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Abstract
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1. Introduction

Let � be a bounded and smooth domain of RN with N ≥ 1. The purpose of this article is to 
discuss the existence of positive solutions for the problems{ −�u = a(x)f (u) in �,

u = 0 on ∂�,
(P )

and { −�u = a(x)f (u) in �,
∂u
∂ν

= 0 on ∂�,
(P ′)

where ν is the outward unit normal to ∂�.
Here a ∈ Lr (�), r > N , is a function that changes sign, and f : [0, ∞) → [0, ∞) is contin-

uous and sublinear in the following sense:

lim
s→0+

f (s)

s
= ∞ and lim

s→∞
f (s)

s
= 0. (H1)

In addition, we assume that f (s) > 0 for s > 0. The model for such f is f (s) = sq with 
0 ≤ q < 1.

By a nonnegative solution of (P ) we mean a function u ∈ W 2,r (�) ∩ W
1,r
0 (�) (and thus 

u ∈ C1(�)) that satisfies the equation for the weak derivatives and u ≥ 0 in �. If, in addition, 
u > 0 in �, then we call it a positive solution of (P ). Similarly, by a nonnegative solution of 
(P ′) we mean a function u ∈ W 2,r (�) that satisfies the equation for the weak derivatives and the 
boundary condition in the usual sense, and such that u ≥ 0 in �. If, in addition, u > 0 in �, then 
we call it a positive solution of (P ′).

Under a stronger regularity condition on a, the existence of a nontrivial nonnegative solution 
of (P ) has been proved in [4,18]. In addition, the existence of a nontrivial nonnegative solution 
of (P ′) has been obtained in [5] (see also [1]), under the additional assumption that 

∫
�

a < 0. 
Furthermore, the authors in [5] also proved that the latter condition is necessary for the existence 
of positive solutions for (P ′), if f ∈ C1(0, ∞) and f ′(s) > 0 for s > 0. However, due to the 
non-Lipschitzian character of f at s = 0 and the change of sign in a, neither the strong maximum 
principle nor Hopf’s Lemma applies to (P ) and (P ′). As a consequence, one can’t deduce the 
positivity of nontrivial nonnegative solutions of (P ) or (P ′). Let us also point out that nontrivial 
nonnegative solutions of (P) and (P’) are not necessarily unique, see [4,5].

In fact, the existence of a positive solution for these indefinite sublinear problems is a delicate 
issue and very few papers in the literature have addressed this question. Regarding (P ), when 
f (s) = sq , it was first proved in [14] that if the unique solution ϕ of the linear problem{ −�ϕ = a(x) in �,

ϕ = 0 on ∂�,
(1.1)

is such that ϕ > 0 in �, then (P ) has a positive solution (which may not belong to the interior of 
the positive cone) for any 0 < q < 1. This condition, however, is not sharp, since one can find a 
function a such that (P ) possesses a positive solution for some 0 < q < 1, but the corresponding 
ϕ satisfies that ϕ < 0 in � (see [12, Section 1]). Later on, in the aforementioned article [12], 
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the authors considered the same problem in the one-dimensional and radial cases, providing 
several sufficient conditions on a (as well as some necessary conditions) for the existence of 
a positive solution of (P ). Some of these results were then extended to the case of a general 
bounded domain in [13]. We point out that in all these papers the only tool used was essentially 
the well known sub and supersolutions method in the presence of weak and well-ordered sub and 
supersolutions (see e.g. [11]).

On the other hand, for the Neumann problem (P ′), even with f (s) = sq , to the best of our 
knowledge, no sufficient conditions for the existence of positive solutions are known.

In this article, we shall not only prove that in some cases (P ′) and (P ) admit positive solutions, 
but even more, that every nontrivial nonnegative solution of (P ) and (P ′) is a positive solution. 
This will be done using a continuity argument inspired by [15] (see also [16]), where the author 
proves the existence of a positive solution for the problem{ −�u = up + f (x) in �,

u = 0 on ∂�,
(1.2)

where 1 < p < N+2
N−2 , N ≥ 3, and f ∈ Ls(�), with s > N

2 . Under a smallness condition on f
(which may change sign), the author shows that this problem has a mountain-pass solution uf

which depends continuously on f , in the sense that, up to a subsequence, uf → u0 in C1(�) as 
f → 0 in Ls(�), where u0 is a nontrivial nonnegative solution of (1.2) with f ≡ 0. Furthermore, 
by the strong maximum principle and Hopf’s Lemma, u0 lies in the interior of the positive cone 
of C1(�), and consequently so does uf if f is close enough to zero. We shall exploit this idea, 
dealing now with a class of sublinear problems and deducing the positivity of not only one 
solution, but every nontrivial nonnegative solution.

Roughly speaking, we shall see that the positivity of nontrivial nonnegative solutions can 
be recovered if (P ) or (P ′) are somehow sufficiently close to a problem the strong maximum 
principle applies to. This situation occurs, for instance, if the negative part of a is small enough 
(for (P )) or if f (s) = sq with q close enough to 1 (for both (P ) and (P ′)). We rely here on the 
fact that the strong maximum principle applies to (P ) and (P ′) if either a ≥ 0 or f (s) = s.

We set a± := max(±a, 0). Observe that the assumption that a changes sign means that 
|supp a±| > 0, where |A| stands for the Lebesgue measure of A ⊂ R

N . We denote by �+ the 
largest open subset of � where a > 0 a.e., and assume that

�+ has finitely many connected components and |(supp a+) \ �+| = 0. (H2)

In particular, we see that �+ is nonempty.
The above condition will be used to deduce that nontrivial nonnegative solutions of (P ) and 

(P ′) are positive in a subdomain of �+, and consequently uniformly bounded away from zero 
therein (see Lemma 2.2). To this end, we shall also assume the following technical condition, 
which is related to the use of the strong maximum principle:

Ks0 := inf
0≤t<s≤s0

f (s) − f (t)

s − t
> −∞, for all s0 > 0. (H3)

Note in particular that this condition is satisfied, for instance, if f is nondecreasing (in which 
case Ks ≥ 0), and in particular, f (s) = sq with 0 ≤ q < 1.
0
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Our positivity results for (P ) shall provide us with solutions that lie in the interior of the 
positive cone of C1

0(�) := {u ∈ C1(�) : u = 0 on ∂�}, which is denoted by

P◦
D :=

{
u ∈ C1

0(�) : u > 0 in �, and
∂u

∂ν
< 0 on ∂�

}
.

Regarding (P ′), we shall obtain solutions that belong to

P◦
N :=

{
u ∈ C1(�) : u > 0 on �

}
.

Note that a positive solution of (P ) (respect. (P ′)) need not belong to P◦
D (respect. P◦

N ), as shown 
in Proposition 2.9 below.

We state now our main results.

Theorem 1.1. Assume (H1), (H2), and (H3). Then there exists δ > 0 (possibly depending on f
and a+) such that every nontrivial nonnegative solution of (P ) belongs to P◦

D if ‖a−‖Lr(�) < δ.

