期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:267
On the long time behavior of a tumor growth model
Article
Miranville, Alain1,2,3  Rocca, Elisabetta4,5  Schimperna, Giulio4,5 
[1] Univ Poitiers, Lab Math & Applicat, UMR CNRS 7348, Equipe DACTIM MIS,SP2MI, Blvd Marie & Pierre Curie, F-86962 Futuroscope, France
[2] Fudan Univ, Shanghai, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen, Fujian, Peoples R China
[4] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[5] CNR, IMATI, Via Ferrata 5, I-27100 Pavia, Italy
关键词: Tumor growth;    Phase field model;    Initial-boundary value problem;    Well-posedness;    Dissipativity;    Global attractor;   
DOI  :  10.1016/j.jde.2019.03.028
来源: Elsevier
PDF
【 摘 要 】

We consider the problem of the long time dynamics for a diffuse interface model for tumor growth. The model describes the growth of a tumor surrounded by host tissues in the presence of a nutrient and consists in a Cahn-Hilliard-type equation for the tumor phase coupled with a reaction-diffusion equation for the nutrient concentration. We prove that, under physically motivated assumptions on parameters and data, the corresponding initial-boundary value problem generates a dissipative dynamical system that admits the global attractor in a proper phase space. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_03_028.pdf 1024KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次