtain the estimate for u, independent of α, by using 

the results in [7]. Thus, we will use the fundamental long method which we explain below.
Method II: Here, we follow the method of difference quotients as in the book of L.C. Evans

[22]. Without loss of generality, we consider h = 0, for the facility of calculations. Also, let us 
denote the k-difference quotient of size h by

Dh
k u(x) := u(x + hek) − u(x)

h
,

where ek is the canonical basis element of R3, k = 1, 2, 3 and h ∈R.
Interior regularity: The fact that the unique solution (u, π) in H 1(�) ×L2

0(�) of (S) belongs 
to H 2

loc(�) × H 1
loc(�) with the corresponding local estimates (4.10)-(4.12) is proved by using 

difference quotients and Theorem 4.3, in the same way as it was done for the Dirichlet boundary 
condition case, since the proof does not depend on the boundary conditions. Thus, we do not 
repeat it. For another approach to the interior regularity, we also refer to [23, Theorem IV.4.1].

Boundary regularity: Note that the solution (u, π) satisfies the following variational formu-
lation: for all ϕ ∈ H 1

τ (�),
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2
ˆ

�

Du : Dϕ +
ˆ

�

αuτ · ϕτ −
ˆ

�

π divϕ =
ˆ

�

f · ϕ. (4.13)

Case 1. � = B(0, 1) ∩R3+: First, we consider the case when � is a half ball. Set V := B(0, 12 ) ∩
R3+ and choose a cut-off function ζ ∈D(R3) such that

{
ζ ≡ 1 on B(0, 1

2 ), ζ ≡ 0 on R3 \ B(0,1),

0 ≤ ζ ≤ 1.

So ζ ≡ 1 on V and vanishes on the curved part of �.
(i) Tangential regularity of the velocity: Let h > 0 be small and ϕ = −D−h

k (ζ 2Dh
k u), with 

k = 1, 2. Clearly, ϕ ∈ H 1
τ (�). So, substituting ϕ into the identity (4.13), we obtain

2
ˆ

�

ζ 2|Dh
kDu|2 + 2

ˆ

�

Dh
kDu : 2ζ∇ζDh

k u +
ˆ

�

αζ 2|Dh
k uτ |2

−
ˆ

�

π div(−D−h
k (ζ 2Dh

k u)) =
ˆ

�

f · (−D−h
k (ζ 2Dh

k u)).

(4.14)

Now, we estimate the different terms. In this proof, from here on, the constant C might depend 
on ζ which we do not mention. Working on the second term in the left hand side (LHS) of (4.14), 
we get

∣∣∣∣ˆ
�

Dh
kDu : 2ζ∇ζDh

k u

∣∣∣∣ ≤ C

⎡⎣ε

ˆ

�

ζ 2|Dh
kDu|2 + 1

ε

ˆ

�

|Dh
k u|2

⎤⎦ , (4.15)

by using Cauchy’s inequality with ε. Similarly, for the fourth term in the LHS of (4.14), we have∣∣∣∣ˆ
�

π div(−D−h
k (ζ 2Dh

k u))

∣∣∣∣ ≤ ε

ˆ

�

|div(−D−h
k (ζ 2Dh

k u))|2 + C

ε

ˆ

�

|π |2.

On the other hand,

div(D−h
k (ζ 2Dh

k u)) = D−h
k div(ζ 2Dh

k u) = D−h
k (2ζ∇ζ · Dh

k u) + D−h
k (ζ 2 div(Dh

k u)︸ ︷︷ ︸
=0

)

= D−h
k (2ζ∇ζ ) · Dh

k u(x − hek) + 2ζ∇ζ · D−h
k Dh

k u

which implies that

ˆ
|div(−D−h

k (ζ 2Dh
k u))|2 ≤ C

⎛⎝ˆ
|Dh

k u|2 +
ˆ

ζ 2|D−h
k Dh

k u|2
⎞⎠
� � �
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≤ C

⎛⎝ˆ

�

|Dh
k u|2 +

ˆ

�

ζ 2|∇Dh
k u|2

⎞⎠ .

Therefore,

∣∣∣∣ˆ
�

π div(D−h
k (ζ 2Dh

k u))

∣∣∣∣ ≤ ε

⎛⎝ˆ

�

|Dh
k u|2 +

ˆ

�

ζ 2|∇Dh
k u|2

⎞⎠ + C

ε

ˆ

�

|π |2. (4.16)

For the right hand side, proceeding in the same way, we derive∣∣∣∣ˆ
�

f · (−D−h
k (ζ 2Dh

k u))

∣∣∣∣ ≤ ε

ˆ

�

|D−h
k (ζ 2Dh

k u)|2 + C

ε

ˆ

�

|f |2,

and since

ˆ

�

|D−h
k (ζ 2Dh

k u)|2 ≤ C

ˆ

�

|∇(ζ 2Dh
k u)|2 ≤ C

⎛⎝ˆ

�

|Dh
k u|2 +

ˆ

�

ζ 2|∇Dh
k u|2

⎞⎠ ,

we get

∣∣∣∣ˆ
�

f · (−D−h
k (ζ 2Dh

k u))

∣∣∣∣ ≤ ε

⎛⎝ˆ

�

|Dh
k u|2 +

ˆ

�

ζ 2|∇Dh
k u|2

⎞⎠ + C

ε

ˆ

�

|f |2. (4.17)

Hence, incorporating (4.15), (4.16) and (4.17) in (4.14), along with the fact that α ≥ 0, yields

2
ˆ

�

ζ 2|Dh
kDu|2

≤ ε

⎛⎝ˆ

�

ζ 2|DDh
k u|2 +

ˆ

�

ζ 2|∇Dh
k u|2

⎞⎠ + C1

ε

⎛⎝ˆ

�

|f |2 +
ˆ

�

|π |2
⎞⎠ + C2

ˆ

�

|Dh
k u|2

≤ ε

ˆ

�

ζ 2|∇Dh
k u|2 + C1

ε

⎛⎝ˆ

�

|f |2 +
ˆ

�

|π |2
⎞⎠ + C2

ˆ

�

|Dh
k u|2. (4.18)

Furthermore, we see that

‖ζDh
k u‖2

H 1(�)
≤ C

(
‖ζDh

k u‖2
L2(�)

+ ‖D(ζDh
k u)‖2

L2(�)

)
≤ C

(
‖ζDh

k u‖2
L2(�)

+ ‖∇ζDh
k u‖2

L2(�)
+ ‖ζDDh

k u‖2
L2(�)

)
≤ C

(
‖Dh

k u‖2
2 + ‖ζDDh

k u‖2
2

)

L (�) L (�)
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and concerning the first term in the right hand side of (4.18), we rewrite as,

‖ζ∇Dh
k u‖2

L2(�)
= ‖∇(ζDh

k u) − ∇ζDh
k u‖2

L2(�)
≤ ‖∇(ζDh

k u)‖2
L2(�)

+ C ‖Dh
k u‖2

L2(�)

≤ C
(
‖ζDh

k u‖2
H 1(�)

+ ‖Dh
k u‖2

L2(�)

)
.

Combining these inequalities with (4.18), we have

‖ζDh
k u‖2

H 1(�)
≤ ε‖ζDh

k u‖2
H 1(�)

+ C1

ε

(
‖f ‖2

L2(�)
+ ‖π‖2

L2(�)

)
+ C2‖Dh

k u‖2
L2(�)

.

Choosing ε sufficiently small, we obtain

‖Dh
k u‖2

H 1(V )
≤ ‖ζDh

k u‖2
H 1(�)

≤ C
(
‖f ‖2

L2(�)
+ ‖π‖2

L2(�)
+ ‖Dh

k u‖2
L2(�)

)
for k = 1, 2. Then, for sufficiently small |h| 
= 0, we conclude that ∂2u/∂xi∂xj belongs to L2(V )

for all i, j = 1, 2, 3 except i = j = 3, with their corresponding estimates by using Theorem 4.3.
(ii) Tangential regularity of the pressure: Now, we deduce the tangential regularity of the 

pressure in terms of the above derivatives of u. Indeed, from the Stokes equations, we get

∂

∂xi

(∇π) = ∂

∂xi

(f + �u) = ∂f

∂xi

+ div(∇ ∂u

∂xi

),

for i = 1, 2. Since there is no term of the form ∂2u/∂x2
3 , by preceding arguments, we obtain 

∇ ∂π
∂xi

= ∂
∂xi

(∇π) ∈ H−1(V ). Furthermore, as we already know ∂π
∂xi

∈ H−1(V ), and then, Nečas 

inequality implies that ∂π
∂xi

∈ L2(V ), which also satisfies the usual estimate.
(iii) Normal regularity: For the complete regularity of the solution, it remains to study the 

derivatives of u and π in the direction of e3. Differentiating the divergence equation with respect 
to x3 and from the third component of the Stokes equations, we get respectively

∂2u3

∂x2
3

= −
2∑

i=1

∂2ui

∂xi∂x3
∈ L2(V ) and

∂π

∂x3
= f3 + �u3 ∈ L2(V )

which proves that π ∈ H 1(V ). Finally, for i = 1, 2, we can write the ith equation of the system 
in the form

∂2ui

∂x2
3

= −
2∑

j=1

∂2ui

∂x2
j

− fi + ∂π

∂xi

∈ L2(V )

and this implies that ui ∈ H 2(V ). Hence, apart from the regularity of u and π , we obtain the 
existence of a constant C = C(�) > 0 independent of α such that

‖u‖ 2 + ‖π‖H 1(V ) ≤ C‖f ‖ 2 .
H (V ) L (�)
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Case 2. General domain: Now, we drop the assumption that � is a half ball and consider the 
general case. In this part, we follow the strategy in [48] (in the same way as it was done in [12]). 
Since � is C1,1, for any x0 ∈ �, we can assume, upon relabelling the coordinate axes, that

� ∩ B(x0, r) = {
x ∈ B(x0, r) : x3 > H(x′)

}
for some r > 0 and H :R2 →R of class C1,1. We denote here x′ = (x1, x2). Let us now introduce 
the change of variable

y = (x1, x2, x3 − H(x′)) := φ(x), i.e., x = (y1, y2, y3 + H(y′)) := φ−1(y)

which flattens the boundary locally. We choose s > 0 small such that the half ball �′ := B(0, s) ∩
R3+ lies in φ(� ∩ B(x0, r)). Let us define V ′ := B(0, s/2) ∩ R3+. We also introduce the new 
unknown variable

u′(y) =
(

u1(x), u2(x), u3(x) − ∂H

∂x1
u1(x) − ∂H

∂x2
u2(x)

)
.

It is easy to see u′ ∈ H 1(�′) and u′ · n = 0 on ∂�′ ∩ ∂R3+. The last relation is true because of 
∂H
∂yi

(0, 0) = 0, for i = 1, 2. With this transformation, it follows, for i, j = 1, 2,

∂ui

∂xj

= ∂u′
i

∂yj

− ∂H

∂yj

∂u′
i

∂y3
,

∂ui

∂x3
= ∂u′

i

∂y3

∂u3

∂xj

= ∂u′
3

∂yj

− ∂H

∂yj

∂u′
3

∂y3
+

2∑
k=1

[
∂u′

k

∂yj

− ∂H

∂yj

∂u′
k

∂y3

]
,

∂u3

∂x3
= ∂u′

3

∂y3
+

2∑
k=1

∂H

∂yk

∂u′
k

∂y3
.

Next, we consider the variational formulation (4.13) under this change of variable. From here on, 
the calculation is exactly the same as it was done in [48] (or in [12]), hence, we do not repeat it. 
Note that the boundary term remains unchanged, i.e.,

ˆ

�

αuτ · ϕτ =
ˆ

�′
αu′

τ · ϕ′
τ .

Therefore, following exactly the same method as in [12, page 1099], we obtain

‖u‖H 2(V ) ≤ C(�)‖f ‖L2(�),

where V = φ−1(V ′).
Now, since � is compact, we can cover � with finitely many sets {Vi} as above. Thus, summing 

the resulting estimates, along with the interior estimate, we get u ∈ H 2(�) and its corresponding 
estimate. �
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5. Stokes equations: Lp-theory

5.1. General solution in W 1,p(�)

In this subsection, we study the regularity of weak solutions of the Stokes problem (S). We 
begin with recalling some useful results. For more details about the next theorem, which was 
introduced, independently, by Babǔska [11] and Brezzi [15], see [28, Lemma 4.1].

Theorem 5.1. Let X and M be two reflexive Banach spaces and X′ and M ′ be their dual 
spaces. Let a(v, w) be a continuous bilinear form defined on X × M and A ∈ L(X; M ′) and 
A′ ∈ L(M; X′) be the continuous linear operators, associated to a(v, w), defined by

∀v ∈ X, ∀w ∈ M, a(v,w) = 〈Av,w〉 = 〈
v,A′w

〉
and V = Ker A. Then, the following statements are equivalent:
(i) There exists C = C(�) > 0 such that

inf
w∈M
w 
=0

sup
v∈X
v 
=0

a(v,w)

‖v‖X ‖w‖M

≥ C. (5.1)

(ii) The operator A : X/V → M ′ is an isomorphism and 1
C

is the continuity constant of A−1.

(iii) The operator A′ : M → V 0 is an isomorphism and 1
C

is the continuity constant of (A′)−1, 
where V 0 is the polar set, defined by

V 0 := {g ∈ X′ : 〈g, v〉 = 0 ∀v ∈ V }.

Remark 5.2. As a consequence, if the Inf-Sup condition (5.1) is satisfied, then we have the 
following properties:

i) If V = {0}, then for any f ∈ X′, there exists a unique w ∈ M such that,

∀v ∈ X, a(v,w) = 〈f, v〉 and ‖w‖M ≤ 1

β
‖f ‖X′ . (5.2)

ii) If V 
= {0}, then for any f ∈ X′, satisfying the compatibility condition,

∀v ∈ V, 〈f, v〉 = 0, there exists a unique w ∈ M such that (5.2) holds.
iii) For any g ∈ M ′, ∃v ∈ X, unique up to an additive element of V such that,

∀w ∈ M, a(v,w) = 〈g,w〉 and ‖v‖X/V ≤ 1

β
‖g‖M ′ .