Remark 1.2. As already mentioned, if f ∈ C1(0, ∞) and f ′ > 0 in (0, ∞), then the condition ∫
�

a < 0 is necessary for the existence of positive solutions of (P ′), cf. [5, Lemma 2.1]. In view 
of this fact, we can’t expect an analogue of Theorem 1.1 for (P ′).

In the case that f is a power, we write (P ) and (P ′) as{ −�u = a(x)uq in �,

u = 0 on ∂�,
(PD)

and { −�u = a(x)uq in �,
∂u
∂ν

= 0 on ∂�.
(PN )

Theorem 1.3. Assume (H2). Then, given a ∈ Lr (�), there exists q0 = q0(a) ∈ (0, 1) such that 
every nontrivial nonnegative solution of (PD) belongs to P◦

D if q0 < q < 1.

As a consequence of Theorems 1.1 and 1.3, we derive the following existence and uniqueness 
results:

Corollary 1.4. Under the conditions of Theorem 1.1, let ‖a−‖Lr(�) < δ. Assume in addition that 
f ∈ C1(0, ∞), f ′ is nonincreasing in (0, ∞) and 

∫ t

0
1

f (s)
ds < ∞ for t > 0. Then (P ) has a 

solution in P◦
D and has no other nontrivial nonnegative solutions.

Corollary 1.5. Under the assumptions of Theorem 1.3, let q0 < q < 1. Then (PD) has a solution 
in P◦

D and has no other nontrivial nonnegative solutions.

Remark 1.6. Let us mention that if f is nondecreasing and k1s
q ≤ f (s) ≤ k2s

q for some 
k1, k2 > 0 and all s ≥ 0, as a consequence of [13, Theorem 3.1], one can deduce the existence of 
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a solution u ∈P◦
D for (P ) if a− is sufficiently small with respect to a+. On the other side, in the 

one-dimensional and radial cases one can derive the existence of a positive solution of (PD) (but 
not necessarily belonging to P◦

D) provided that q is close enough to 1 (cf. [12]). In this sense, 
Corollaries 1.4 and 1.5 are consistent with the existence results from [12,13].

For the Neumann problem (PN ), we establish the following analogue of Theorem 1.3:

Theorem 1.7. Assume (H2). Then, given a ∈ Lr (�), there exists q0 = q0(a) ∈ (0, 1) such that 
every nontrivial nonnegative solution of (PN ) belongs to P◦

N if q0 < q < 1. If, in addition, 
∫
�

a ≥
0, then (PN) has no nontrivial nonnegative solution for q0 < q < 1.

Corollary 1.8. Under the assumptions of Theorem 1.7, let q0 < q < 1. Assume in addition that ∫
�

a < 0. Then (PN ) has a solution in P◦
N and has no other nontrivial nonnegative solutions.

Our next result concerns the sets

AD := {q ∈ (0,1) : any nontrivial nonnegative solution of (PD) lies in P◦
D},

AN := {q ∈ (0,1) : any nontrivial nonnegative solution of (PN) lies in P◦
N }.

Theorem 1.9. Assume (H2) and fix a ∈ Lr (�). Then:

(i) AD is a nonempty open interval.
(ii) AN is a nonempty open interval under the condition 

∫
�

a < 0.

In particular, there exists q0 ∈ [0, 1) such that AD = (q0, 1), and a similar characterization 
holds for AN .

Remark 1.10. Although Theorem 1.9 states that (under (H2)) the sets AD and AN (assuming ∫
�

a < 0) are always nonempty, as a consequence of Proposition 2.9 below, we shall see that 
given any q ∈ (0, 1), we may find a in such a way that (PD) (respect. (PN )) has nontrivial 
nonnegative solutions that do not belong to P◦

D (respect. P◦
N ). This fact shows that AD and AN

can be made arbitrarily small by choosing a in a suitable way.

The rest of the paper is organized as follows. In the next section we prove some auxiliary 
results concerning (P ) and (P ′), whereas in Section 3 we supply the proofs of our main results. 
Finally, in Section 4 we apply some of our theorems to derive positivity results (as well as exis-
tence and multiplicity results of positive solutions) for indefinite concave-convex type problems.

2. Preliminary results

Let us fix the notation to be used in the sequel.
Given m ∈ Lr (�), r > N , and a subdomain B ⊆ � such that m+ �≡ 0 in B , we denote by 

λ1(m, B) the first positive eigenvalue of the problem{ −�φ = λm(x)φ in B,

φ = 0 on ∂B.



JID:YJDEQ AID:8848 /FLA [m1+; v1.265; Prn:1/06/2017; 14:52] P.6 (1-22)

6 U. Kaufmann et al. / J. Differential Equations ••• (••••) •••–•••
We shall deal with several norms, which will be denoted as follows: ‖u‖Lr(�) := (
∫
�

|u|r ) 1
r , 

‖u‖H 1
0 (�) := (

∫
�

|∇u|2) 1
2 and ‖u‖H 1(�) := (

∫
�

(|∇u|2 + u2
)
)

1
2 .

To begin with, we provide several useful lower bounds for nontrivial nonnegative solutions of 
(P ) and (P ′).

Lemma 2.1. Assume (H2) and let u be a nontrivial nonnegative solution of (P ) or (P ′). Then 
there exists a subdomain �′ ⊂ �+ such that u > 0 in �′.

Proof. If u is a nontrivial nonnegative solution of (P ) then it satisfies

0 <

∫
�

|∇u|2 =
∫
�

a(x)f (u)u ≤
∫

supp a+
a+(x)f (u)u =

∫
�+

a+(x)f (u)u,

where we used the assumption that |(supp a+) \ �+| = 0. It follows that u �≡ 0 in �+, and 
consequently u > 0 in some subdomain of �+. The same argument applies if u is a nontrivial 
nonnegative solution of (P ′), since u can’t be a constant. �
Lemma 2.2. Assume that (H3) holds, lim

s→0+ s−1f (s) = ∞ and �′ �= ∅ is a subdomain of �+. 

Then, for any open ball B such that B ⊂ �′ there exists a function ψ ∈ W 2,r (B) such that 
u ≥ ψ > 0 in B for every nontrivial nonnegative supersolution of

−�u = a(x)f (u) in �′. (2.1)

Proof. Let u be a nontrivial nonnegative supersolution of (2.1) and B be an open ball such that 
B ⊂ �′. Then a ≥ 0 and a �≡ 0 in B . Let φ ∈ W 2,r (B) ∩ W

1,r
0 (B) be a positive eigenfunction 

associated to λ1(a, B), with ‖φ‖∞ = 1. We observe that for all ε > 0 sufficiently small it holds 
that

−�(εφ) ≤ a(x)f (εφ) in B.

Indeed, note that −�(εφ) = ελ1(a, B)a(x)φ in B . Hence, it is enough to check that
ελ1(a, B)a(x)φ ≤ a(x)f (εφ), i.e.

