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Abstract

We consider the problem of the long time dynamics for a diffuse interface model for tumor growth. The 
model describes the growth of a tumor surrounded by host tissues in the presence of a nutrient and consists 
in a Cahn-Hilliard-type equation for the tumor phase coupled with a reaction-diffusion equation for the 
nutrient concentration. We prove that, under physically motivated assumptions on parameters and data, 
the corresponding initial-boundary value problem generates a dissipative dynamical system that admits the 
global attractor in a proper phase space.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

One of the main examples of complex systems studied nowadays in both the biomedical and 
the mathematical literature refers to tumor growth processes. In particular, there has been a recent 
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surge in the development of phase field models for tumor growth. These models aim to describe 
the evolution of a tumor mass surrounded by healthy tissues by taking into account biological 
mechanisms such as proliferation of cells via nutrient consumption, apoptosis, chemotaxis and 
active transport of specific chemical species. In particular, we will consider here a model that fits 
into the framework of diffuse interface models for tumor growth. In this setting the evolution of 
the tumor is described by means of an order parameter ϕ which represents the local concentration 
of tumor cells; the interface between the tumor and healthy cells, rather than being represented as 
a surface, is seen as a (narrow) layer separating the regions where ϕ = ±1, with ϕ = 1 denoting 
the tumor phase and ϕ = −1 the healthy phase. Note that in the case of an incipient tumor, 
i.e., before the development of quiescent cells, the representation of the tumor growth process 
is often given by a Cahn–Hilliard equation [4] for ϕ coupled with a reaction-diffusion equation 
for the nutrient σ (cf., e.g., [9,19–21]). We will consider here this type of situation; we just 
mention the fact that more sophisticated models may distinguish between different tumor phases 
(e.g., proliferating and necrotic), or, treating the cells as inertia-less fluids, include the effects of 
fluid flow into the evolution of the tumor, leading to (possibly multiphase) Cahn-Hilliard-Darcy 
systems [8,19,30].

In this work, our main purpose is to consider the long time dynamics of a Cahn-Hilliard-
reaction-diffusion tumor growth model recently introduced in [19]. On the other hand, in com-
parison with [19], we have neglected here the effects of chemotaxis and active transport (a more 
complete model including these effects may be the topic of a future work). Namely, we consider 
the following PDE system:

ϕt − �μ = (Pσ − A)h(ϕ), (1.1)

μ = −�ϕ + ψ ′(ϕ), (1.2)

σt − �σ = −Cσh(ϕ) + B(σs − σ), (1.3)

settled in � × (0, +∞), � being a smooth domain of R3, and complemented with the Cauchy 
conditions and with no-flux (i.e., homogeneous Neumann) boundary conditions for all unknowns. 
As already mentioned, ϕ represents the tumor phase concentration, σ is the concentration of a 
nutrient for the tumor cells (such as oxygen or glucose), and μ is the chemical potential of the 
“phase transition” from healthy to tumor cells. The parameters P, A, B, C are assumed to be 
strictly positive constants and σs ∈ (0, 1). Moreover, in order to guarantee dissipativity of the 
process, some compatibility conditions will be needed. Actually, these conditions will be intro-
duced in Assumption 2.8 below and discussed in more detail in Remark 2.9 and in Subsection 3.4. 
Here we limit ourselves to outlining the physical meaning of the parameters. Namely, P denotes 
the tumor proliferation rate, A the apoptosis rate, C the nutrient consumption rate, and B the 
nutrient supply rate. The function h is assumed to be monotone increasing, nonnegative in the 
“physical” interval [−1, 1], and normalized so that h(−1) = 0 and h(1) = 1. The term Pσh(ϕ)

models the proliferation of tumor cells, which is proportional to the concentration of the nutrient, 
the term Ah(ϕ) describes the apoptosis (death) of tumor cells, and Cσh(ϕ) models the consump-
tion of the nutrient by the tumor cells (owing to the monotonicity of h, it is higher if more tumor 
cells are present). The constant σs acts as a threshold and denotes the nutrient concentration in a 
pre-existing vasculature, where B(σs − σ) models the supply of nutrient from the blood vessels 
if σs > σ and the transport of nutrient away from the domain � if σs < σ . The right-hand side 
of (1.1) prescribes the local evolution of tumor mass: if Pσ − A is positive (which may occur 
for a large nutrient concentration), then the tumor mass increases, and it increases faster when 
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the density of tumor cells is high already (because h depends monotonically on ϕ). On the other 
hand, when Pσ − A is negative (which occurs for concentrations σ close to 0), then we have 
death of tumor cells, and, owing once more to the monotonicity of h, the death rate is higher 
when ϕ is larger. Finally, ψ ′ stands for the derivative of a double-well potential ψ . A typical 
example of potentials, meaningful in view of applications, has the expression