Next, we introduce the kernel:

K
p
(�) = {

v ∈ Lp(�) : div v = 0, curl v = 0 in �, v · n = 0 on �
}
.
T
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Thanks to [10, Corollary 4.1], we know that this kernel is trivial iff � is simply connected. 
Otherwise, it is of finite dimension and spanned by the functions ∇̃qT

j , 1 ≤ j ≤ J , where each 

qT
j ∈ W 2,p(�o) is the unique solution up to an additive constant of the problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−�qT
j = 0 in �o,

∂nq
T
j = 0 on �,

[qT
j ]k = c and [∂nq

T
j ]k = 0, 1 ≤ k ≤ J,〈

∂nq
T
j ,1

〉
�k

= δjk, 1 ≤ k ≤ J,

where c is any constant. Recall that �j are the cuts in � such that the open set �o = �\ 
J⋃

j=1
�j

is simply connected, [·]j denotes the jump of a function over �j , 〈·, ·〉�j
is the duality bracket 

over �j and ∇̃q is an extension of ∇q from Lp(�o) to Lp(�), for any function q ∈ W 1,p(�o)

(observe that this extension is different from the gradient of q in D′(�)). For more details, see 
Notation 3.9 and Lemma 3.10 in [4].

Also, recall the following inf-sup condition (see [10, Lemma 4.4]):

Lemma 5.3. There exists a constant C > 0, depending only on � and p, such that

inf
ϕ∈V p′

(�)
ϕ �=0

sup
ξ∈V

p
σ,τ (�)

ξ 
=0

´
�

curl ξ · curl ϕ

‖ξ‖V
p
σ,τ (�)‖ϕ‖

V p′
(�)

≥ C, (5.3)

where

V p′
(�) :=

{
v ∈ V p′

σ,τ (�) : 〈v · n,1〉�j
= 0 ∀1 ≤ j ≤ J

}
.

Theorem 5.4. Let p ∈ (1, ∞), � ∈ [V p′
σ,τ (�)]′ and α ∈ Lt(p)(�). Then the problem:

find u ∈ V p
σ,τ (�) such that for any ϕ ∈ V p′

σ,τ (�), a(u,ϕ) = 〈�,ϕ〉 (5.4)

has a unique solution, where a is defined in (4.2).

Proof. First, let us consider p ≥ 2. Since [V p′
σ,τ (�)]′ ↪→ [V 2

σ,τ (�)]′, by Lax-Milgram theorem, 
there exists a unique u ∈ V 2

σ,τ (�) satisfying

a(u,ϕ) = 〈�,ϕ〉[V 2
σ,τ (�)]′×V 2

σ,τ (�) ∀ϕ ∈ V 2
σ,τ (�). (5.5)

We want to show that u ∈ W 1,p(�). Since the inf-sup condition (5.1) is known for the bilinear 
form

b(u,ϕ) =
ˆ

curl u · curl ϕ
�
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with the suitable spaces X and M given in (5.3), we use another formulation of problem (5.5).
To do so, let us consider any v ∈ H 1(�) with �v ∈ [H 6,2

0 (div, �)]′ and from Remark 3.7, 
point 2, we have the Green formula, for ϕ ∈ V 2

σ,τ (�),

−〈�v,ϕ〉� = 2
ˆ

�

Dv :Dϕ − 2 〈[(Dv)n]τ ,ϕ〉� . (5.6)

Also, recall the following Green formula from [7, Lemma 2.3],

−〈�v,ϕ〉� =
ˆ

�

curl v · curl ϕ − 〈curl v × n,ϕ〉� . (5.7)

Note that, extension of [7, Lemma 2.3] for v ∈ H 1(�) with �v ∈ [H 6,2
0 (div, �)]′ is straightfor-

ward. Therefore, we obtain from (5.6) and (5.7),

2
ˆ

�

Dv :Dϕ =
ˆ

�

curl v · curl ϕ + 2 〈[(Dv)n]τ ,ϕ〉� − 〈curl v × n,ϕ〉� . (5.8)

In particular, (5.8) also holds for v ∈ V 2
σ,τ (�) with �v ∈ [H 6,2

0 (div, �)]′. Next, plugging in the 

relation (3.5) in (5.8) gives, for v ∈ V 2
σ,τ (�) with �v ∈ [H 6,2

0 (div, �)]′ and ϕ ∈ V 2
σ,τ (�),

2
ˆ

�

Dv : Dϕ =
ˆ

�

curl v · curl ϕ − 2 〈�v,ϕ〉� . (5.9)

Now, due to the density Lemma 3.8, relation (5.9) is true for any v ∈ V 2
σ,τ (�) and ϕ ∈ V 2

σ,τ (�). 
Therefore, (5.5) becomes,

ˆ

�

curl u · curl ϕ = 〈�,ϕ〉[V 2
σ,τ (�)]′×V 2

σ,τ (�) −
ˆ

�

αuτ · ϕτ + 2
ˆ

�

�u · ϕ. (5.10)

Now, we are in position to prove that u ∈ W 1,p(�) and for that, we consider different cases.
(i) 2 < p ≤ 3:

1st Step: Since uτ ∈ L4(�) and α ∈ L2+ε(�), we have αuτ ∈ Lq1(�) with 1
q1

= 1
4 + 1

2+ε
. 

But, Lq1(�) ↪→ W
− 1

p1
,p1(�) with p1 = 3

2q1 > 2, i.e.,

1

p1
= 2

3

(
1

4
+ 1

2 + ε

)
.

Therefore, as W
1

p1
,p′

1(�) ↪→ Lq ′
1(�) with 4

3 < q ′
1 < 4 and �u ∈ L4(�), the mapping

〈L,ϕ〉 = 〈�,ϕ〉
[V s′1

σ,τ (�)]′×V
s′1
σ,τ (�)

−
ˆ

αuτ · ϕτ + 2
ˆ

�u · ϕ for ϕ ∈ V s′
1(�) (5.11)
� �
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defines an element in the dual space of V s′
1(�), with s1 = min {p1, p}. From the inf-sup condi-

tion (5.3) and using Remark 5.2, there exists a unique v ∈ V s1
σ,τ (�) such that

ˆ

�

curl v · curl ϕ = 〈L,ϕ〉[V s′1 (�)]′×V
s′1 (�)

∀ϕ ∈ V s′
1(�). (5.12)

In order to show that curl v = curl u, we extend (5.12) to any test function ϕ ∈ V
s′
1

σ,τ (�). Since 

∇̃qT
j ∈ V 2

σ,τ (�) ↪→ V
s′
1

σ,τ (�) and using (5.10), we get

〈
L, ∇̃qT

j

〉
[V s′1 (�)]′×V

s′1 (�)
=

〈
�, ∇̃qT

j

〉
[V s′1 (�)]′×V

s′1 (�)
−
ˆ

�

αuτ · (∇̃qT
j )

τ
+ 2

ˆ

�

�u · ∇̃qT
j

=
ˆ

�

curl u · curl ∇̃qT
j = 0.

Hence, for any ϕ ∈ V
s′
1

σ,τ (�), we set ϕ̃ = ϕ − �
j

〈ϕ · n,1〉�j
∇̃qT

j , which implies that

〈L,ϕ〉 = 〈L, ϕ̃〉

and also ̃ϕ ∈ V s′
1(�). Therefore, (5.12) yields

ˆ

�

curl v · curl ϕ =
ˆ

�

curl v · curl ϕ̃ = 〈L, ϕ̃〉 = 〈L,ϕ〉 .

Finally, we get that v ∈ V s1
σ,τ (�) satisfies

ˆ

�

curl v · curl ϕ = 〈L,ϕ〉 ∀ϕ ∈ V
s′
1

σ,τ (�). (5.13)

Since V 2
σ,τ (�) ↪→ V

s′
1

σ,τ (�), we deduce from (5.10) that

ˆ

�

curl v · curl ϕ =
ˆ

�

curl u · curl ϕ ∀ϕ ∈ V 2
σ,τ (�)

which implies that

curl u = curl v in �. (5.14)

Then, since u ∈ L6(�) ↪→ Ls1(�), curl u ∈ Ls1(�), div u = 0 in � and u · n = 0 on �, we 
deduce from Proposition 3.2 that u ∈ W 1,s1(�). If p1 ≥ p, the proof is complete. Otherwise, 
s1 = p1 and we proceed to the next step.
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2nd Step: As s1 = p1 < 3, we have u ∈ V
p1
σ,τ (�) and therefore, uτ ∈ Lm(�), with 1

m
= 3

2p1
−

1
2 . So, αuτ ∈ Lq2(�) ↪→ W

− 1
p2

,p2(�), where 1
q2

= 1
m

+ 1
2+ε

and p2 = 3
2q2 > p1. Setting a =

2
3

(
1

2+ε
− 1

2

)
< 0, we get,

1

p2
= 1

p1
+ a.

Thus, as W
1

p2
,p′

2(�) ↪→ Lm′
(�) and �u ∈ Lm(�), the mapping L in (5.11),

〈L,ϕ〉 = 〈�,ϕ〉
[V s′2

σ,τ (�)]′×V
s′2
σ,τ (�)

−
ˆ

�

αuτ · ϕτ + 2
ˆ

�

�u · ϕ for ϕ ∈ V s′
2(�)

defines an element in the dual of V s′
2(�), with s2 = min{p2, p}. Hence, analogous to the previous 

step, there exists a unique v ∈ V s2
σ,τ (�) such that (5.13) holds for any ϕ ∈ V

s′
2

σ,τ (�) and then we 
conclude (5.14). Thus, we get u ∈ Lp∗

1 (�) ↪→ Ls2(�), curl u ∈ Ls2(�), div u = 0 in � and 
u · n = 0 on �, which implies that u ∈ W 1,s2(�). If p2 ≥ p, we are done. Otherwise, s2 = p2.

(k+1)th Step: For k ≥ 1, we construct pk+1 inductively, which satisfies

1

pk+1
= 1

pk

+ a.

This shows that 
{

1
pk

}
k

being an arithmetic sequence with difference a < 0, there exists k∗ ≥ 1

such that

1

pk∗+1
≤ 1

p
<

1

pk∗
.

In particular, it suffices to take k∗ =
[
− 1

a

(
1
2 − 1

p

)]
+ 1 where [s] denotes the integer part 

of s. Therefore, we obtain u ∈ W 1,p(�) for 2 < p ≤ 3, and conclude that there exists a 
unique u ∈ V

p
σ,τ (�) such that for any ϕ ∈ V

p′
σ,τ (�), (5.10) holds, where the duality bracket 

〈�,ϕ〉[V 2
σ,τ (�)]′×V 2

σ,τ (�) is now replaced by 〈�,ϕ〉[V p′
σ,τ (�)]′×V

p′
σ,τ (�)

.

(ii) p > 3: From the previous case, we have that u ∈ W 1,3(�), which implies uτ ∈ Ls(�) for 
all s ∈ (1, ∞). Now, α ∈ L

2
3 p+ε(�) yields αuτ ∈ Lq(�), where 1

q
= 1

s
+ 1

2
3 p+ε

. Choosing s > 1

suitably, we can get q = 2
3p and hence, Lq(�) ↪→ W

− 1
p

,p
(�). Since W

1
p

,p′
(�) ↪→ Lq ′

(�) ↪→
Ls′

(�) and �u ∈ Ls(�), the mapping L in (5.11) defines an element in the dual of V p′
σ,τ (�). 

Then, there exists a unique v ∈ V
p
σ,τ (�) such that (5.13) holds for any ϕ ∈ V

p′
σ,τ (�) and we 

deduce (5.14). Therefore, we obtain similarly u ∈ W 1,p(�). Hence, u ∈ V
p
σ,τ (�) solves the 

problem (5.4) for all 2 ≤ p < ∞.

Finally for 1 < p < 2, let us consider the operator A ∈L(V
p′
σ,τ (�), (V p

σ,τ (�))′) associated to 
the bilinear form a, defined by 〈Aξ,ϕ〉 = a(ξ, ϕ). As we proved above, for p′ ≥ 2, the operator 
286



P. Acevedo Tapia, C. Amrouche, C. Conca et al. Journal of Differential Equations 285 (2021) 258–320
A is an isomorphism from V p′
σ,τ (�) to (V p

σ,τ (�))′. Then the adjoint operator, which is equal to 

A, is an isomorphism from V p
σ,τ (�) to (V p′

σ,τ (�))′ for p < 2. This means that the operator A is 
also an isomorphism for p < 2 and we finish the proof. �

As a consequence of the above theorem, we obtain the following important inf-sup condition.

Proposition 5.5. For all p ∈ (1, ∞) and α ∈ Lt(p)(�), there exists a constant γ = γ (�, p, α) >
0 such that

inf
ϕ∈V

p′
σ,τ (�)

ϕ 
=0

sup
u∈V

p
σ,τ (�)

u
=0

2
´
�

Du : Dϕ + ´
�

αuτ · ϕτ

‖u‖V
p
σ,τ (�) ‖ϕ‖

V
p′
σ,τ (�)

≥ γ. (5.15)

Further, for any � ∈ [V p′
σ,τ (�)]′, the unique solution u ∈ V

p
σ,τ (�) of the variational problem:

2
ˆ

�

Du : Dϕ +
ˆ

�

αuτ · ϕτ = 〈�,ϕ〉 ∀ϕ ∈ V p′
σ,τ (�),

given by Theorem 5.4, satisfies the following estimate:

‖u‖W 1,p(�) ≤ 1

γ
‖�‖[V p′

σ,τ (�)]′ . (5.16)

Remark 5.6. The inf-sup condition (5.15) will be improved in Theorem 6.14, where we obtain 
that the above continuity constant γ does not depend on α.