λ1(a,B) ≤ f (εφ)

εφ
in B.

Since f (s)
s

→ ∞ as s → 0+ and φ is bounded, we see that there exists ε0 > 0 such that the above 
inequality holds for all 0 < ε ≤ ε0.

To conclude the proof we show that u ≥ ε0φ in B (note that ε0 does not depend on u). Indeed, 
suppose this is not true. Since �′ is connected, it follows from the strong maximum principle 
that u > 0 in �′, so that u > 0 on B . Moreover, φ = 0 on ∂B , so there exists s ∈ (0,1) such that 
u ≥ sε0φ in B and u (x0) = sε0φ (x0) for some x0 ∈ B . Setting s0 := ‖u‖L∞(�) and M(x) :=∣∣Ks0

∣∣a(x), where Ks0 is given by (H3), one can see that the map s → M(x)s + a (x)f (s) is 
nondecreasing for all s ∈ (0,‖u‖∞) and a.e. x ∈ B . Then,
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− �(u − sε0φ) + M (x) (u − sε0φ)

≥ M (x) (u − sε0φ) + a(x) (f (u) − f (sε0φ)) ≥ 0 in B,

and u > sε0φ on ∂B . Therefore, the strong maximum principle (e.g. [20]) says that u > sε0φ

in B , which is a contradiction. The proof is complete. �
Remark 2.3. Let us point out that the proof of Lemma 2.2 is the only instance where (H3) is 
employed.

We prove now that ‖u‖H 1
0 (�) ≥ C for any nontrivial nonnegative solution of (P ), for some 

constant C > 0 independent of a−.

Lemma 2.4. Assume that (H2) and (H3) hold, and lim
s→0+ s−1f (s) = ∞. Then there exists a 

constant C > 0 such that ‖u‖H 1
0 (�) ≥ C for every nontrivial nonnegative solution u of (P ). 

Moreover, C does not depend on a−.

Proof. Assume by contradiction that there exists a sequence {un} of solutions of (P ) with 
un → 0 in H 1

0 (�). Then un → 0 in L2(�), and, up to a subsequence, we have un → 0 a.e.
in �. By Lemma 2.1, we know that any nontrivial nonnegative solution u of (P ) is positive in 
some subdomain of �+. Thus, since �+ has finitely many connected components, we may as-
sume that, for all n ∈N, un > 0 in some fixed subdomain �̃ ⊂ �+. However, by Lemma 2.2, we 
have un ≥ ψ > 0 in some open ball B ⊂ �̃, so we reach a contradiction. �

Next we get an a priori bound from below for nontrivial nonnegative solutions of either (PD)
or (PN ). We remark that this estimate does not depend on q .

Lemma 2.5. Assume that �′ �= ∅ is a subdomain of �+ such that λ1(a, �′) < 1. Then there exist 
a domain B such that B ⊂ �′ and a function φ ∈ W 2,r (B) such that u ≥ φ > 0 in B , for every 
nontrivial nonnegative supersolution of

−�u = a(x)uq in �′, (2.2)

and for every q ∈ (0, 1).

Proof. Let �′
δ := {x ∈ �′ : dist(x, ∂�′) > δ} for δ > 0. From the variational characterization of 

λ1(a, B), we know that λ1(a, �′
δ) → λ1(a, �′) as δ → 0+ (see e.g. Lemma 2.5 in [7]). We fix 

δ0 > 0 such that λ1(a, �′
δ0

) < 1 and set B := �′
δ0

. Let φ > 0 with ‖φ‖∞ = 1 be as in Lemma 2.2, 
i.e. a solution of { −�φ = λ1 (a,B)a (x)φ in B,

φ = 0 on ∂B,

and let

0 < ε ≤ εq := 1
1/(1−q)

.

λ1 (a,B)
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Observe that since λ1 (a,B) < 1 we have εq ≥ 1 for all q . Then, taking into account that 
0 < φ ≤ 1 and the definition of εq , we derive that

−�(εφ) = λ1 (a,B)a (x) εφ ≤ a(x) (εφ)q in B

for all 0 < ε ≤ εq .
Now, given any nontrivial nonnegative supersolution u of (2.2), we can argue as in the last 

paragraph of the proof of Lemma 2.2 to infer that u ≥ φ in B for any q ∈ (0, 1). This concludes 
the proof of the lemma. �

The proof of the next estimates are similar to the one of Lemma 2.4 (we use now Lemma 2.5), 
so we omit it.

Lemma 2.6. Assume that (H2) holds, 0 < q < 1, and λ1(a, �′) < 1 for any open connected 
component �′ ⊂ �+. Then there exists a constant C > 0 such that:

(i) ‖u‖H 1
0 (�) ≥ C for every nontrivial nonnegative solution u of (PD).

(ii) ‖u‖H 1(�) ≥ C for every nontrivial nonnegative solution u of (PN ).

Moreover, C does not depend on q .

To end this section, we prove some results on the sets AD and AN .

Lemma 2.7. Assume (H2). If q0 ∈AD , then 
(
q0,

1
2−q0

)
⊂AD .

Proof. Assume to the contrary that q0 ∈ AD , q0 < q < 1
2−q0

, but q /∈ AD . It follows that there 
exists a nontrivial nonnegative solution u of (PD) such that u /∈P◦

D . Let

β := 1 − q

1 − q0
∈ (0,1) , γ := q − q0

1 − q
> 0,

and consider the auxiliary problem⎧⎪⎨⎪⎩
−�w = βa(x)w−γ (w1/β − ε)q in �,

w ≥ εβ in �,

w = εβ on ∂�,

(2.3)

with 0 < ε ≤ 1. Equivalently, putting ŵ := w − εβ , we consider⎧⎪⎨⎪⎩
−�ŵ = βa(x)(ŵ + εβ)−γ {(ŵ + εβ)1/β − ε}q in �,

w ≥ 0 in �,

w = 0 on ∂�.

(2.4)

The limiting problem as ε → 0+ is understood as
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⎧⎪⎨⎪⎩
−�w = βa(x)wq0 in �,

w ≥ 0 in �,

w = 0 on ∂�.

(2.5)

Since q0 ∈AD , any nontrivial nonnegative solution of (2.5) belongs to P◦
D .

