期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Positivity results for indefinite sublinear elliptic problems via a continuity argument
Article
Kaufmann, U.1  Ramos Quoirin, H.2  Umezu, K.3 
[1] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[2] Univ Santiago Chile, Casino 307,Correo 2, Santiago, Chile
[3] Ibaraki Univ, Dept Math, Fac Educ, Mito, Ibaraki 3108512, Japan
关键词: Elliptic problem;    Indefinite;    Sublinear;    Positive solution;   
DOI  :  10.1016/j.jde.2017.05.021
来源: Elsevier
PDF
【 摘 要 】

We establish a positivity property for a class of semilinear elliptic problems involving indefinite sublinear nonlinearities. Namely, we show that any nontrivial nonnegative solution is positive for a class of problems the strong maximum principle does not apply to. Our approach is based on a continuity argument combined with variational techniques, the sub and supersolutions method and some a priori bounds. Both Dirichlet and Neumann homogeneous boundary conditions are considered. As a byproduct, we deduce some existence and uniqueness results. Finally, as an application, we derive some positivity results for indefinite concave-convex type problems. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_05_021.pdf 957KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次