Proof. Using the equivalence (i) and (ii) in Theorem 5.1, we obtain the inf-sup condition (5.15)
from Theorem 5.4. The estimate (5.16) follows immediately from (5.15). �

Finally, Theorem 5.4 enables us to deduce the following existence-uniqueness result for the 
weak solution of the Stokes problem for all 1 < p < ∞.

Corollary 5.7 (Existence and uniqueness in W1,p(�)). Let p ∈ (1, ∞) and

f ∈ Lr(p)(�),F ∈Lp(�),h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�).

Then, the Stokes problem (S) has a unique solution (u, π) ∈ W 1,p(�) × L
p

0 (�) which satisfies 
the estimate:

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ C(�,α,p)

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
. (5.17)

Remark 5.8. In the above corollary, the existence of u ∈ W 1,p(�) and the corresponding es-
timate (5.17), for p > 2, can be deduced directly by using the regularity result in [7, Theorem 
3.7], by taking αuτ as the source term in the right hand side. However, Theorem 5.4 is required 
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to obtain the existence of solution of (S) for p < 2 where we need that the general operator A
(defined as 〈Aξ,ϕ〉 = a(ξ, ϕ)) is an isomorphism from V p

σ,τ (�) to (V p′
σ,τ (�))′ for p > 2.

Furthermore, note that the problem (5.4) in Theorem 5.4 is more general than the Stokes 
problem (3.8) since the problem (5.4) consists of a general right hand side � ∈ [V p′

σ,τ (�)]′, hence 
the existence of solution for the problem (5.4) with p > 2 does not follow from [7].

Proof. The existence of a unique solution is immediate from Theorem 5.4 with

〈�,ϕ〉 :=
ˆ

�

f · ϕ −
ˆ

�

F : ∇ϕ + 〈h,ϕ〉� for all ϕ ∈ V p′
σ,τ (�).

The estimate (5.17) follows from (5.16) and the pressure estimate (3.12). �
Remark 5.9. i) All the previous results, where we have assumed f ∈ Lr(p)(�), hold also true 
for f ∈ [H (r(p))′,p′

0 (div, �)]′, which is clear from the characterization of the space in Proposi-
tion 3.1, as the gradient term can be absorbed in the pressure term.

ii) We also want to emphasize that in this work, our assumption on α is quite steep. This 

regularity is required in order to ensure that αuτ ∈ W
− 1

q
,q

(�) for some q so that eventually we 
can use our tools. But we will see later (Subsection 7.4) that we may suppose α less regular in 
some cases.

iii) Note that even in the case α ≡ 0, we are considering here more general Stokes problem 
than in [7].

5.2. Strong solution in W 2,p(�)

Concerning the existence of a strong solution, we prove the following result:

Theorem 5.10 (Existence in W 2,p(�)). Let p ∈ (1, ∞). Then, for

f ∈ Lp(�),h ∈ W
1− 1

p
,p

(�) and α ∈ W
1− 1

q
,q

(�)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, the solution (u, π) of the Stokes problem (S) with 
F = 0, given by Corollary 5.7, belongs to W 2,p(�) ×W 1,p(�) which also satisfies the estimate:

‖u‖W 2,p(�) + ‖π‖W 1,p(�) ≤ C(�,α,p)

(
‖f ‖Lp(�) + ‖h‖

W
1− 1

p ,p
(�)

)
.

Remark 5.11. As for the Stokes problem with Dirichlet boundary condition, we observe that 
the regularity W 2,p(�) for the Stokes problem with Navier boundary condition holds if the 
domain � is only C1,1, unlike the case of Navier-type boundary condition for which the domain 
regularity C2,1 seems to be necessary, even though this last hypothesis does not appear explicitly 
in the paper [9] (cf. Theorem 4.8). Our above regularity result improves [7, Theorem 4.1] which 
supposes that the domain is C2,1.
288



P. Acevedo Tapia, C. Amrouche, C. Conca et al. Journal of Differential Equations 285 (2021) 258–320
Proof. The proof is done essentially by using the existence of weak solutions and a bootstrap 
argument. Clearly, the data f , h and α satisfy the hypothesis of Corollary 5.7. Hence, there exists 
a unique solution (u, π) ∈ W 1,p(�) × L

p
0 (�) of (S).

(i) 1 < p ≤ 3
2 : We also have the following embeddings:

Lp(�) ↪→ Lr(q)(�), W 1− 1
p
,p

(�) ↪→ W
− 1

q
,q

(�) and W
1− 1

3
2 +ε

, 3
2 +ε

(�) ↪→ L2+ε̃(�), where q =
p∗, with q ∈ ( 3

2 , 3] and ε̃ > 0 is an arbitrarily small number. These inclusions show that 
(u, π) ∈ W 1,q (�) × Lq(�) by using Corollary 5.7. Therefore, u ∈ W 1,q (�) ↪→ Lq∗

(�) and 

∇u ∈ Lq(�). Also, since α ∈ W
1− 1

3
2 +ε

, 3
2 +ε

(�), we can consider α ∈ W 1, 3
2 +ε(�) by using the 

lift operator. Hence, from Sobolev inequality α ∈ L( 3
2 +ε)∗(�) and ∇α ∈ L

3
2 +ε(�). Then, for all 

i, j = 1, 2, 3,

α
∂ui

∂xj

∈ Lq1(�), where
1

q1
= 1

3
2 + ε

− 1

3
+ 1

q

and

∂α

∂xj

ui ∈ Lq2(�), where
1

q2
= 1

3
2 + ε

+ 1

q∗ .

But q1 = q2 > p and thus ∂
∂xj

(αui) = ∂α
∂xj

ui + α
∂ui

∂xj
∈ Lp(�). This implies that αu ∈ W 1,p(�)

or, in other words, αuτ ∈ W
1− 1

p
,p

(�). Therefore, the regularity result of the Stokes system with 
full-slip boundary condition [7, Theorem 4.1] implies that (u, π) ∈ W 2,p(�) × W 1,p(�). Note 
that it is possible to prove the aforementioned existence result for strong solutions only for C1,1

domain since the problem (S) takes the form of an uniformly elliptic operator with complement-
ing boundary conditions in the sense of Agmon-Douglis-Nirenberg [2].

(ii) p > 3
2 : First, we assume p < 3. Then, we have u ∈ W 2, 3

2 (�) ↪→ Ls(�) for all s ∈ (1, ∞)

and ∇u ∈ W 1, 3
2 (�) ↪→ L3(�). Also, since α ∈ W

1− 1
p

,p
(�), we can consider α ∈ W 1,p(�). 

Consequently, α ∈ Lp∗
(�) and ∇α ∈ Lp(�). Therefore, for all i, j = 1, 2, 3,

∂α

∂xj

ui ∈ Lq2(�), where
1

q2
= 1

p
+ 1

s

and

α
∂ui

∂xj

∈ Lq3(�), where
1

q3
= 1

p∗ + 1

3
= 1

p
.

Clearly, q2 < q3 and then ∂
∂xj

(αui) ∈ Lq2(�), where q2 ∈ ( 3
2 , p). This implies that αu ∈

W 1,q2(�) and hence, αuτ ∈ W
1− 1

q2
,q2(�). Again, we have u ∈ W 2,q2(�), where q2 ∈ ( 3

2 , p), 
by the regularity result.

Now, u ∈ W 2,q2(�) ↪→ L∞(�) and ∇u ∈ W 1,q2(�) ↪→ Lq∗
2 (�). So, for all i, j ,

∂α
ui ∈ Lp(�) and α

∂ui ∈ Lq4(�), where
1 = 1

∗ + 1
∗ = 1 + 1 − 2

.

∂xj ∂xj q4 p q2 p q2 3
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Since q4 > p, ∂
∂xj

(αui) ∈ Lp(�), and then, αu ∈ W 1,p(�). Thus, αuτ ∈ W
1− 1

p
,p

(�) and the 
regularity result for the Stokes system with full-slip boundary condition [7, Theorem 4.1] implies 
that (u, π) ∈ W 2,p(�) × W 1,p(�).

The case for p ≥ 3 follows by applying a similar argument. Indeed, as α ∈ L∞(�), one gets

αuτ ∈ W
1− 1

p
,p

(�) and [7, Theorem 4.1] can be applied directly. �
6. Uniform estimates

6.1. First estimate

We can deduce some estimates giving a precise dependence of the weak solution of (S) on the 
friction coefficient α in some particular cases. Then, we attain a better estimate than (5.17). Note 
that the following result is not optimal with respect to α and will be improved in Theorem 6.11.

Proposition 6.1. Let p > 2. With the same assumptions on f , F , h and α as in Corollary 5.7, the 
solution (u, π) ∈ W 1,p(�) × L

p

0 (�) of problem (S) satisfies the following bounds:
a) if � is nonaxisymmetric, then

‖u‖W 1,p(�) + ‖π‖Lp(�)

≤ C(�,p)
(

1 + ‖α‖2
Lt(p)(�)

)(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
. (6.1)

b) if � is axisymmetric and

(i) α ≥ α∗ > 0 on �, then

‖u‖W 1,p(�) + ‖π‖Lp(�)

≤ C(�,p)
min{2,α∗}

(
1 + ‖α‖2

Lt(p)(�)

)(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
.

(ii) f , F and h satisfy the condition:

ˆ

�

f · β −
ˆ

�

F : ∇β + 〈h,β〉� = 0,

then

‖u‖W 1,p(�) + ‖π‖Lp(�)

≤ C(�,p)
(

1 + ‖α‖2
Lt(p)(�)

)(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
.

Proof. We only prove (6.1) since the other inequalities follow in the same way. Assume that �
is nonaxisymmetric.

(i) 2 < p < 3: From the proof of Lemma 3.9, αuτ ∈ Lq(�) with 1
q

= 3
2p

− 1
2 + 1

2+ε
< 3

2p
and 

Lq(�) ↪→ W
− 1

p
,p

(�). Therefore, αuτ ∈ W
− 1

p
,p

(�), but from the relation
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Lq(�) ↪→
compact

W
− 1

p
,p

(�) ↪→
continuous

H− 1
2 (�),

we have that for any δ > 0, there exists a constant C(δ) > 0, with C(δ) → ∞ as δ → 0, such that

‖v‖
W

− 1
p ,p

(�)
≤ δ ‖v‖Lq (�) + C(δ)‖v‖

H
− 1

2 (�)
∀v ∈ Lq(�). (6.2)

Choosing v = αuτ in (6.2) and using Hölder inequality and trace theorem, we get

‖αuτ‖
W

− 1
p ,p

(�)
≤ δ ‖αuτ‖Lq (�) + C(δ) ‖αuτ‖L4/3(�)

≤ δ ‖α‖L2+ε (�)‖u‖W 1,p(�) + C(δ) ‖α‖L2(�)‖u‖H 1(�).

The W 1,p-regularity result of the Stokes system with full-slip boundary condition [7, Corollary 
3.8] yields

‖u‖W 1,p(�) + ‖π‖L
p
0 (�) ≤ C

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

+ ‖αuτ‖
W

− 1
p ,p

(�)

)
≤ C

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
+ δ‖α‖L2+ε (�)‖u‖W 1,p(�) + C(δ)‖α‖L2(�)‖u‖H 1(�).

Then, choosing δ > 0 such that 1 − δC‖α‖L2+ε (�) = 1
2 , we obtain

‖u‖W 1,p(�) + ‖π‖L
p
0 (�)

≤ C

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
+ C ‖α‖L2(�)‖α‖L2+ε (�)‖u‖H 1(�)

≤ C(1 + ‖α‖2
L(2+ε)(�)

)

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
.

(ii) p ≥ 3: The analysis is exactly similar to the previous case. �
Remark 6.2. We can also extend the above estimates of Proposition 6.1 for p < 2 by applying a 
duality argument in the same way as it was done in Proposition 6.10 and Proposition 6.12.

6.2. Second estimate

In this subsection, we prove one of the main results of this work. The estimates in Proposi-
tion 6.1 are improved with respect to α and for all p ∈ (1, ∞).

First, we discuss the estimate for p > 2 with f = h = 0, similar to (4.3) or (4.4).

Theorem 6.3 (Estimates in W 1,p(�),with p > 2 and RHS F ). Let p > 2, F ∈ Lp(�) and 
α ∈ Lt(p)(�). Then, the solution u ∈ W 1,p(�) of (S) with f = 0 and h = 0 satisfies the following 
estimates:
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(i) if � is nonaxisymmetric, then

‖u‖W 1,p(�) ≤ Cp(�) ‖F‖Lp(�) (6.3)

(ii) if � is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(�) ≤ Cp(�,α∗) ‖F‖Lp(�).

The proof of the above theorem uses the weak Reverse Hölder inequality and the steps are 
similar to the ones of the Laplace-Robin problem, discussed in [5], although they are not the 
same because of the pressure term in our current problem.

Before the main proof of Theorem 6.3, we require some additional results and tools.
Since � is of class C1,1, there exists some r0 > 0 such that for any x0 ∈ �, there exist a 

coordinate system (x′, x3), which is isometric to the usual coordinate system (which involves 
rotation and/or translation) and a C1,1 function ψ :R2 → R such that

B(x0, r0) ∩ � = {
(x′, x3) ∈ B(x0, r0) : x3 > ψ(x′)

}
(6.4)

and

B(x0, r0) ∩ � = {
(x′, x3) ∈ B(x0, r0) : x3 = ψ(x′)

}
.

Now consider any ball B(x0, r) with the property that 0 < r <
r0
8 and either B(x0, 2r) ⊂ � or 

x0 ∈ �. In some places, we may write B instead of B(x0, r) provided there is no ambiguity, and 
aB := B(x0, ar) for a > 0. Also, for any integrable function f on a domain ω, we use the usual 
notation to denote the average value of f on ω by

−
ˆ

ω

f = 1

|ω|
ˆ

ω

f.