In the sequel, we shall obtain a solution wε of (2.3) and show that, as ε → 0, wε converges 
(up to a subsequence) to a nontrivial nonnegative solution of (2.5) that does not belong to P◦

D . 
This will provide us with a contradiction. We divide the rest of the proof in several steps:

Step 1: Construction of a weak supersolution of (2.3).
We note that ψ = ψε := (u + ε)β is a supersolution of (2.3). Indeed, since 1 − β = γβ , by 

direct computations we have that

−�ψ ≥ βa(x)ψ−γ (ψ1/β − ε)q in �,

and ψ = εβ on ∂�, as desired.
Step 2: Construction of a weak subsolution of (2.3).
By Lemma 2.1, there exists a ball B such that a ≥ 0, a �≡ 0 a.e. in B and u > 0 on B . Let 

φ ∈ W 2,r (B)∩W
1,r
0 (B) be a positive eigenfunction associated to λ1(a, B), with ‖φ‖∞ = 1, and 

extend φ to � by setting φ = 0 in � \ B . Given 0 < δ ≤ 1, we set

ϕδ,ε :=
{

δφ + εβ in B,

εβ in � \ B.
(2.6)

We observe that

− �ϕδ,ε − βa(x)ϕ
−γ
δ,ε (ϕ

1/β
δ,ε − ε)q

≤ a (x)
(
λ1 (a,B) δφ − β(δφ + εβ)−γ {(δφ + εβ)1/β − ε}q

)
in B.

We claim that there exists c0 > 0, independent of x ∈ B , such that for ε ∈ (0, 1] and δ ∈ (0, 1]
we have

(δφ + εβ)−γ {(δφ + εβ)1/β − ε}q ≥ c0(δφ)q0+γ in B.

Indeed, since q/β = q0 + γ , we note that for x ∈ B ,

(δφ + εβ)−γ {(δφ + εβ)1/β − ε}q
(δφ)q0+γ

≥ (δφ)q/β

(δφ + εβ)γ (δφ)q0+γ
= 1

(δφ + εβ)γ
≥ 1

2γ
=: c0,

as desired. Here, we have used the fact that if α > 1 then (s + t)α ≥ sα + tα for t, s ≥ 0. Thus 
the claim is proved. It follows that for δ > 0 small enough, we have that

−�ϕδ,ε − βa(x)ϕ
−γ
δ,ε

(
ϕ

1/β
δ,ε − ε

)q ≤ a (x)
(
λ1 (a,B) δφ − c0β(δφ)q0+γ

) ≤ 0 in B,

since the assumption q < 1
2−q0

implies q0 + γ < 1. Note that δ is determined uniformly in 
ε ∈ (0, 1]. Thus, employing the divergence theorem as stated e.g. in [6], p. 742, we deduce that 
ϕδ,ε is a weak subsolution of (2.3).
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Step 3: The subsolution and the supersolution of (2.3) are well-ordered.
We shall see that, choosing δ and ε adequately, (u + ε)β and ϕδ,ε are well-ordered, i.e., 

(u + ε)β ≥ ϕδ,ε in �. We assert that there exist δ1, ε1 > 0 such that if ε ∈ (0, ε1), then

(u + ε)β ≥ δ1φ + εβ in B.

Indeed, if we fix ε1 and δ1 such that

ε
β

1 ≤ 1

2
(min

B

u)β, δ1 ≤ 1

4
(min

B

u)β,

then it is clear that

(u + ε)β ≥ 1

2

(
uβ + εβ

) ≥ 1

2
{(min

B

u)β − εβ} + εβ ≥ 1

4
(min

B

u)β + εβ ≥ δ1φ + εβ in B.

Hence, for every ε ∈ (0, ε1), the method of weak sub and supersolutions (see e.g. [11, Theo-
rem 4.9]) gives us some wε ∈ H 1

0 (�) ∩ L∞ (�) solution of (2.3), with

ϕδ1,ε ≤ wε ≤ (u + ε)β in �. (2.7)

Furthermore, by standard regularity arguments, wε ∈ W 2,r (�) ∩ W
1,r
0 (�).

Step 4: The limiting behavior of wε as ε → 0+.
We convert wε to (2.4) by ŵε = wε − εβ , so that ŵε = 0 on ∂�. Thus, we deduce that∫

�

|∇ŵε|2 = β

∫
�

a(x)ŵε(ŵε + εβ)−γ ((ŵε + εβ)1/β − ε)q

≤ C

∫
�

ŵε(ŵε + εβ)−γ (ŵε + εβ)q/β

= C

∫
�

ŵε(ŵε + εβ)q0 .

Since we see from (2.7) that ‖ŵε‖L∞(�) ≤ C as ε → 0+, we infer that ‖ŵε‖H 1
0 (�) is bounded as 

ε → 0+. It follows that, up to a subsequence, ŵε ⇀ ŵ0 in H 1
0 (�), and ŵε → ŵ0 a.e. in � for 

some ŵ0 ∈ H 1
0 (�). Also, since ŵε is a weak solution of (2.4), we note that∫

�

∇ŵε∇v = β

∫
�

a(x)(ŵε + εβ)−γ {(ŵε + εβ
)1/β − ε}qv, ∀v ∈ C1

0 (�) .

So, from the fact that ŵε ⇀ ŵ0 in H 1
0 (�), we get that∫

∇ŵε∇v →
∫

∇ŵ0∇v, ∀v ∈ C1
0 (�) .
� �
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On the other hand, recalling (2.7) and that −γ + q/β = q0, we see that∣∣∣a(x)(ŵε + εβ)−γ {(ŵε + εβ
)1/β − ε}qv

∣∣∣ ≤ C |a (x)| (ŵε + εβ)−γ (ŵε + εβ)q/β

= C |a (x)| (ŵε + εβ)q0

≤ C′ |a (x)| ∈ Lr (�) .

Therefore, the Lebesgue convergence theorem yields that∫
�

a(x)(ŵε + εβ)−γ {(ŵε + εβ
)1/β − ε}qv →

∫
�

a(x)ŵ
q0
0 v, ∀v ∈ C1

0 (�) .

Indeed, if w0 > 0, then

(ŵε + εβ)−γ {(ŵε + εβ
)1/β − ε}q = w−γ

ε (w1/β
ε − ε)q → w

−γ

0 (w
1/β

0 )q = w
q0
0 ,

whereas if w0 = 0, then

(ŵε + εβ)−γ {(ŵε + εβ
)1/β − ε}q = w−γ

ε (w1/β
ε − ε)q ≤ w−γ

ε wq/β
ε = wq0

ε → 0.

Summing up, we have obtained that∫
�

∇ŵ0∇v = β

∫
�

a(x)ŵ
q0
0 v = 0, ∀v ∈ C1

0(�).

This implies that ŵ0 is a weak solution of (2.5). Now, from (2.7), we recall that for ε ∈ (0, ε1),

ϕδ1,ε − εβ ≤ ŵε ≤ (u + ε)β − εβ in �.

Therefore, passing to the limit as ε → 0+, this inequality provides

ϕδ1,0 ≤ ŵ0 ≤ uβ in �.