The following lemma is proved in [27, Lemma 0.5] (see also [26, Proposition 1.1, Chapter 
V]). We may replace cubes by balls as well in the following result, see for example [21, Propo-
sition 3.7].

Lemma 6.4. Let f, g, h be nonnegative functions in L1(Q0), where Q0 is a cube in Rn, QR(x0)

is a cube centered at x0 with sides 2R and let β ∈ R+. There exists δ0 such that if for some 
δ ≤ δ0, the following inequality

ˆ

QR(x0)

f ≤ C(δ)

⎡⎢⎣R−β

ˆ

Q2R(x0)

g +
ˆ

Q2R(x0)

h

⎤⎥⎦ + δ

ˆ

Q2R(x0)

f

holds for all x0 ∈ Q0 and R < 1 dist(x0, ∂Q0), then there exists a constant C > 0 such that
2
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ˆ

QR(x0)

f ≤ C

⎡⎢⎣R−β

ˆ

Q2R(x0)

g +
ˆ

Q2R(x0)

h

⎤⎥⎦
for all x0 ∈ Q0 and R < 1

2 dist(x0, ∂Q0).

Next, we deduce the Caccioppoli inequality for the Stokes problem, up to the boundary.

Lemma 6.5 (Caccioppoli inequality). Let (u, π) ∈ H 1(�) × L2
0(�) satisfy

2
ˆ

�

Du :Dϕ +
ˆ

�

αuτ · ϕτ −
ˆ

�

π div ϕ = −
ˆ

�

F : ∇ϕ ∀ϕ ∈ H 1
τ (�). (6.5)

Then, there exists a constant C > 0, independent of α, such that for all x0 ∈ � and 0 < r <
r0
2 , 

we have

ˆ

B∩�

|∇u|2 ≤ C

⎛⎝ 1

r2

ˆ

2B∩�

|u|2 +
ˆ

2B∩�

|F |2
⎞⎠ , (6.6)

where r0 is given in (6.4).

Proof. We will use the following identity several times: for any “smooth enough” v and any 
symmetric matrix M, 

´
ω

Dv : M = ´
ω

∇v : M. In particular, for any “smooth enough” v and ϕ,

ˆ

ω

Dv : Dϕ =
ˆ

ω

∇v :Dϕ.

(i) Pressure estimate: Let π0 = −́
2B∩�

π . Since π ∈ L2
0(�), consider v ∈ H 1

0(2B ∩ �) which 

satisfies
ˆ

2B∩�

∇v : ∇ϕ =
ˆ

2B∩�

(π − π0) div ϕ ∀ϕ ∈ H 1
0(2B ∩ �).

As � is connected, we get

‖π − π0‖L2(2B∩�) ≤ C‖∇(π − π0)‖H−1(2B∩�) = C‖v‖H 1
0(2B∩�),

where the constant C depends only on �, not on r (cf. [27, comment before Remark 1.7, Part 
II]). But from (6.5), we obtain (extending ϕ by 0 outside 2B ∩ �, we may consider ϕ ∈ H 1

0(�)

and replacing π by π − π0 since π − π0 also satisfies (S)) that

ˆ
∇v : ∇ϕ = 2

ˆ
Du : Dϕ +

ˆ
αuτ · ϕτ +

ˆ
F : ∇ϕ ∀ϕ ∈ H 1

0(2B ∩ �).
2B∩� � � �
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Now, putting ϕ = v yields

‖π − π0‖L2(2B∩�) ≤ C(�)
(‖∇u‖L2(2B∩�) + ‖F‖L2(2B∩�)

)
. (6.7)

(ii) Caccioppoli inequality: Let us consider a cut-off function η ∈ C∞
c (2B) such that

0 ≤ η ≤ 1, η ≡ 1 on B and |∇η| ≤ C

r
in 2B. (6.8)

Choosing ϕ = η2u in (6.5), we have

2
ˆ

2B∩�

Du : D(η2u) +
ˆ

2B∩�

αη2|uτ |2 −
ˆ

2B∩�

(π − π0) div(η2u) = −
ˆ

2B∩�

F : ∇(η2u)

and using the fact that div u = 0 in �, it follows

2
ˆ

2B∩�

η2|Du|2 +
ˆ

2B∩�

αη2|uτ |2

= − 4
ˆ

2B∩�

Du : η∇ηu + 2
ˆ

2B∩�

(π − π0)η∇ηu −
ˆ

2B∩�

F : η2∇u − 2
ˆ

2B∩�

F : η∇ηu,

where ∇ηu is the matrix ∇η ⊗ u. Next, by using Young’s inequality on the RHS, we obtain

2
ˆ

2B∩�

η2|Du|2 +
ˆ

2B∩�

αη2|uτ |2

≤ ε

ˆ

2B∩�

η2|Du|2 + Cε

ˆ

2B∩�

|u|2|∇η|2 + ε

ˆ

2B∩�

η2|π − π0|2 + Cε

ˆ

2B∩�

|∇η|2|u|2

+ ε

ˆ

2B∩�

η2|∇u|2 + Cε

ˆ

2B∩�

η2|F |2 + ε

ˆ

2B∩�

η2|F |2 + Cε

ˆ

2B∩�

|∇η|2|u|2.

Since α ≥ 0 and by choosing ε > 0 suitably and using the properties (6.8), we get

ˆ

B∩�

|Du|2 ≤ C

r2

ˆ

2B∩�

|u|2 + ε

ˆ

2B∩�

|π − π0|2 + ε

ˆ

2B∩�

|∇u|2 + C

ˆ

2B∩�

|F |2,

where the constant C > 0 is independent of α. Now, using the pressure estimate (6.7), we have

ˆ

B∩�

|Du|2 ≤ C

r2

ˆ

2B∩�

|u|2 + ε

ˆ

2B∩�

|∇u|2 + C

ˆ

2B∩�

|F |2.

Next, adding the term 
´

B∩�

|u|2 in both sides, choosing r ≤ 1 (as � is bounded, we can do this) 

and using Korn inequality, we obtain
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ˆ

B∩�

|∇u|2 ≤ ‖u‖2
H 1(B∩�)

≤ C(�)

⎛⎝ 1

r2

ˆ

2B∩�

|u|2 +
ˆ

2B∩�

|F |2
⎞⎠ + ε

ˆ

2B∩�

|∇u|2.

Therefore, using Lemma 6.4 with β = 2, we achieve the desired estimate (6.6). �
We further state the following boundary Hölder estimate which can be proved in the same way 

as it was done in [27, Theorem 2.8 (a), Part II], since we have the corresponding Caccioppoli 
inequality (6.6) as in [27, Theorem 2.2, Part II].:

Proposition 6.6. Let γ ∈ (0, 1) and suppose that (v, z) ∈ H 1(B(x0, r) ∩ �) × L2(B(x0, r) ∩ �)

satisfies {
−�v + ∇z = 0, div v = 0 in B(x0, r) ∩ �

v · n = 0, 2[(Dv)n]τ + αvτ = 0 on B(x0, r) ∩ �

for some x0 ∈ � and 0 < r < r0. Then for any x, y ∈ B(x0, r/2) ∩ �, we have

|v(x) − v(y)| ≤ C

( |x − y|
r

)γ

⎛⎜⎝ −
ˆ

B(x0,r)∩�

|v|2
⎞⎟⎠

1/2

, (6.9)

where C > 0 depends on �, but is independent of α.

Lemma 6.7 (Weak reverse Hölder inequality). Let p ≥ 2. Then for any B(x0, r) with the prop-
erty that 0 < r <

r0
8 and either B(x0, 2r) ⊂ � or x0 ∈ �, the following weak reverse Hölder 

inequality holds:
(i) if B(x0, 2r) ⊂ �, then

⎛⎜⎝ −
ˆ

B(x0,r)

|∇u|p
⎞⎟⎠

1/p

≤ C

⎛⎜⎝ −
ˆ

B(x0,2r)

|∇u|2
⎞⎟⎠

1/2

, (6.10)

whenever u ∈ H 1(B(x, 2r)) satisfies −�u + ∇π = 0, divu = 0 in B(x, 2r).
(ii) if x0 ∈ �, then

⎛⎜⎝ −
ˆ

B(x0,r)∩�

(|∇u|p + |u|p)⎞⎟⎠
1/p

≤ C

⎛⎜⎝ −
ˆ

B(x0,2r)∩�

(
|∇u|2 + |u|2

)⎞⎟⎠
1/2

, (6.11)

whenever u ∈ H 1(B(x0, 2r) ∩ �) satisfies{
−�u + ∇π = 0, divu = 0 in B(x0,2r) ∩ �

u · n = 0, αuτ + 2[(Du)n]τ = 0 on B(x0,2r) ∩ �.
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The constant C > 0 at most depends on � and p.

Proof. Case (i): B(x0, 2r) ⊂ �.
The weak reverse Hölder inequality (6.10) holds for any p ≥ 2, by the following interior esti-
mates for Stokes operator [30, Theorem 2.7 (1)]:

sup
B(x0,r)

|∇u| ≤ C

⎛⎜⎝ −
ˆ

B(x0,2r)

|∇u|2
⎞⎟⎠

1/2

.

Case (ii): x0 ∈ �.
From the interior gradient estimate for the Stokes problem, we can write (e.g. see [30, Theo-
rem 2.7, (3)])

|∇u(x)| ≤ C

δ(x)

⎛⎜⎝ −
ˆ

B(x,cδ(x))

|u|2
⎞⎟⎠

1/2

,

for any x ∈ (B(x0, r) ∩ �) where δ(x) = dist(x, �) and c > 0 is chosen such that B(x, 2cδ(x)) �
(B(x0,2r) ∩ �). Now, for fixed y ∈ B(x0, 2cδ(x)), let v(x) = u(x) − u(y). Then −�v + ∇z =
0, div v = 0 in B(x, 2cδ(x)) and thus, we may write from the above argument

|∇v(x)| ≤ C

δ(x)

⎛⎜⎝ −
ˆ

B(x,cδ(x))

|v|2
⎞⎟⎠

1/2

,

which implies, along with the boundary Hölder estimate (6.9), that

|∇u(x)| ≤ C

δ(x)

⎛⎜⎝ −
ˆ

B(x,cδ(x))

|u(z) − u(y)|2dz

⎞⎟⎠
1/2

= C

δ(x)1+ 3
2

⎛⎜⎝ ˆ

B(x,cδ(x))

|u(z) − u(y)|2dz

⎞⎟⎠
1/2

≤ C

δ(x)1+ 3
2

⎡⎢⎣ ˆ

B(x,2cδ(x))

( |z − y|
r

)2γ

⎛⎜⎝ −
ˆ

B(x0,2r)∩�

|u|2
⎞⎟⎠dz

⎤⎥⎦
1/2

≤ C

δ(x)1+ 3
2

⎛⎜⎝ −
ˆ

|u|2
⎞⎟⎠

1/2

1

rγ

⎛⎜⎝ ˆ
|z − y|2γ dz

⎞⎟⎠
1/2
B(x0,2r)∩� B(x,2cδ(x))
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≤ Cγ

(δ(x))1+ 3
2

⎛⎜⎝ −
ˆ

B(x0,2r)∩�

|u|2
⎞⎟⎠

1/2

1

rγ
(δ(x))γ+ 3

2

= Cγ

(δ(x))γ−1

rγ
r−3/2

⎛⎜⎝ ˆ

B(x0,2r)∩�

|u|2
⎞⎟⎠

1/2

≤ Cγ

(δ(x))γ−1

rγ
r1−3/2

⎛⎜⎝ ˆ

B(x0,2r)∩�

|u|6
⎞⎟⎠

1/6

≤ Cγ

(
r

δ(x)

)1−γ

⎛⎜⎝ −
ˆ

B(x0,2r)∩�

|∇u|2 + |u|2
⎞⎟⎠

1/2

.

Since γ ∈ (0, 1) is arbitrary, we have

|∇u(x)| ≤ Cγ

(
r

δ(x)

)γ

⎛⎜⎝ −
ˆ

B(x0,2r)∩�

|∇u|2 + |u|2
⎞⎟⎠

1/2

.

Finally, this yields, by choosing γ so that pγ < 1, that

⎛⎜⎝ −
ˆ

B(x0,r)∩�

|∇u|p
⎞⎟⎠

1/p

≤ Cp

⎛⎜⎝ −
ˆ

B(x0,2r)∩�

|∇u|2 + |u|2
⎞⎟⎠

1/2

.

This completes the proof. �
With the following abstract lemma which is proved in [25, Theorem 2.2], we are now in a 

position to prove Theorem 6.3.

Lemma 6.8. Let � be a bounded Lipschitz domain in R3 and p > 2. Let G ∈ L2(�) and f ∈
Lq(�) for some 2 < q < p. Suppose that for each ball B with the property that |B| ≤ β|�| and 
either 2B ⊂ � or B centers on �, there exist two integrable functions GB and RB on 2B ∩ �

such that |G| ≤ |GB | + |RB | on 2B ∩ � and

⎛⎝ −
ˆ

2B∩�

|RB |p
⎞⎠1/p

≤ C1

⎡⎢⎣
⎛⎜⎝ −

ˆ

γB∩�

|G|2
⎞⎟⎠

1/2

+ sup
B ′⊃B

⎛⎝ −
ˆ

B ′∩�

|f |2
⎞⎠1/2

⎤⎥⎦ (6.12)

and
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⎛⎝ −
ˆ

2B∩�

|GB |2
⎞⎠1/2

≤ C2 sup
B ′⊃B

⎛⎝ −
ˆ

B ′∩�

|f |2
⎞⎠1/2

, (6.13)

where C1, C2 > 0 and 0 < β < 1 < γ . Then, we have

⎛⎝ −
ˆ

�

|G|q
⎞⎠1/q

≤ C

⎡⎢⎣
⎛⎝ −
ˆ

�

|G|2
⎞⎠1/2

+
⎛⎝ −
ˆ

�

|f |q
⎞⎠1/q

⎤⎥⎦ , (6.14)

where C > 0 depends only on C1, C2, n, p, q, β, γ and �.