This means that ŵ0 is a nontrivial nonnegative solution of (2.5), but ŵ0 /∈ P◦
D , since u /∈ P◦

D by 
assumption. Hence we reach a contradiction, and the proof is complete. �
Remark 2.8. Lemma 2.7 also holds for AN . Indeed, we can prove it with some minor modifi-
cations: assume q0 ∈ AN , q0 < q < 1

2−q0
, but q /∈ AN . It follows that there exists a nontrivial 

nonnegative solution u of (PN ) such that u does not belong to P◦
N . The rest of the proof proceeds 

with the following changes:

• w = εβ on ∂� replaced by ∂w
∂ν

= 0 on ∂� in (2.3);
• w = 0 on ∂� replaced by ∂w

∂ν
= 0 on ∂� in (2.5);

• no consideration of (2.4). Note that ∂wε

∂ν
= 0 on ∂�;

• in Step 4, the test functions are now taken in C1(�).
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The following proposition shows that in general it is hard to give a lower estimate for q0 in 
Theorems 1.3 and 1.7. It also shows that the sets AD and AN can be made arbitrary small by 
choosing a suitable a. On the other hand, it is an interesting open question whether these sets can 
be equal to the whole interval (0, 1).

Proposition 2.9. Let q ∈ (0,1) and � = (x0, x1) ⊂ R. Then there exists a ∈ C2(�) such that 
q /∈ AD and q /∈ AN .

Proof. After a translation and a dilation, we can assume that � = (0,π). We set

r := 2

1 − q
∈ (2,∞) , and a (x) := r1− 2

r

(
1 − r cos2 x

)
, for x ∈ �.

Clearly a changes sign in �. We now set

u (x) := sinr x

r
∈ C2(�).

Note that u > 0 in �. We claim that{ −u′′ = a(x)uq in �,

u = u′ = 0 on ∂�.

Indeed, it is immediate to see that the boundary conditions are satisfied. Also, taking into account 
that rq = r − 2 (and so, q = 1 − 2/r), a few computations show that

−u′′ = −
(
(r − 1) sinr−2 x cos2 x − sinr x

)
= sinr−2 x

(
1 − r cos2 x

)
=

(
1 − r cos2 x

)
sinrq x = r1− 2

r

(
1 − r cos2 x

)(
sinr x

r

)q

= a (x)uq

and therefore the claim follows.
To conclude the proof we note that, since u > 0 in � and u = u′ = 0 on ∂�, we have that 

q /∈ AD and q /∈ AN . �
Remark 2.10. Let q , �, a and u be as in the above proposition. Consider any bounded open 
interval �′ with �′ ⊃ �, and extend (to �′) u by zero and a in any way. Then we clearly see that 
u is a nontrivial nonnegative solution having a dead core in �′ (i.e. an open subset with compact 
closure in �′ where u vanishes) of both (PD) and (PN ), with �′ instead of �.

3. Proofs of main results

Remark 3.1. The following fact shall be repeatedly used in the sequel. Let {un} ⊂ H 1
0 (�) be a 

bounded sequence such that

−�un = hn(x,un) in �.

Here hn : � × [0,∞) → R are Carathéodory functions satisfying
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|hn(x, s)| ≤ b(x)(1 + s) for x ∈ �, and s ≥ 0,

where b ∈ Lr(�), r > N . Then {un} has a convergent subsequence in C1(�). Indeed, by using the 
above inequality on hn, Hölder’s inequality and the Sobolev embedding theorem, we can derive 
that ‖un‖W 2,σk (�) is bounded for each σk = 2N

N−2k
, k = 1, 2, 3, . . . . Hence, employing Sobolev’s 

embedding theorem again, we obtain that ‖un‖C1+θ (�) is bounded for some θ ∈ (0, 1). The de-
sired conclusion follows by the Ascoli–Arzelà theorem. We also note that a similar argument 
applies to the analogous Neumann problem.

Proof of Theorem 1.1. Assume by contradiction that {an} is a sequence such that a−
n → 0 in 

Lr(�) and un are nontrivial nonnegative solutions of (P ) with a = an, satisfying that un /∈ P◦
D . 

Let us stress the fact that a+
n = a+ does not depend on n. We claim that {un} is bounded in 

H 1
0 (�). Indeed, by our assumptions on f , for any ε > 0 there exists Cε > 0 such that

0 ≤ f (s) ≤ Cε + εs, ∀s ≥ 0. (3.1)

Hence, for some C, C̃ε > 0, we have

‖un‖2
H 1

0 (�)
=

∫
�

|∇un|2 ≤
∫
�

a+(x) (Cε + εun)un ≤ C̃ε‖un‖H 1
0 (�) + Cε‖un‖2

H 1
0 (�)

,

where we have used Poincaré´s inequality. Taking ε > 0 small enough, we deduce that {un}
is bounded in H 1

0 (�). We can then assume that un ⇀ u0 in H 1
0 (�), un → u0 in Lp(�), with 

p ∈ (1, 2∗), and un → u0 a.e. in �, for some u0. We claim that u0 �≡ 0. Indeed, if u0 ≡ 0 then, 
since un → 0 in Lp(�), an is bounded in Lr(�), and∫

�

∇un∇φ =
∫
�

an(x)f (un)φ, ∀φ ∈ H 1
0 (�), (3.2)

taking φ = un we see that un → 0 in H 1
0 (�), which contradicts Lemma 2.4. Therefore u0 �≡ 0, as 

claimed. In addition, since un ⇀ u0 in H 1
0 (�), recalling (3.1) and choosing φ = un −u0 in (3.2), 

we obtain un → u0 in H 1
0 (�). Moreover, since a−

n → 0 in Lr(�), u0 is a nontrivial nonnegative 
solution of { −�u0 = a+(x)f (u0) in �,

u0 = 0 on ∂�.

By the strong maximum principle and Hopf’s Lemma, we have u0 ∈ P◦
D . Furthermore, standard 

elliptic regularity yields, up to a subsequence, that un → u0 in C1(�) (see Remark 3.1, with 
hn(x, s) = an(x)f (s)). Thus we must have un ∈ P◦

D for n large enough, which contradicts the 
assumption that un /∈P◦

D . �
Proof of Theorem 1.3. First we note that, for every c > 0, u is a nonnegative solution of (PD)
if and only if v := c1/(1−q)u is a nonnegative solution of (PD) with a replaced by ca. Let �′ �= ∅
be an open connected component of �+. Since λ1(ca, �′) = c−1λ1(a, �′) → 0 as c → ∞, we 
can then assume without loss of generality that λ1(a, �′) < 1.
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Assume by contradiction that qn → 1− and un are nontrivial nonnegative solutions of (PD)
with q = qn and un /∈ P◦

D .
First we suppose that {un} is bounded in H 1

0 (�). We can assume that un ⇀ u0 in H 1
0 (�), 

un → u0 in Lp(�) with p ∈ (1, 2∗), and un → u0 a.e. in �, for some u0. From∫
�

∇un∇(un − u0) =
∫
�

a (x)u
qn
n (un − u0) → 0,

we infer that un → u0 in H 1
0 (�). By Lemma 2.6 (i), we have that u0 �≡ 0. Moreover, u0 satisfies

−�u0 = a (x)u0, u0 ≥ 0, u0 ∈ H 1
0 (�).