Proof of Theorem 6.3. Given any ball B with either 2B ⊂ � or B centers on �, let ϕ ∈ C∞
c (8B)

be a cut-off function such that 0 ≤ ϕ ≤ 1 and

ϕ =
{

1 in 4B

0 outside 8B

and we decompose (u, π) = (v, π1) + (w, π2), where (v, π1), (w, π2) ∈ H 1(�) ×L2(�) satisfy{ −�v + ∇π1 = div (ϕF), div v = 0 in �

v · n = 0, 2 [(Dv)n]τ + αvτ = −[(ϕF)n]τ on �
(6.15)

and { −�w + ∇π2 = div ((1 − ϕ)F), div w = 0 in �

w · n = 0, 2 [(Dw)n]τ + αwτ = −[((1 − ϕ)F)n]τ on �.
(6.16)

From the weak formulation of (6.15), we get

ˆ

�

|∇v|2 +
ˆ

�

α|vτ |2 = −
ˆ

�

ϕF : ∇v,

which implies

‖∇v‖L2(�) ≤ ‖ϕF‖L2(�) (6.17)

and

‖v‖H 1(�) ≤ C(�,α∗)‖ϕF‖L2(�). (6.18)

Note that the above constant C is independent of α∗ when � is nonaxisymmetric (cf. Theo-
rem 4.3).

(i) First, we consider the case 4B ⊂ �. We want to apply Lemma 6.8 with G = |∇u|, GB =
|∇v| and RB = |∇w|. It is easy to see that
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|G| ≤ |GB | + |RB |.

In order to verify (6.12) and (6.13), note that the estimate (6.17) yields

1

|2B|
ˆ

2B

|GB |2 = 1

|2B|
ˆ

2B

|∇v|2 ≤ 1

|2B ∩ �|
ˆ

�

|∇v|2 ≤ 1

|2B ∩ �|
ˆ

�

|ϕF |2

≤ C(�)

|8B ∩ �|
ˆ

8B∩�

|F |2,

where in the last inequality, we used that |8B ∩�| ≤ C(�)|2B ∩�|. This estimate holds since �
is a Lipschitz domain and thus, it satisfies the interior cone condition. This allows us to deduce 
the estimate (6.13).

Next, from (6.16), we observe that −�w + ∇π2 = 0, div w = 0 in 4B . Hence, by the weak 
reverse Hölder inequality in Lemma 6.7 (using 2B instead of B), we have

⎛⎝ −
ˆ

2B

|∇w|p
⎞⎠1/p

≤ Cp(�)

⎛⎝ −
ˆ

4B

|∇w|2
⎞⎠1/2

,

which implies, together with (6.17), that

⎛⎝ −
ˆ

2B

|RB |p
⎞⎠1/p

≤ Cp(�)

⎛⎝ −
ˆ

4B

|∇w|2
⎞⎠1/2

≤ Cp(�)

⎡⎢⎣
⎛⎝ −
ˆ

4B

|∇u|2
⎞⎠1/2

+
⎛⎝ −
ˆ

4B

|∇v|2
⎞⎠1/2

⎤⎥⎦
≤ Cp(�)

⎛⎝ −
ˆ

4B

|G|2
⎞⎠1/2

+
⎛⎝ −

ˆ

8B∩�

|F |2
⎞⎠1/2

.

This yields (6.12). So, from (6.14), it follows that

⎛⎝ −
ˆ

�

|∇u|q
⎞⎠1/q

≤ Cp(�)

⎡⎢⎣
⎛⎝ −
ˆ

�

|∇u|2
⎞⎠1/2

+
⎛⎝ −
ˆ

�

|F |q
⎞⎠1/q

⎤⎥⎦
for any 2 < q < p, where Cp(�) > 0 does not depend on α.

Observe that the weak reverse Hölder condition (6.10) has the self-improving property, that 
is, if u satisfies (6.10) for some p > 2, then it satisfies (6.10) for some p > p. This implies the 
above estimate also holds for any q ∈ (2, p̃) for some p̃ > p, and in particular, for q = p. Then, 
we deduce (6.3) from the L2-estimate (4.3).

(ii) Next, let us consider B centered on �. Now, we apply again Lemma 6.8 with G = |u| +
|∇u|, GB = |v| + |∇v| and RB = |w| + |∇w|. Obviously, |G| ≤ |GB | + |RB | and by (6.18)
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−
ˆ

2B∩�

|GB |2 ≤ −
ˆ

2B∩�

(|v|2 + |∇v|2) ≤ 1

|2B ∩ �| ‖v‖2
H 1(�)

≤ C(�,α∗)
|2B ∩ �|

ˆ

�

|ϕF |2

≤ C(�,α∗)
|8B ∩ �|

ˆ

8B∩�

|F |2

which yields (6.13). Also, (w, π2) satisfies the problem

{ −�w + ∇π2 = 0, div w = 0 in 4B ∩ �

w · n = 0, αwτ + 2[(Dw)n]τ = 0 on 4B ∩ �.

By the weak reverse Hölder inequality (6.11) and the estimate (6.18), we can then write,

⎛⎝ −
ˆ

2B∩�

|RB |p
⎞⎠1/p

≤
⎛⎝ 1

|2B ∩ �|
ˆ

2B∩�

((|w| + |∇w|)2)p/2

⎞⎠1/p

≤ Cp(�)

⎛⎝ 1

|4B ∩ �|
ˆ

4B∩�

(|w|2 + |∇w|2)
⎞⎠1/2

≤ Cp(�)

⎡⎢⎣
⎛⎝ 1

|4B ∩ �|
ˆ

4B∩�

(|u|2 + |∇u|2)
⎞⎠1/2

+
⎛⎝ 1

|4B ∩ �|
ˆ

4B∩�

(|v|2 + |∇v|2)
⎞⎠1/2

⎤⎥⎦
≤ Cp(�)

⎛⎝ 1

|4B ∩ �|
ˆ

4B∩�

|G|2
⎞⎠1/2

+ Cp(�,α∗)

⎛⎝ 1

|8B ∩ �|
ˆ

8B∩�

|F |2
⎞⎠1/2

which yields (6.12). Thus we get from (6.14),

⎛⎝ −
ˆ

�

(|u| + |∇u|)q
⎞⎠1/q

≤ Cp(�,α∗)

⎡⎢⎣
⎛⎝ −
ˆ

�

(|u| + |∇u|)2

⎞⎠1/2

+
⎛⎝ −
ˆ

�

|F |q
⎞⎠1/q

⎤⎥⎦
for any 2 < q < p where Cp(�, α∗) > 0 does not depend on α. This completes the proof together 
with the previous case. �

The next proposition will be used to study the complete Stokes problem (S). We will improve 
the following result in Proposition 6.12, where we consider data which are less regular.
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Proposition 6.9 (Estimates in W 1,p(�), with p > 2 and RHS f ). Let p > 2, f ∈ Lp(�) and 
α ∈ Lt(p)(�). Then the unique solution (u, π) ∈ W 1,p(�) ×L

p
0 (�) of (S), with F = 0 and h = 0, 

satisfies the following estimates:
(i) if � is nonaxisymmetric, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�) ‖f ‖Lp(�)

(ii) if � is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�,α∗) ‖f ‖Lp(�).

Proof. The result follows by using the same argument as in Theorem 6.3 and the pressure esti-
mate (3.12). Hence, we do not repeat it. �
Proposition 6.10 (Estimates in W 1,p(�) for RHS F ). Let p ∈ (1, ∞), F ∈ Lp(�) and α ∈
Lt(p)(�). Then the solution (u, π) ∈ W 1,p(�) ×L

p

0 (�) of (S) with f = 0 and h = 0 satisfies the 
following estimates:
(i) if � is nonaxisymmetric, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�) ‖F‖Lp(�) (6.19)

(ii) if � is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�,α∗) ‖F‖Lp(�). (6.20)

Proof. For p > 2, the estimates (6.19) and (6.20) are proved in Theorem 6.3. Now, suppose 
that 1 < p < 2. We prove it in two steps. Also, without loss of generality, we consider that � is 
nonaxisymmetric.

(i) First, we prove that

‖∇u‖Lp(�) ≤ Cp(�)‖F‖Lp(�). (6.21)

We write

‖∇u‖Lp(�) = sup
0
=G∈Lp′

(�)

|´
�

∇u : G|
‖G‖Lp′

(�)

, (6.22)

and for any matrix G ∈ (D(�))3×3, let (v, π̃) ∈ W 1,p′
(�) × L

p′
0 (�) be the solution of{

−�v + ∇π̃ = div G, div v = 0 in �

v · n = 0, [(2Dv +G)n]τ + αvτ = 0 on �.

Since p′ > 2, from Theorem 6.3, we have

‖v‖ 1,p′ ≤ Cp(�)‖G‖ p′ .

W (�) L (�)
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Also, if u ∈ W 1,p(�) is the solution of (S) with f = 0 and h = 0, by using the weak formulation 
of the problems from which u and v satisfy, we obtain

−
ˆ

�

F : ∇v = 2
ˆ

�

Du :Dv +
ˆ

�

αuτ · vτ = −
ˆ

�

G : ∇u,

which implies ∣∣∣∣∣∣
ˆ

�

G : ∇u

∣∣∣∣∣∣ ≤ ‖F‖Lp(�)‖∇v‖
Lp′

(�)
≤ Cp(�)‖F‖Lp(�)‖G‖Lp′

(�)

and hence, (6.21) follows from (6.22).
(ii) Next, we prove that

‖u‖Lp(�) ≤ Cp(�)‖F‖Lp(�). (6.23)

Similarly to the previous step, we write

‖u‖Lp(�) = sup
0
=ϕ∈Lp′

(�)

|´
�

u · ϕ|
‖ϕ‖

Lp′
(�)

. (6.24)

From Proposition 6.9, we get for any ϕ ∈ Lp′
(�), the unique solution (w, π̃) ∈ W 1,p′

(�) ×
L

p′
0 (�) of the problem {

−�w + ∇π̃ = ϕ, div w = 0 in �,

w · n = 0, 2 [(Dw)n]τ + αwτ = 0 on �,
(6.25)

which satisfies

‖w‖
W 1,p′

(�)
≤ Cp(�) ‖ϕ‖

Lp′
(�)

. (6.26)

Therefore, using the weak formulation of the problems from which u and w satisfy, we get

ˆ

�

u · ϕ =
ˆ

�

u · (−�w + ∇π̃) = 2
ˆ

�

Du : Dw − 2
ˆ

�

u · (Dw)n

= 2
ˆ

�

Du : Dw +
ˆ

�

αuτ · wτ = −
ˆ

�

F : ∇w,

which implies (6.23) from the relations (6.24) and (6.26).
For the pressure estimate, we have (3.12). This completes the proof. �
Now, we study the complete problem (S).
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Theorem 6.11 (Complete estimates in W 1,p(�)). Let p ∈ (1, ∞) and

f ∈ Lr(p)(�),F ∈Lp(�),h ∈ W
− 1

p
,p

(�),α ∈ Lt(p)(�).

Then the solution (u, π) ∈ W 1,p(�) × L
p

0 (�) of (S) satisfies the following estimates:
(i) if � is nonaxisymmetric, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖

W
− 1

p ,p
(�)

)
(6.27)

(ii) if � is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�,α∗)
(

‖f ‖Lr(p)(�) + ‖F‖Lp(�) + ‖h‖
W

− 1
p ,p

(�)

)
. (6.28)

To prove the above theorem, we also need the following proposition:

Proposition 6.12 (Estimates in W 1,p(�) with RHS f and h). Let p ∈ (1, ∞),

f ∈ Lr(p)(�),h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�).

Then the solution (u, π) ∈ W 1,p(�) ×L
p
0 (�) of (S), with F = 0, satisfies the following estimates:

(i) if � is nonaxisymmetric, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖h‖

W
− 1

p ,p
(�)

)
(ii) if � is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(�) + ‖π‖Lp(�) ≤ Cp(�,α∗)
(

‖f ‖Lr(p)(�) + ‖h‖
W

− 1
p ,p

(�)

)
.

Proof. Without loss of generality, we only consider the case � is nonaxisymmetric. The proof 
is similar to that of Proposition 6.10 with obvious modifications.
(i) For proving

‖∇u‖Lp(�) ≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖h‖

W
− 1

p ,p
(�)

)
, (6.29)

we write

‖∇u‖Lp(�) = sup
0
=G∈Lp′

(�)

∣∣∣∣∣´
�

∇u : G
∣∣∣∣∣

‖G‖Lp′
(�)

. (6.30)

For any matrix G ∈ (D(�))3×3, let (v, π̃) ∈ W 1,p′
(�) × L

p′
(�) be the solution of
0
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{
−�v + ∇π̃ = div G, div v = 0 in �,

v · n = 0, [(2Dv +G)n]τ + αvτ = 0 on �,

which satisfies

‖v‖
W 1,p′

(�)
≤ Cp(�)‖G‖Lp′

(�)
,

by using Proposition 6.10. Also, if (u, π) ∈ W 1,p(�) × L
p

0 (�) is a solution of (S), with F = 0, 
by using the weak formulation of the problems from which u and v satisfy, we get

−
ˆ

�

G : ∇u = 2
ˆ

�

Du : Dv +
ˆ

�

αuτ · vτ =
ˆ

�

f · v + 〈h,v〉� .