We deduce then, by Remark 3.1 (with hn(x, s) = a(x)sqn ), that un → u0 in C1(�), up to a 
subsequence. Moreover, by the strong maximum principle and Hopf’s Lemma we get that u0 ∈
P◦

D and consequently un ∈P◦
D for n large enough, which yields a contradiction.

We suppose now that {un} is unbounded in H 1
0 (�). Then we can assume that

‖un‖ := ‖un‖H 1
0 (�) → ∞, vn := un

‖un‖ ⇀ v0 in H 1
0 (�),

vn → v0 in Lp(�),with p ∈ (1,2∗), and vn → v0 a.e. in �,

for some v0. Note that vn satisfies

−�vn = a (x)
v

qn
n

‖un‖1−qn
, vn ≥ 0, vn ∈ H 1

0 (�). (3.3)

Since ‖un‖ ≥ 1 for n large enough, we have either ‖un‖1−qn → ∞ or ‖un‖1−qn is bounded. In 
the first case, from (3.3) we have

1 = ‖vn‖2 =
∫
�

a (x) v
qn+1
n

‖un‖1−qn
→ 0,

which is a contradiction. Now, if ‖un‖1−qn is bounded then we can assume that ‖un‖1−qn →
d ≥ 1. From (3.3), we obtain∫

�

∇v0∇φ = 1

d

∫
�

a (x) v0φ, ∀φ ∈ H 1
0 (�),

i.e.

−�v0 = 1
a (x) v0 in �, v0 ∈ H 1

0 (�).

d
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In addition, vn → v0 in H 1
0 (�), so that v0 �≡ 0 and v0 ≥ 0. Once again, by the strong maximum 

principle and Hopf’s Lemma, we deduce that v0 ∈ P◦
D . Furthermore, recalling Remark 3.1 (with 

hn(x, s) = a(x)‖un‖qn−1sqn ) we have that vn → v0 in C1(�), up to a subsequence. Consequently 
vn ∈P◦

D for n large enough. Hence un ∈ P◦
D , and we get another contradiction, which concludes 

the proof. �
Proof of Theorem 1.7. We proceed as in the proof of Theorem 1.3: we assume by contradiction 
that qn → 1−, un are nontrivial nonnegative solutions of (PN ) with q = qn, and un �∈P◦

N .
First we suppose that {un} is unbounded in H 1(�). Then we can assume that

‖un‖ := ‖un‖H 1(�) → ∞, vn := un

‖un‖ ⇀ v0 in H 1(�),

vn → v0 in Lp(�),with p ∈ (1,2∗), and vn → v0 a.e. in �,

for some v0. Note that vn satisfies

−�vn = a (x)
v

qn
n

‖un‖1−qn
, vn ≥ 0, vn ∈ H 1(�), (3.4)

and so we have ∫
�

∇vn∇φ =
∫
�

a(x)
v

qn
n

‖un‖1−qn
φ, ∀φ ∈ H 1(�).

Now, if ‖un‖1−qn → ∞, taking φ = vn we obtain that 
∫
�

|∇vn|2 → 0, which implies that 
vn → v0 in H 1(�) and v0 is a nonnegative constant. Since ‖vn‖ = 1, we infer that v0 is a positive 
constant. By Remark 3.1, we have vn → v0 in C1(�). Consequently, vn ∈P◦

N for n large enough, 
which yields a contradiction.

On the other hand, if ‖un‖1−qn is bounded, reasoning as in the proof of Theorem 1.3 we derive 
now that v0 satisfies

−�v0 = 1

d
a (x) v0 in �, with

∂v0

∂ν
= 0 on ∂�.

In addition, vn → v0 in H 1(�), so that v0 �≡ 0 and v0 ≥ 0. By the strong maximum principle, we 
deduce that v0 ∈ P◦

N . Once again, by Remark 3.1, we have vn → v0 in C1(�), so that again we 
reach a contradiction.

Now, if {un} is bounded in H 1(�) then we can argue again as in the proof of Theorem 1.3. 
Indeed, by Lemma 2.6 (ii), we have that v0 �≡ 0. The rest of the argument is similar, so we omit 
it.

Finally, the non-existence assertion follows as in the proof of Corollary 2.1 in [5]. �
Proof of Corollary 1.4. We first claim that (P ) admits a nontrivial nonnegative solution u. In-
deed, let u := ϕγ,0, where ϕγ,0 is given by (2.6) (with δ = γ and ε = 0). Using the condition 
γ
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that lim
s→0+

f (s)

s
= ∞ and arguing as in the first part of the proof of Lemma 2.2, it is easy to see 

that, for all γ > 0 sufficiently small, uγ is a (nonnegative) subsolution of (P ). On the other side, 
let ψ > 0 be the unique solution of the problem{ −�ψ = a+(x) in �,

ψ = 0 on ∂�.

Since lim
s→∞

f (s)

s
= 0, we note that, for every k > 0 large enough, uk := kψ is a supersolution of 

(P ). Indeed, there exists C > 0 such that

f (s) ≤ 1

2‖ψ‖L∞(�)

s + C, s ≥ 0.

It follows that

−�(kψ) − a(x)f (kψ) ≥ a+(x)

(
k

2
− C

)
≥ 0 in �, if k ≥ 2C.

Moreover, since uγ = 0 in a neighborhood of ∂�, making γ smaller and k larger if necessary, 
we have that uγ ≤ uk , and it follows that (P ) has a nontrivial nonnegative solution u.

Since 
∥∥a−∥∥

Lr(�)
< δ, from Theorem 1.1, we know that any nontrivial nonnegative solution 

of (P ) belongs to P◦
D . In particular, u ∈P◦

D .
Finally, by the assumptions on f and Theorem 2.1 in [10], we also know that there is at most 

one positive solution of (P ). Therefore there are no other nontrivial nonnegative solutions of 
(P ). �
Proof of Corollary 1.5. The proof is similar to the previous one. It suffices to note that 
f (s) = sq satisfies (H1), so that the previous proof and Theorem 1.3 yield the existence as-
sertion. In addition, f (s) = sq satisfies the conditions of Corollary 1.4, so that the nonexistence 
assertion is proved in the same way. �
Proof of Corollary 1.8. We set now

I (u) :=
∫
�

(
1

2
|∇u|2 − 1

q + 1
a(x)|u|q+1

)
, for u ∈ H 1(�).

We claim that I is coercive on H 1(�). Indeed, assume by contradiction that

un ∈ H 1(�), ‖un‖ := ‖un‖H 1(�) → ∞, and I (un) is bounded from above.