This implies, together with the embedding W1,p′
(�) ↪→ L(r(p))′(�) for all p ∈ (1, ∞) (which 

follows from the definition of r(p)), that

∣∣∣∣∣∣
ˆ

�

G : ∇u

∣∣∣∣∣∣ ≤ ‖f ‖Lr(p)(�)‖v‖
L(r(p))′ (�)

+ ‖h‖
W

− 1
p ,p

(�)
‖v‖

W
1
p ,p′

(�)

≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖h‖

W
− 1

p ,p
(�)

)
‖v‖

W 1,p′
(�)

.

Therefore, (6.29) follows from (6.30).
(ii) Next, we prove the following bound:

‖u‖Lp(�) ≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖h‖

W
− 1

p ,p
(�)

)
(6.31)

as it was done for (6.23). Knowing that

‖u‖Lp(�) = sup
0
=ϕ∈Lp′

(�)

|´
�

u · ϕ|
‖ϕ‖

Lp′
(�)

,

there exists a unique (w, π̃) ∈ W 1,p′
(�) × L

p′
0 (�) of the problem (6.25) for any ϕ ∈ Lp′

(�)

satisfying the estimate (6.26). Thus, we can write

ˆ

�

u · ϕ =
ˆ

�

u · (−�w + ∇π̃) = 2
ˆ

�

Du :Dw +
ˆ

�

αuτ · wτ =
ˆ

�

f · w + 〈h,w〉�

which yields (6.31). The pressure estimate can be obtained from (3.12). �
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Proof of Theorem 6.11. Let u1 ∈ W 1,p(�) be the weak solution of{
−�u1 + ∇π1 = divF , div u1 = 0 in �,

u1 · n = 0, [(2Du1 + F)n]τ + αu1τ = 0 on �,

given by Proposition 6.10, and u2 ∈ W 1,p(�) be the weak solution of{
−�u2 + ∇π2 = f , div u2 = 0 in �,

u2 · n = 0, 2 [(Du2)n]τ + αu2τ = h on �,

given by Proposition 6.12. Then, (u, π) = (u1, π1) + (u2, π2) is the solution of the problem (S)
which also satisfies the estimates (6.27) and (6.28). �
Remark 6.13. Note that it is also possible to deduce a uniform estimate (6.27) in the case when 
� is axisymmetric, α is a constant with no strict positive lower bound α∗ and the condition (4.5)
is satisfied. Indeed, we may use the L2-estimate (4.7) in (6.18) and carry forward all consequent 
results.

In the next result, we improve the dependence of the continuity constant γ of the inf-sup 
condition (5.15) on the parameters, and show that it is actually independent of α.

Theorem 6.14. Let p ∈ (1, ∞) and α ∈ Lt(p)(�). We have the following inf-sup condition:

inf
u∈V

p
σ,τ (�)

u
=0

sup
ϕ∈V

p′
σ,τ (�)

ϕ 
=0

∣∣∣∣∣2´
�

Du :Dϕ + ´
�

αuτ · ϕτ

∣∣∣∣∣
‖u‖V

p
σ,τ (�) ‖ϕ‖

V
p′
σ,τ (�)

≥ C(�,p),

when either (i) � is non-axisymmetric or (ii) � is axisymmetric and α ≥ α∗ > 0.

Proof. It follows the same proof as in Proposition 6.12. Indeed, let u ∈ V
p
σ,τ (�) and u 
= 0. 

Then, by Korn inequality, ‖u‖W 1,p(�) � ‖u‖Lp(�) + ‖Du‖Lp(�).
(i) First, we write

‖Du‖Lp(�) = sup
0
=G∈Lp′

(�)

∣∣∣∣∣´
�

Du :G
∣∣∣∣∣

‖G‖Lp′
(�)

= sup
0
=G∈Lp′

s (�)

∣∣∣∣∣´
�

Du : G
∣∣∣∣∣

‖G‖Lp′
(�)

, (6.32)

where Lp′
s (�) is the space of all symmetric matrices in Lp′

(�). For the last equality, note 
that any matrix G can be decomposed as G = 1

2 (G + GT ) + 1
2 (G − GT ). Then, we have ´

�

Du : (G −GT ) = 0, and denoting K = 1
2 (G + GT ), we have K ∈ Lp′

s (�) and ‖K‖Lp′
(�)

≤
2‖G‖ p′ , which proves that
L (�)
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sup
0
=G∈Lp′

(�)

∣∣∣∣∣´
�

Du : G
∣∣∣∣∣

‖G‖Lp′
(�)

≤ sup
0
=K∈Lp′

s (�)

∣∣∣∣∣´
�

Du :K
∣∣∣∣∣

‖K‖Lp′
(�)

.

The reverse inequality in the above relation is clear.

Now, for any G ∈Lp′
s (�), let (ϕ, π̃) ∈ W 1,p′

(�) × L
p′
0 (�) be the unique solution of{

−�ϕ + ∇π̃ = div G, div ϕ = 0 in �,

ϕ · n = 0,
[
(2Dϕ +G)n

]
τ

+ αϕτ = 0 on �.
(6.33)

Since we have either (i) � is nonaxisymmetric or (ii) � is axisymmetric and α ≥ α∗ > 0, the 
solution also satisfies the estimate

‖ϕ‖
W 1,p′

(�)
≤ Cp(�)‖G‖Lp′

(�)
, (6.34)

by using Proposition 6.10. Also, taking u as a test function in the weak formulation of (6.33), we 
obtain

2
ˆ

�

Dϕ : Du +
ˆ

�

αϕτ ·uτ = −
ˆ

�

G : ∇u = −
ˆ

�

G :Du, (6.35)

where in the last equality, we used that G is a symmetric matrix. Thus, from (6.32), (6.34) and 
(6.35), we get

‖Du‖Lp(�) ≤ Cp(�) sup
ϕ∈V

p′
σ,τ (�)

ϕ �=0

∣∣∣∣∣2´
�

Du : Dϕ + ´
�

αuτ · ϕτ

∣∣∣∣∣
‖ϕ‖

W 1,p′
(�)

.

(ii) Similarly to the estimate (6.23), to prove

‖u‖Lp(�) ≤ Cp(�) sup
ϕ∈V

p′
σ,τ (�)

ϕ �=0

∣∣∣∣∣2´
�

Du : Dϕ + ´
�

αuτ · ϕτ

∣∣∣∣∣
‖ϕ‖

W 1,p′
(�)

, (6.36)

we write

‖u‖Lp(�) = sup
0
=w∈Lp′

(�)

|´
�

u · w|
‖w‖

Lp′
(�)

. (6.37)

So, for any w ∈ Lp′
(�), the unique solution (ϕ, π̃) ∈ W 1,p′

(�) ×L
p′

(�) of the Stokes problem
0
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{
−�ϕ + ∇π̃ = w, div ϕ = 0 in �,

ϕ · n = 0, 2
[
(Dϕ)n

]
τ

+ αϕτ = 0 on �,
(6.38)

satisfies

‖ϕ‖
W 1,p′

(�)
≤ Cp(�) ‖w‖

Lp′
(�)

, (6.39)

by using Proposition 6.9. Therefore, taking u as a test function in the weak formulation of (6.38), 
we get

2
ˆ

�

Dϕ : Du +
ˆ

�

αϕτ · uτ =
ˆ

�

u · w,

which yields (6.36) from (6.37) and (6.39). �
Remark 6.15. If we consider the operator of the form div(A(x)∇u) instead of �u in the first 
equation of the Stokes system (S), we may obtain the following improved W 2,p-estimate as it is 
done in [5, Theorem 3.1]:

Let p ∈ (1, ∞), α be a constant and f ∈ Lp(�). Then the solution (u, π) ∈ W 2,p(�) ×
W 1,p(�) of (S) with F = 0 and h = 0 satisfies the following estimate:

‖u‖W 2,p(�) + ‖π‖W 1,p(�) ≤ Cp(�,α∗) ‖f ‖Lp(�).

7. Limiting cases

Our goal in this section is to study the limiting behavior of the solution of (S), when the 
friction coefficient α goes to 0 or ∞.

7.1. α tends to 0

Theorem 7.1. Let p ∈ (1, ∞), � be a nonaxisymmetric bounded domain and
(uα, πα) ∈ W 1,p(�) × L

p
0 (�) be the solution of (S), with

f ∈ Lr(p)(�),F ∈ Lp(�),h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�).

If α → 0 in Lt(p)(�), then we have the convergence

(uα,πα) → (u0,π0) in W 1,p(�) × L
p
0 (�),

where (u0, π0) satisfies, in the sense of distributions, the following Stokes problem with Navier 
boundary conditions:{

−�u0 + ∇π0 = f + div F , div u0 = 0 in �,

u0 · n = 0, [(2Du0 + F)n]τ = h on �,
(7.1)

which corresponds to the case α = 0.
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Proof. Let α → 0 in Lt(p)(�). This means that there does not exist any α∗ > 0 such that α ≥ α∗
on �. Now, from the estimate (6.27), it is clear that (uα, πα) is bounded in W 1,p(�) × Lp(�)

for all p ∈ (1, ∞). Then, there exists (u0, π0) ∈ W 1,p(�) × Lp(�) such that

(uα,πα) ⇀ (u0,π0) weakly in W 1,p(�) × Lp(�).

It can be easily proved that u0 ∈ W 1,p(�) is the unique weak solution of the Stokes problem 
(7.1). Indeed, being a weak solution of (S), uα satisfies the weak formulation (3.8). Now, as 
shown in Lemma 3.9, uα ⇀ u0 in W 1,p(�) implies (uα)τ ⇀ (u0)τ in Ls(�), where s satisfies 
(3.7). Also α → 0 in Lt(p)(�) gives α(uα)τ ⇀ 0 in Lm′

(�), with m defined in (3.6). Hence, in 
the weak formulation (3.8), the boundary term in the left hand side goes to 0. Finally, passing to 
the limit, we deduce

2
ˆ

�

Du0 : Dϕ =
ˆ

�

f · ϕ −
ˆ

�

F : ∇ϕ + 〈h,ϕ〉� ∀ϕ ∈ V p′
σ,τ (�). (7.2)

Satisfying this variational formulation (7.2) is equivalent to saying that (u0, π0) satisfies (7.1) in 
the sense of distributions, as shown in Proposition 3.11. Note that, the system (7.1) has a unique 
weak solution if the domain is nonaxisymmetric (cf. Remark 3.14).

Now, by using the variational formulations for the systems (7.1) and (S), we obtain that (uα −
u0) is a weak solution of the following system, in the sense of Definition 3.10,{

−�(uα − u0) + ∇(πα − π0) = 0, div (uα − u0) = 0 in �,

(uα − u0) · n = 0, 2 [D(uα − u0)n]τ + α(uα − u0)τ = −α(u0)τ on �,

for which employing the estimate of Theorem 6.11, the Hölder inequality and the trace theorem, 
yields

‖uα − u0‖W 1,p(�) + ‖πα − π0‖Lp(�) ≤ C(�) ‖α(u0)τ‖
W

− 1
p ,p

(�)

≤ C(�) ‖α‖Lt(p)(�)‖u0‖W 1,p(�).

Therefore, uα − u0 and πα − π0 both tend to zero in the same rate as α. �
Remark 7.2. We can prove also the above theorem for � axisymmetric and α constant, provided 
the compatibility condition (4.5), with the help of the estimate (4.7) and the Remark 6.13. Indeed, 
to expect the limiting system to be (7.1), we must assume the compatibility condition, since this 
is the necessary condition for the existence of a solution of the system (7.1).

7.2. α tends to ∞

Next, we study the behavior of uα , where α is a constant and grows to ∞.

Theorem 7.3. Let p ∈ (1, ∞) and (uα, πα) be the solution of (S), with

f ∈ Lr(p)(�),F ∈Lp(�),h ∈ W
− 1

p
,p

(�) and α a constant.
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(i) If α → ∞, then we have the convergence

(uα,πα) ⇀ (u∞,π∞) in W 1,p(�) × Lp(�),

where (u∞, π∞) is the unique solution of the Stokes problem with Dirichlet boundary condition:{ −�u∞ + ∇π∞ = f + div F , div u∞ = 0 in �,

u∞ = 0 on �.
(7.3)

(ii) Moreover, for any q < p if p 
= 2 and q = 2 if p = 2, we obtain the strong convergence

(uα,πα) → (u∞,π∞) in W 1,q (�) × Lq(�).

Proof. Since α → ∞, we can consider α ≥ 1.
(i) From the estimates (6.27) or (6.28), we see that (uα, πα) is bounded in W 1,p(�) × Lp(�)

for all p ∈ (1, ∞), hence there exists (u∞, π∞) ∈ W 1,p(�) × Lp(�) such that

(uα,πα) ⇀ (u∞,π∞) weakly in W 1,p(�) × Lp(�).

On the other hand, we can also write the system (S) as follows:{ −�uα + ∇πα = f + div F , div uα = 0 in �,

uα = 1
α

(h − [(2Duα + F)n]τ ) on �.
(7.4)

Observe that, the condition uα · n = 0 on � is included in the above system, because of the 
assumption h · n = 0 (see paragraph 3 of Section 2). Passing to the limit in (7.4) as α → ∞, we 
obtain that (u∞, π∞) is the solution of the Stokes problem with Dirichlet boundary condition 
(7.3).

Indeed, passing to the limit in the first two equations of (7.4), we obtain what we desire. For 

the boundary condition, we have that 2[(Duα)n]τ is bounded in W− 1
p

,p
(�), since (uα,πα) is 

bounded in Ep(�) and by using the Green formula (3.3). Hence, taking the limit as α → ∞ in 
the boundary condition of (7.4), we obtain the boundary condition of (7.3).

(ii) Now, to show the strong convergence, we know from the variational formulations of the 
systems (7.3) and (S), that (uα − u∞) is a weak solution of the problem{

−�(uα − u∞) + ∇(πα − π∞) = 0, div (uα − u∞) = 0 in �,

(uα − u∞) · n = 0, 2 [D(uα − u∞)n]τ + α(uα − u∞)τ = h − 2[(Du∞)n]τ on �,

and then, the Green formula (3.3) yields, choosing (uα − u∞) as a test function,

2
ˆ

�

|D(uα − u∞)|2 + α

ˆ

�

|(uα − u∞)τ |2 = 〈h − 2[(Du∞)n]τ ,uα − u∞〉
H

− 1
2 (�)×H

1
2 (�)

.

As uα ⇀ u∞ in H
1
2 (�) weakly and h − 2[(Du∞)n]τ ∈ H− 1

2 (�), this shows the strong conver-
gence of uα to u∞ in H 1(�). The strong convergence for the pressure term follows from the 
estimate (3.12).
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Next, since uα → u∞ in H 1(�), we have ∇uα → ∇u∞ almost everywhere in �. Further, 
we know that ∇uα is a bounded sequence in Lp(�). Therefore, the strong convergence of uα

to u∞ in W 1,q (�) for any q < p follows, cf. [3, Lemma 1.2.3, Chapter 1]. This completes the 
proof. �
7.3. α less regular

Theorem 7.4. Let

f ∈ L
6
5 (�),F ∈L2(�),h ∈ H− 1

2 (�) and α ∈ L
4
3 (�).

Then the Stokes problem (S) has a solution (u,π) in H 1(�) × L2(�).

Proof. (i) First, let us consider that � is nonaxisymmetric. Using Theorem II.4.2 in [42], we 
know that there exists a sequence χk ∈ W 1, 4

3 (�) such that χk|� → α in L
4
3 (�). Thanks to the 

density of D(�) in W 1, 4
3 (�), we deduce the existence of a sequence α̃k ∈ D(�) such that for 

αk := α̃k|�, αk → α in L
4
3 (�). If (uk,πk) ∈ H 1(�) × L2

0(�) is the solution of the problem 
(S) corresponding to αk , due to the estimate (4.3) satisfied by (uk,πk), there exists (u,π) ∈
H 1(�) × L2

0(�) such that

(uk,πk) ⇀ (u,π) in H 1(�) × L2(�).

This implies (−�uk +∇πk) ⇀ (−�u+∇π) in H−1(�). Similarly, div uk ⇀ div u in H−1(�)

and uk · n ⇀ u · n in H
1
2 (�). Thus, we obtain, in the sense of distributions,

−�u + ∇π = f + div F in �, div u = 0 in �, u · n = 0 on �.

Next, from the Green formula (3.3), we have [(Duk)n]τ ⇀ [(Du)n]τ in H− 1
2 (�). Moreover, as 

αk → α in L
4
3 (�) and (uk)τ ⇀ uτ in L4(�), it follows αk(uk)τ ⇀ αuτ in L1(�). Therefore, 

passing to the limit in the Navier boundary condition satisfied by uk ,

[(2Duk + F)n]τ + αkukτ = h on �,

it yields, [(2Du + F)n]τ + αuτ = h on �. Hence, (u, π) becomes the solution of the Stokes 
problem (S).

(ii) Note that, when � is axisymmetric and α ≥ α∗ > 0, we can find a sequence αk ∈ D(�)

such that αk ≥ α∗ in � and αk|� → α in L
4
3 (�). So, we can use the estimate (4.4) and obtain the 

same result. �
Remark 7.5. For α ∈ L

4
3 (�) and h = 0, the solution u ∈ H 1(�) satisfies the additional property: 

[(Du)n]τ ∈ L1(�).

Remark 7.6. Let f = 0, F = 0 and h ∈ L
4
3 (�) with h · n = 0 on �.

(i) If α ∈ L2(�), then we have u ∈ H 1(�) by Theorem 4.1. This implies that αuτ ∈ L
4
3 (�). 

Hence, [(Du)n]τ ∈ L
4
3 (�). We may now use complex interpolation between weak and strong 
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solutions of the Stokes problem by treating αuτ as a source term on the right hand side (cf. [7]), 
and we can consider the map

T : h → u

W
− 1

p
,p

(�) → W 1,p(�)

W
1− 1

p
,p

(�) → W 2,p(�).

After interpolating, this yields that for h ∈ L
4
3 (�), the solution u ∈ W 1+ 1

4 , 4
3 (�).

(ii) If α ∈ L
4
3 (�), we have u ∈ H 1(�), from Theorem 7.4. Then, αuτ ∈ L1(�) and from here, 

we cannot improve the regularity any more.

8. Navier-Stokes equations

Finally, we consider the nonlinear problem and study the existence of weak and strong solu-
tions for the Navier-Stokes system (NS).

Definition 8.1. Given f ∈ Lr(p)(�), F ∈ Lp(�), h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�), a function 
u ∈ V

p
σ,τ (�) is called a weak solution of the Navier-Stokes system (NS) if it satisfies: for all 

ϕ ∈ V
p′
σ,τ (�),

2
ˆ

�

Du : Dϕ + b(u,u,ϕ) +
ˆ

�

αuτ · ϕτ =
ˆ

�

f · ϕ −
ˆ

�

F : ∇ϕ + 〈h,ϕ〉� , (8.1)

where b(u, v, w) = ´
�

(u · ∇)v · w.

Theorem 8.2. Let p ∈ (1, ∞) and

f ∈ Lr(p)(�),F ∈Lp(�),h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�),

where r(p) and t (p) are defined by (2.3) and (2.2), respectively. Then the following two state-
ments are equivalent:
(i) u ∈ V

p
σ,τ (�) is a weak solution of (NS) and,

(ii) there exists π ∈ Lp(�) such that (u, π) ∈ W 1,p(�) × Lp(�) satisfies:

⎧⎨⎩
−�u + (u · ∇)u + ∇π = f + div F , div u = 0 in the sense of distributions,

u · n = 0 in the sense of traces,
2[(Du)n]τ + αuτ = h in W−1/p,p(�).

The proof is standard and very similar to that of Proposition 3.11, hence we omit it. To facil-
itate the work, we introduce some properties of the operator b, but we skip the proof (cf. [7, 
Lemma 7.2]).
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Lemma 8.3. The trilinear form b is defined and continuous on V 2
σ,τ (�) × V 2

σ,τ (�) × V 2
σ,τ (�). 

Also we have, for all u, v, w ∈ V 2
σ,τ (�),

b(u,v,v) = 0 (8.2)

and

b(u,v,w) = −b(u,w,v) .

Moreover,

b(u,u,β) = 0 and b(β,β,u) = 0, where β is defined in (2.4).

8.1. Existence and regularity

Now, we can prove the existence of weak solutions of the Navier-Stokes problem (NS). First, 
we study the Hilbertian case.

Proof of Theorem 2.3 for p = 2. (i) Existence: The existence of solution of (8.1) can be proved 
by using standard arguments, i.e., we construct an approximate solution by using the Galerkin 
method and then, we pass to the limit. Nonetheless, we state it briefly for completeness.

For each fixed integer m ≥ 1, define an approximate solution um of (8.1) by

um =
m∑

i=1

ξi,mvi , ξi,m ∈R

2
ˆ

�

Dum : Dvk + b(um,um,vk) +
ˆ

�

αuτm · vτk =
ˆ

�

f · vk −
ˆ

�

F : ∇vk + 〈h,vk〉� ,

for k = 1, . . . ,m

(8.3)

and Vm := 〈v1, . . . ,vm〉 is the space spanned by the vectors v1, . . . , vm and {vi}i∈IN is an or-
thonormal basis of V 2

σ,τ (�). Note that Vm is equipped with the scalar product (·, ·) induced by 
V 2

σ,τ (�). Let the mapping Pm : Vm → Vm be defined by

(Pm(w),v) = 2
ˆ

�

Dw : Dv + b(w,w,v) +
ˆ

�

αwτ · vτ −
ˆ

�

f · v +
ˆ

�

F : ∇v − 〈h,v〉� ,

for all w, v ∈ Vm. The continuity of the mapping is clear. Also, using (8.2) and Proposition 3.13, 
we get

(Pm(w),w) = 2‖Dw‖2
L2(�)

+
ˆ

�

α|wτ |2 −
ˆ

�

f · w +
ˆ

�

F : ∇w − 〈h,w〉�

≥ C(α,�)‖w‖H 1(�)

{
‖w‖H 1(�) −C(�)

(
‖f ‖ 6

5
+‖F‖L2(�) + ‖h‖ − 1

2

)}
.

L (�) H (�)
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Hence, (Pm(w),w) > 0 for all ‖w‖Vm = k, where k > C(�)
(‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) +
‖h‖

H
− 1

2 (�)

)
. Therefore, the hypothesis of Brouwer’s theorem is satisfied and there exists a solu-

tion um of (8.3).
Next, since um is a solution of (8.3), we have

2‖Dum‖2
L2(�)

+
ˆ

�

α|uτm|2 =
ˆ

�

f · um −
ˆ

�

F : ∇um + 〈h,um〉� ,

which yields the a priori estimate

‖um‖H 1(�) ≤ C(α)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

)
.

Since the sequence um remains bounded in V 2
σ,τ (�), there exists some u ∈ V 2

σ,τ (�) and a sub-
sequence, which we still call um, such that

um ⇀ u in V 2
σ,τ (�).

Due to the compact embedding of H 1(�) into L2(�) and by using Lemma 3.9 to handle the 
boundary integral 

´
�

αuτm · vτk , we can pass to the limit in (8.3) and we obtain for any v ∈
V 2

σ,τ (�) that

2
ˆ

�

Du :Dv + b(u,u,v) +
ˆ

�

αuτ · vτ =
ˆ

�

f · v −
ˆ

�

F : ∇v + 〈h,v〉� ,

and thus, u is a solution of (8.1).
(ii) Estimates: The estimates can be proved in a similar way as in the linear case given in 

Theorem 4.3. �
Proposition 8.4. The solution of the problem (NS), given by Theorem 2.3 is unique provided

‖f ‖
L

6
5 (�)

+ ‖F‖L2(�) + ‖h‖
H

− 1
2 (�)

<
1

C(α,�)
, (8.4)

where the constant C(α, �) depends on the continuity constant of the trilinear form b and the 
equivalence constant of H 1-norm, which will be shown in the proof.

Remark 8.5. Interestingly, in the case of α ≡ 0, there is no uniqueness of the solution of the 
system (NS) even for small data. But in our case, when α 
= 0 on some �0 ⊆ � with |�0| > 0, 
there is indeed uniqueness of the solution under the assumption of small data as in the case of 
Dirichlet boundary condition. The reason of this behavior is the presence of a nontrivial kernel 
of the Stokes operator for α ≡ 0.
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Proof. Choosing ϕ = u in the weak formulation (8.1) and using the relation (8.2) and the Propo-
sition 3.13, we obtain that any solution of (8.1) satisfies the estimate

C(�,α)‖u‖2
H 1(�)

≤
⎛⎝2‖Du‖2

L2(�)
+
ˆ

�

α|uτ |2
⎞⎠

≤ C(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + h‖
H

− 1
2 (�)

)
‖u‖H 1(�)

which gives,

‖u‖H 1(�) ≤ C(�,α)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + h‖
H

− 1
2 (�)

)
. (8.5)

Now, if u1 and u2 are two different solutions of (8.1), let us define u = u1 − u2 and subtracting 
the equations (8.1) corresponding to u1 and u2, we get

2
ˆ

�

Du : Dϕ + b(u1,u,ϕ) + b(u,u2,ϕ) +
ˆ

�

αuτ · ϕτ = 0, ∀ϕ ∈ V 2
σ,τ (�). (8.6)

Taking ϕ = u in (8.6) and using again (8.2), we have

2‖Du‖2
L2(�)

+
ˆ

�

α|uτ |2 = −b(u,u2,u)

which implies, by using the Proposition 3.13, the continuity of b and the estimate (8.5) for u2,

C(�,α)‖u‖2
H 1(�)

≤
⎛⎝2‖Du‖2

L2(�)
+
ˆ

�

α|uτ |2
⎞⎠

≤ C(�)‖u‖2
H 1(�)

‖u2‖H 1(�)

≤ C(�,α)‖u‖2
H 1(�)

(
‖f ‖

L
6
5 (�)

+ ‖F‖L2(�) + h‖
H

− 1
2 (�)

)
.

Thus, considering the condition (8.4), the above inequality implies that ‖u‖H 1(�) = 0 that is 
u1 = u2. �

Next, we prove the existence of solution of the system (NS) in W 1,p(�) by using the Hilber-
tian case and the Stokes regularity result.

Proof of Theorem 2.3 for p 
= 2. (i) First, let us consider p > 2. We have the existence of a 
weak solution (u, π) ∈ H 1(�) × L2

0(�). Since u ∈ H 1(�), the nonlinear term (u · ∇)u ∈
L

3
2 (�) ↪→ Lr(p)(�) if p ≤ 3. Hence, the regularity result for Stokes problem in Corollary 5.7

implies that (u, π) ∈ W 1,p(�) × Lp(�). For p > 3, repeating the same argument with u ∈
W 1,3(�), we deduce the required regularity.
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In order to obtain the existence result for p ∈ ( 3
2 , 2), we follow a similar argument as it was 

done in the proof of [45, Theorem 1.1]. Note that we replaced the space W−1,p(�) by Lr(p)(�)

for the given data in [45]. For example, we use the following lemma instead of the given in [45, 
Lemma 1.2]: if there exists (v, π̃ ) ∈ W 1,p(�) × Lp(�) such that⎧⎨⎩ −�v + (v · ∇)v + ∇π̃ − f ∈ Lr(p)(�),

div v = 0 in �,

v · n = 0, 2 [(Dv)n]τ + α vτ = h on �,

for p ≤ q ≤ 2, then there exists (w, π̄) ∈ W 1,p(�) × Lp(�) such that⎧⎨⎩ −�w + (w · ∇)w + ∇π̄ − f ∈ Lr(s)(�),

div w = 0 in �,

w · n = 0, 2 [(Dw)n]τ + α wτ = h on �,

where 1
s

= 1
q

+ 1
p

− 2
3 (thus s > q). The rest of the proof follows the same argument as the given 

in [45] without any further changes.
(ii) Next, to prove the strong regularity result, we consider that the data are more regu-

lar. For p ∈ (1, 32 ], since the Sobolev exponent p∗ ∈ ( 3
2 , 3] and thus, r(p∗) = p, we have 

f ∈ Lr(p∗)(�), h ∈ W
− 1

p∗ ,p∗
(�). Hence, the above regularity result for the weak solutions of 

(NS) implies that (u,π) ∈ W 1,p∗
(�) × Lp∗

(�). Now, for p ∈ (1, 32 ), (u · ∇)u ∈ Ls(�) with

1

s
= 2

p
− 1,

which implies that s > p and thus, by using Theorem 5.10, we obtain (u,π) ∈ W 2,p(�) ×
W 1,p(�). For p = 3

2 , since W 1,3(�) ↪→ Lm(�) for any m ∈ (1, ∞), we have (u · ∇)u ∈ Ls(�), 

with 1
s

= 1
3 + 1

m
. So, choosing m > 3, we have that s > 3

2 and thus, (u,π) ∈ W 2, 3
2 (�) ×

W 1, 3
2 (�).