We may assume that

vn := un

‖un‖ ⇀ v0 in H 1(�), and vn → v0 in Lp(�) for p ∈ (1,2∗),

for some v0. Then
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1

2

∫
�

|∇vn|2 − 1

(q + 1)‖un‖1−q

∫
�

a(x)|vn|q+1 = I (un)

‖un‖2
,

so that 
∫
�

|∇vn|2 → 0. It follows that vn → v0 in H 1(�) and v0 is a nonzero constant. Moreover, 
from

− 1

q + 1

∫
�

a(x)|vn|q+1 <
I (un)

‖un‖q+1
,

we have that ∫
�

a(x)|v0|q+1 = lim
∫
�

a(x)|vn|q+1 ≥ 0,

and consequently 
∫
�

a ≥ 0, which contradicts our assumption. Therefore I is coercive so that 
it has a global maximum. Taking u0 such that 

∫
�

a(x)|u0|q+1 > 0, we see that I (tu0) < 0 if 
t > 0 is sufficiently small. This shows that I has a nontrivial global minimizer. Finally, since I is 
even, it has a nonnegative global minimizer, which is a nontrivial nonnegative solution of (P ′). 
By Theorem 1.7, this solution (and any other nontrivial nonnegative solution) belongs to P◦

N for 
q0 < q < 1.

Lastly, reasoning exactly as in Lemma 3.1 in [5], we infer that there are no other nontrivial 
nonnegative solutions of (PN ). �
Proof of Theorem 1.9. Note that Theorem 1.3 says that AD is nonempty. Now, first we show, 
via the continuity argument used in the proofs of Theorems 1.3 and 1.7, that AD is open. Indeed, 
assume to the contrary that there exist q ∈AD and qn /∈AD such that qn → q . We take nontrivial 
nonnegative solutions un /∈ P◦

D of (PD) with q = qn. Using Lemma 2.6 and arguing as in the 
proof of Theorem 1.3, we may deduce that {un} is bounded in H 1

0 (�) and consequently, up to 
a subsequence, un → u0 in C1(�), where u0 is a nontrivial nonnegative solution of (PD). Since 
q ∈ AD , we have u0 ∈ P◦

D , and so un ∈ P◦
D for n large enough, which is a contradiction. Thus 

AD is open.
Next we prove that AD is connected. To this end, we show that if q0 ∈ AD then (q0, 1) ⊂ AD . 

Let q0 ∈AD . By Lemma 2.7, we know that(
q0,

1

2 − q0
− σ0

]
⊂AD

with σ0 = 1
10

(q0−1)2

2−q0
, where (q0−1)2

2−q0
is the length of the interval (q0, 1

2−q0
). By iteration, since 

q1 = 1
2−q0

− σ0 ∈ A, we have, again by Lemma 2.7, that

(
q1,

1

2 − q1
− σ1

]
⊂AD,

where σ1 = 1 (q1−1)2
. More generally, we have
10 2−q1
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(
qn−1,

1

2 − qn−1
− σn−1

]
⊂AD,

where σn := 1
10

(qn−1)2

2−qn
, and qn := 1

2−qn−1
− σn−1. Then, we obtain by induction that {qn} is 

nondecreasing and qn ≤ 1, so that qn → q∗ for some q∗ ≤ 1. Passing to the limit as n → ∞, we 
have

q∗ = 1

2 − q∗
− 1

10

(q∗ − 1)2

2 − q∗
,

so that 9
10

(q∗−1)2

2−q∗ = 0, and thus, q∗ = 1. Hence we have proved that (q0, 1) ⊂AD .
Finally, the proof that AN is open and connected can be carried out in the same manner as 

for AD . In addition, we know by Corollary 1.8 that 
∫
�

a < 0 is sufficient for the existence of 
some q ∈ AN . The proof is now complete. �
4. Positivity results for concave-convex type problems

As an application of some of our previous results, we consider now the problem{ −�u = λa(x)uq + g(u) in �,

u = 0 on ∂�,
(Pλ)

where now a ∈ L∞(�), 0 < q < 1, λ > 0, and N ≥ 3. In addition, we assume that g : [0, ∞) →
[0, ∞) is continuous and superlinear in the following sense:

lim
s→0+

g(s)

s
= 0 and lim

s→∞
g(s)

sp
= 1, for some 1 < p <

N + 2

N − 2
. (H4)

We shall also assume that g(s) > 0 for s > 0.
The problem above has been investigated in [3] for a ≡ 1, and g(s) = sp . The authors proved 

that (Pλ) has two positive solutions for λ > 0 sufficiently small. This result was extended to a 
more general nonlinearity, with a ≥ 0, in [9]. In addition, in [8], the authors allowed a to change 
sign and proved the existence of two nontrivial nonnegative solutions of (Pλ).

The growth condition at infinity in (H4) ensures, in particular, an a priori bound for nonnega-
tive solutions of (Pλ) (see [2], and also [17]), which will be used to prove the following positivity 
result:

Theorem 4.1. Assume (H2) and (H4). In addition, assume that every nontrivial nonnegative 
solution of (PD) belongs to P◦

D . Then there exists λ0 > 0 such that every nontrivial nonnegative 
solution of (Pλ) belongs to P◦

D for 0 < λ < λ0.

Proof. Assume by contradiction that λn → 0+ and un are nontrivial nonnegative solutions of 
(Pλ) with λ = λn and un /∈ P◦

D . By the a priori bounds in [2], there exists K > 0 such that 
‖un‖∞ ≤ K for every n. It follows that {un} is bounded in H 1

0 (�). Thus, we can assume that 
un ⇀ u0 in H 1

0 (�), un → u0 in Ls(�), 1 < s < 2∗, and un → u0 a.e. in �, for some u0. Taking 
as test function un −u0 in (Pλn) we see that un → u0 in H 1

0 (�) and u0 is a solution of (Pλ) with 
λ = 0. Moreover, by elliptic regularity, we have, up to a subsequence, that un → u0 in C1(�), 
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see Remark 4.2 below. If u0 �≡ 0 then, by the strong maximum principle, we have that u0 ∈ P◦
D , 

and consequently un ∈ P◦
D for n large enough, which provides a contradiction. Now, if u0 ≡ 0, 

then we consider vn := λ
1

q−1
n un. We see that vn are nontrivial nonnegative solutions of{
−�v = a(x)vq + λ

1
q−1 g(λ

1
1−q v) in �,

v = 0 on ∂�,

with λ = λn. Hence, vn are nontrivial nonnegative supersolutions of{ −�v = a(x)vq in �,

v = 0 on ∂�,

with λ = λn.
We claim that vn �≡ 0 in �+. Indeed, note that if vn ≡ 0 in �+ then un ≡ 0 in �+, so that∫

�

|∇un|2 ≤
∫
�

g(un)un ≤ ε‖un‖2
H 1

0 (�)
+ Cε‖un‖p+1

H 1
0 (�)

.