For p > 3
2 , since u ∈ W 2, 3

2 (�), it follows that 
∑

i ui∂iu ∈ L3−ε(�), which yields u ∈
W 2,3−ε(�). Further, repeating the argument, we get u ∈ W 2,p(�). �

Finally, we discuss the limiting behavior of the Navier-Stokes system (NS) as α goes to 0
or ∞.

8.2. Limiting cases

Theorem 8.6. Let p ≥ 2, � be a nonaxisymmetric bounded domain and (uα, πα) be a solution 
of (NS), with

f ∈ Lr(p)(�),F ∈ Lp(�),h ∈ W
− 1

p
,p

(�) and α ∈ Lt(p)(�).

If ‖α‖Lt(p)(�) → 0, then we have the convergence

(uα,πα) → (u0,π0) in W 1,p(�) × Lp(�),
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where (u0, π0) is a solution of the following Navier-Stokes problem{
−�u0 + (u0 · ∇)u0 + ∇π0 = f + div F , div u0 = 0 in �,

u0 · n = 0, [(2Du0 + F)n]τ = h on �.
(8.7)

Proof. (i) We assume, for ease of calculation, that F = 0 and h = 0. Since α → 0 in Lt(p)(�), 
there does not exist any α∗ > 0 such that α ≥ α∗ on �0 ⊆ �. Therefore, (uα, πα) satisfies the 
estimate (2.5) for p = 2. For 2 < p ≤ 3, the Stokes estimate (6.1) yields

‖uα‖W 1,p(�) + ‖πα‖Lp(�) ≤ C(�)
(
‖f ‖Lr(p)(�) + ‖uα · ∇uα‖Lr(p)(�)

)
≤ C(�)

(
‖f ‖Lr(p)(�) + ‖uα‖2

H 1(�)

)
≤ C(�)

(
1 + ‖f ‖Lr(p)(�)

)
‖f ‖Lr(p)(�),

and for p > 3,

‖uα‖W 1,p(�) + ‖πα‖Lp(�) ≤ C(�)
(
‖f ‖Lr(p)(�) + ‖uα · ∇uα‖Lr(p)(�)

)
≤ C(�)

(
‖f ‖Lr(p)(�) + ‖uα‖2

W 1,3(�)

)
≤ C(�)

[
1 +

(
1 + ‖f ‖Lr(p)(�)

)2 ‖f ‖Lr(p)(�)

]
‖f ‖Lr(p)(�).

Then, (uα, πα) is bounded in W 1,p(�) × Lp(�) uniformly with respect to α. So, there exists 
(u0, π0) ∈ W 1,p(�) × Lp(�) such that

(uα,πα) ⇀ (u0,π0) weakly in W 1,p(�) × Lp(�).

Now, like in Theorem 7.1, passing to the limit as α → 0 in Lt(p)(�) in the variational formulation 
satisfied by (uα, πα), we get that u0 satisfies

2
ˆ

�

Du0 : Dϕ + b(u0,u0,ϕ) =
ˆ

�

f · ϕ ∀ϕ ∈ V p′
σ,τ (�).

Indeed, uα ⇀ u0 weakly in W 1,p(�) implies that uα → u0 in Ls(�), where

s ∈

⎧⎪⎨⎪⎩
(1,p∗] if p < 3,

(1,∞) if p = 3,

(1,∞] if p > 3.

(8.8)

Also, ∇uα ⇀ ∇u0 weakly in Lp(�). Therefore, uα · ∇uα ⇀ u0 · ∇u0 weakly in Lq(�), where

1 = 1 + 1
,

q p s
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and note that, ϕ ∈ W 1,p′
(�) ↪→ Lq ′

(�). Hence, b(uα, uα, ϕ) → b(u0, u0, ϕ) as α → 0 in 
Lt(p)(�). Therefore, (u0, π0) is a solution of the problem (8.7).

(ii) Next, we prove that the convergence (uα, πα) ⇀ (u0, π0) weakly in W 1,p(�) × Lp(�)

occurs, in fact, in a strong sense. Subtracting the system (8.7) from the system (NS), we get⎧⎪⎨⎪⎩
−�(uα − u0) + ∇(πα − π0) = (u0 · ∇)u0 − (uα · ∇)uα in �,

div (uα − u0) = 0 in �,

(uα − u0) · n = 0, 2 [D(uα − u0)n]τ + αuατ = 0 on �.

Note that u0 · ∇u0 − uα · ∇uα = div(uα ⊗ uα − u0 ⊗ u0). Thus, using the Stokes estimate (6.1)
for the above system, we have

‖uα − u0‖W 1,p(�) + ‖πα − π0‖Lp(�)

≤ C

(
‖uα ⊗ uα − u0 ⊗ u0‖Lp(�) + ‖αu0τ‖

W
− 1

p ,p
(�)

)
= C

(
‖(uα − u0) ⊗ uα + u0 ⊗ (uα − u0)‖Lp(�) + ‖αu0τ‖

W
− 1

p ,p
(�)

)
≤ C

[
‖uα − u0‖Ls (�)

(
‖uα‖W 1,p(�) + ‖u0‖W 1,p(�)

)
+ ‖α‖Lt(p)(�)‖u0‖W 1,p(�)

]
,

where s is defined in (8.8). Since uα is bounded in W 1,p(�), it follows that uα → u0 in Ls(�), 
by compactness. This proves the strong convergence of uα to u0 in W 1,p(�) as α → 0. �
Remark 8.7. In the same fashion as we did for the Stokes case, we can prove, with the help of 
the estimate (2.7) and the Remark 6.13, the above theorem for � axisymmetric and α constant, 
provided the compatibility condition (4.5) is satisfied. Indeed, in order to have the limiting system 
(8.7), we must assume the compatibility condition since this is the necessary condition for the 
existence of a solution of the system (8.7).

Proof of Theorem 2.5. (i) Without loss of generality, we assume F = 0 and h = 0. Since α →
∞, we can consider α ≥ 1 and then, we have the estimates (2.5) and (2.6). Also, as it was done 
in Theorem 8.6, the Stokes estimates (6.27) and (6.28) allow us to have for 2 < p ≤ 3,

‖uα‖W 1,p(�) + ‖πα‖Lp(�) ≤ Cp(�)
(
‖f ‖Lr(p)(�) + ‖uα · ∇uα‖Lr(p)(�)

)
≤ Cp(�)

(
‖f ‖Lr(p)(�) + ‖uα‖2

H 1(�)

)
≤ Cp(�)

(
1 + ‖f ‖Lr(p)(�)

)
‖f ‖Lr(p)(�).

For p > 3, a similar estimate, independent of α, can be obtained as in Theorem 8.6. This proves 
that (uα, πα) is bounded in W 1,p(�) × Lp(�) for all p ≥ 2. Hence, there exists (u∞, π∞) ∈
W 1,p(�) × Lp(�) such that

(uα,πα) ⇀ (u∞,π∞) weakly in W 1,p(�) × Lp(�).
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Now, rewriting the system (NS) as

{ −�uα + (uα · ∇)uα + ∇πα = f , div uα = 0 in �,

uα = − 2
α
[(Duα)n]τ on �,

(8.9)

and as it was done in Theorem 7.3, letting α → ∞ in the above system, we obtain that (u∞, π∞)

satisfies the Navier-Stokes problem (2.9).
(ii) We know that (uα − u∞) satisfies the system

⎧⎪⎨⎪⎩
−�(uα − u∞) + ∇ (πα − π∞) = (u∞ · ∇)u∞ − (uα · ∇)uα in �,

div (uα − u∞) = 0 in �,

(uα − u∞) · n = 0, 2 [D (uα − u∞)n]τ + α (uα − u∞)τ = −2[(Du∞)n]τ on �.

Then the Green formula (3.3) yields, choosing (uα − u∞) as a test function,

2
ˆ

�

|D(uα − u∞)|2 + α

ˆ

�

|(uα − u∞)τ |2

=b (uα − u∞,u∞,uα − u∞) − 〈2[(Du∞)n]τ , (uα − u∞)〉
H

− 1
2 (�)×H

1
2 (�)

.

But since α → ∞, uα → u∞ in L4(�), by compactness, and thus

b (uα − u∞,u∞,uα − u∞) ≤ ‖uα − u∞‖2
L4(�)

‖∇u∞‖L2(�) → 0.

Also, since uα ⇀ u∞ weakly in H
1
2 (�) and [(Du∞)n]τ ∈ H− 1

2 (�), it implies

〈2[(Du∞)n]τ , (uα − u∞)〉
H

− 1
2 (�)×H

1
2 (�)

→ 0.

Therefore, due to the fact that uα → u∞ in L2(�), we obtain the strong convergence uα → u∞
in H 1(�). The strong convergence of pressure follows from the estimate (3.12).

Now, in the similar way to the Stokes case, uα → u∞ in H 1(�) implies ∇uα → ∇u∞ almost 
everywhere in �. Further, we know that ∇uα is a bounded sequence in Lp(�) for all p ≥ 2. 
Therefore, the strong convergence of uα to u∞ in W 1,q (�) for any q < p follows, cf. [3, Lemma 
1.2.3, Chapter 1]. This completes the proof. �
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[48] V.A. Solonnikov, V.E. Ščadilov, A certain boundary value problem for the stationary system of Navier-Stokes equa-
tions, Tr. Mat. Inst. Steklova 125 (196–210) (1973) 235, Boundary value problems of mathematical physics, 8.

[49] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition, 
Numer. Math. 50 (6) (1987) 697–721.
320

http://refhub.elsevier.com/S0022-0396(21)00134-0/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibDFCF28D0734569A6A693BC8194DE62BFs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibDFCF28D0734569A6A693BC8194DE62BFs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib0A5B65725F6A3BA95821CEC61DBB46D3s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib0A5B65725F6A3BA95821CEC61DBB46D3s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC1D9F50F86825A1A2302EC2449C17196s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC1D9F50F86825A1A2302EC2449C17196s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib0BFC16CC12EFFC1BAE4D3766C4F2257Ds1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib0BFC16CC12EFFC1BAE4D3766C4F2257Ds1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib61409AA1FD47D4A5332DE23CBF59A36Fs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib61409AA1FD47D4A5332DE23CBF59A36Fs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibA5F3C6A11B03839D46AF9FB43C97C188s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibA5F3C6A11B03839D46AF9FB43C97C188s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibEFED541FE0C728C632BA7BB5C2792D70s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibEFED541FE0C728C632BA7BB5C2792D70s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibEFF343BCF0ABAECE499E7EA0EE1E2968s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibEFF343BCF0ABAECE499E7EA0EE1E2968s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib8D5BD47DE25FDF210875854FA5A40017s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib8D5BD47DE25FDF210875854FA5A40017s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC70EF57BA376018CBC132EDC27696466s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC70EF57BA376018CBC132EDC27696466s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibF788561DB599C30EE4958498E8501D09s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib4DEC99BAA99738721DA9C9B0C1A92498s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib4DEC99BAA99738721DA9C9B0C1A92498s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib8BE806E5BB9BB99F182450DE606EAD09s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib9CEB5B2AB20CE8664D5744F7C8C52B72s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib9CEB5B2AB20CE8664D5744F7C8C52B72s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib214EBC234E6C10B2B6C54061A5ED809Es1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib214EBC234E6C10B2B6C54061A5ED809Es1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC7E70CA82D60BC8E1FAE0798EAC7BEF7s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC7E70CA82D60BC8E1FAE0798EAC7BEF7s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibC7E70CA82D60BC8E1FAE0798EAC7BEF7s1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibEC73EDC40AD10A963C3F9CAD7EDB407Fs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibEC73EDC40AD10A963C3F9CAD7EDB407Fs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib5206560A306A2E085A437FD258EB57CEs1
http://refhub.elsevier.com/S0022-0396(21)00134-0/bib5206560A306A2E085A437FD258EB57CEs1

	Stokes and Navier-Stokes equations with Navier boundary conditions
	1 Introduction
	2 Main results
	3 Notations and preliminary results
	4 Stokes equations: L2-theory
	5 Stokes equations: Lp-theory
	5.1 General solution in W1,p(Ω)
	5.2 Strong solution in W2,p(Ω)

	6 Uniform estimates
	6.1 First estimate
	6.2 Second estimate

	7 Limiting cases
	7.1 α tends to 0
	7.2 α tends to ∞
	7.3 α less regular

	8 Navier-Stokes equations
	8.1 Existence and regularity
	8.2 Limiting cases

	Acknowledgments
	References