Taking ε > 0 sufficiently small we see that ‖un‖H 1
0 (�) ≥ C > 0, which contradicts un → 0 in 

H 1
0 (�). Therefore the claim is proved. Since �+ has finitely many connected components, 

we can assume that vn �≡ 0 in some fixed subdomain �′ ⊂ �+. Let φ be as in the proof of 
Lemma 2.2. Arguing as in that proof, we have that εφ is a nonnegative subsolution of

−�u = a(x)uq in B,

where B is an open ball such that B ⊂ �′. We extend φ by zero to � \ B . For ε > 0 small 
enough, we have that εφ ≤ vn for every n. Thus, we find a nonnegative solution wn of (P )
such that εφ ≤ wn ≤ vn. But, by our assumption, we have that wn ∈ P◦

D , which contradicts the 
assumption that vn /∈P◦

D . The proof is now complete. �
Remark 4.2. In the same way as Remark 3.1, we give some further details on the regularity 
argument used in the previous proof. We set now

hλ(x, s) := λa(x)sq + g(s)

and use the conditions

a ∈ L∞(�), 0 < q < 1, and lim
s→∞

g(s)

sp
= 1 for some 1 < p <

N + 2

N − 2
,

to infer that, given λ > 0, there exists C > 0 such that

|hλ(x, s)| ≤ C(1 + sp) for x ∈ �, s ≥ 0, and |λ| ≤ λ.

In the same manner as in Remark 3.1, we can deduce that ‖un‖W 2,σk (�) is bounded for each 

σk = 2N , k = 1, 2, 3, . . . , where

pk
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pk = 4p

p − 1
− pk

(
4

p − 1
− (N − 2)

)
.

Since p > 1 and 4
p−1 − (N − 2) > 0, we can choose σk > N such that ‖un‖W 2,σk (�) is bounded. 

Then, the argument proceeds in the same way as in Remark 3.1.

As a consequence of Theorem 4.1, we obtain two positive solutions of (Pλ) for λ > 0 small, 
if either a− is small or q is close to 1:

Corollary 4.3. Assume (H2) and (H4). Then there exist δ > 0 and q0 ∈ (0, 1) such that, if either 
‖a−‖Lr(�) < δ or q0 < q < 1, then there exists λ0 > 0 with the following properties:

(i) any nontrivial nonnegative solution of (Pλ) belongs to P◦
D for 0 < λ < λ0.

(ii) (Pλ) has two solutions in P◦
D for 0 < λ < λ0.

Proof. (i) We apply Theorems 1.1 and 1.3 to (PD) and obtain, respectively, δ > 0 and q0 ∈
(0, 1) such that every nontrivial nonnegative solution of (PD) belongs to P◦

D if either 
‖a−‖Lr(�) < δ or q0 < q < 1. Theorem 4.1 yields the conclusion.

(ii) We use Theorem 2.1 from [8]. One can easily show that assumptions (H0)–(H5) from [8] are 
satisfied under our conditions. Thus there exists λ > 0 such that for 0 < λ < λ0 there exist 
two nontrivial nonnegative solutions of (Pλ). Decreasing λ0 if necessary, by the previous 
item, we infer that these solutions belong to P◦

D if either ‖a−‖Lr(�) < δ or q0 < q < 1. �
Remark 4.4. Let us set

BD := {λ > 0 : any nontrivial nonnegative solution of (Pλ) belongs to P◦
D},

and assume (H2), (H4), and either ‖a−‖Lr(�) < δ or q0 < q < 1, where δ and q0 are provided 
by Corollary 4.3. Then (0, λ0) ⊂ BD . Moreover, arguing as in the proof of Theorem 4.1 we can 
show that BD is an open set. Indeed, one may easily see that the proof of Theorem 4.1 carries on 
taking now a sequence λn → λ0 ∈ BD .

We establish now a result analogue to Theorem 4.1 for the problem{ −�u = λa(x)uq + g(u) in �,
∂u
∂ν

= 0 on ∂�,
(Qλ)

Instead of (H4), we shall assume now

lim
s→0+

g(s)

s
= 0 and lim

s→∞
g(s)

sp
= 1, for some 1 < p <

N + 1

N − 1
. (H ′

4)

The above problem, with g(s) = sp , has been recently investigated in [19]. The authors estab-
lished existence and multiplicity results for nontrivial nonnegative solutions of (Qλ), for λ > 0
sufficiently small. Furthermore, the asymptotic behavior of these solutions as λ → 0+ provides 
the positivity of some of these solutions, in certain cases. We shall now prove a general positivity 
result for (Qλ):
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Theorem 4.5. Assume (H2) and (H ′
4). In addition, assume that every nontrivial nonnegative 

solution of (PN ) belongs to P◦
N . Then there exists λ0 > 0 such that every nontrivial nonnegative 

solution of (Qλ) belongs to P◦
N for 0 < λ < λ0.

Proof. The proof is similar to the one of Theorem 4.1. Again by the a priori bounds of [2] we get 
that {un} is bounded in H 1(�). To show that if un → 0 in H 1(�) then un �≡ 0 in �+, we proceed 
in the following way: assume the contrary and set wn := un‖un‖ , where ‖un‖ := ‖un‖H 1(�). So we 

can assume that wn ⇀ w0 in H 1(�), wn → w0 in Ls(�), with 1 < s < 2∗, and wn → w0 a.e.
in �, for some w0. Thus, from ∫

�

|∇un|2 ≤
∫
�

g(un)un,

we obtain that ∫
�

|∇wn|2 ≤
∫
�

g(‖un‖wn)

‖un‖ wn =
∫

supp wn

g(‖un‖wn)

‖un‖wn

w2
n

Since ‖un‖ → 0 and g(s)
s

→ 0 as s → 0+, we easily see that∫
�

|∇wn|2 → 0,

so that wn → w0 in H 1(�) and w0 is a positive constant. This contradicts the assumption that 
wn ≡ 0 in �+. The rest of the proof carries on in a similar way. �
Corollary 4.6. Assume (H2) and (H ′

4). Let q0 ∈ (0, 1) be given by Theorem 1.7. If q0 < q < 1
then there exists λ0 > 0 such that any nontrivial nonnegative solution of (Qλ) belongs to P◦

N for 
0 < λ < λ0.

Corollary 4.7. Let g(s) = sp , with 1 < p < N+1
N−1 , and assume q0 < q < 1, where q0 ∈ (0, 1) is 

given by Theorem 1.7. If 
∫
�

a < 0 then there exists λ0 > 0 such that (Qλ) has two solutions in 
P◦

N for 0 < λ < λ0.

Proof. We apply Corollary 1.3 (2) from [19] to obtain λ0 > 0 such that (Qλ) has two solutions 
u1,λ, u2,λ such that u2,λ > u1,λ ≥ 0 on � for 0 < λ < λ0. By Corollary 4.6, decreasing λ0 if 
necessary, we have that u1,λ and u2,λ belong to P◦

N . �
Remark 4.8. Let us set

BN := {λ > 0 : any nontrivial nonnegative solution of (Qλ) belongs to P◦
N }.

We assume that (H2), (H ′
4) hold, and q0 < q < 1, where q0 is provided by Corollary 4.6. Then, 

by arguing in the same way as for (Pλ), we observe that (0, λ0) ⊂ BN , and in addition, BN is 
open.
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