ψreg(r) = 1

4
(r2 − 1)2, r ∈R, (1.4)

but we may observe that in our analysis we can allow for more general regular potentials hav-
ing at least cubic and at most exponential growth at infinity. Hence, the polynomial potentials 
normally associated to the Cahn-Hilliard energy are also admissible here. On the other hand, we 
are not able to consider here the so-called singular potentials, e.g. of logarithmic type, which are 
also popular in connection with Cahn-Hilliard-based models (see, e.g., [25], cf. also [13] for an 
application of logarithmic potentials to multiphase tumor growth models). It is worth noting that 
our choice of a “regular” potential like (1.4) implies that we cannot guarantee ϕ to take values in 
the “physical” interval [−1, 1]. As a consequence, we will need to treat in the analysis also the 
values |ϕ| > 1 and, correspondingly, to extend the function h in order to cover such values. In 
addition to that, we need to check that the effects we want to describe still occur when |ϕ| > 1. 
In this respect, dissipativity is a very natural property because it somehow prevents ϕ to go very 
far from the significance interval [−1, 1] for large times and, in a sense, it provides a “physical” 
justification of our compatibility conditions on coefficients.

Let us now give, without any claim of completeness, a short overview of the recent mathe-
matical literature on diffuse-interface tumor growth models. Modeling tumor growth dynamics 
has recently become a major issue in applied mathematics (see, e.g., [1,8,30]). Numerical simu-
lations of diffuse interface models for tumor growth have been carried out in several papers (see, 
e.g., [8, Ch. 8]); nonetheless, a rigorous mathematical theory of the related systems of PDEs is 
still at its beginning and many important problems are still open. We may quote [5–7,10–12,15,
16] as mathematical references for Cahn-Hilliard-type models and [3,14,22,23] for models also 
including a transport effect described by Darcy’s law.

A further class of diffuse interface models that also include chemotaxis and transport effects 
has been subsequently introduced (cf. [17,19]); moreover in some cases the sharp interface limits 
of such models have been investigated generally by using formal asymptotic methods. Rigorous 
sharp interface limits have been however obtained in some special cases (see, e.g., the two recent 
works [24,28]).

On the other hand, the problem of characterizing the long time behavior of solutions to tumor 
growth models is still in its infancy. Up to our knowledge, the only reference available to date for 
Cahn-Hilliard-reaction-diffusion models is the work [11], where existence of the global attractor 
is proved in a phase space characterized by an a priori bound on the physical energy. However, the 
model considered in [11] has some notable differences with respect to the present one (cf. [20]
and see also [21,31]). In particular, in [11] the right-hand sides of (1.1) and (1.3) contain the 
chemical potential μ and this type of coupling implies that a total energy balance can actually be 
proved.

In this work, we prove the dissipativity of the system and the existence of a global attrac-
tor for the dynamical system generated by solutions of the initial-boundary value problem for 
(1.1)-(1.3) taking values in the natural phase space, which basically consists of the pairs (ϕ, σ)

having finite physical energy (cf. (2.29) below). The main mathematical difficulty in the proof 



JID:YJDEQ AID:9777 /FLA [m1+; v1.298; Prn:2/04/2019; 16:27] P.4 (1-27)

4 A. Miranville et al. / J. Differential Equations ••• (••••) •••–•••
stands in establishing the dissipativity of the dynamical process, i.e., existence of a uniformly ab-
sorbing set. Indeed, differently from standard Cahn-Hilliard models, here the spatial mean of ϕ

(i.e., the total mass of the tumor) is not conserved in time, but the tumor may grow or shrink 
in a way that is essentially prescribed by the right-hand side of (1.1) which can be seen as a 
source of tumor mass. It is then clear that, if this right-hand side remains, say, positive for large 
values of ϕ, then the mass of ϕ may grow indefinitely and there can be no absorbing set. For this 
reason, dissipativity is only expected to hold under suitable compatibility conditions between 
the proliferation function h and the various coefficients A, B, C, P, σs . Roughly speaking, these 
conditions (which are thoroughly discussed below, see for instance Remark 2.9) prescribe that, 
for large positive (negative) values of ϕ, the right-hand side of (1.1) must become negative (re-
spectively, positive) in such a way that the tumor concentration is forced to remain bounded in 
the L∞-norm uniformly for large values of the time variable. For this reason we need to assume 
in particular that, at least for ϕ << −1, h(ϕ) stays strictly negative (and not equal to 0 as was 
generally assumed in former contributions); otherwise we cannot prove a uniform bound from 
below on ϕ. We finally observe that, in view of our choice of no-flux boundary conditions, spa-
tially homogeneous solutions exist. Their behavior is analyzed in Subsection 3.4 by means of 
simple ODE techniques and in particular this gives further evidence of the fact that in absence of 
compatibility conditions on the coefficients, dissipativity of the process may fail.

The paper is organized as follows: in the next section, we list our assumptions on the coeffi-
cients and data, state the problem in a precise form and present our main results. Then, the last 
section is devoted to the corresponding proofs and to a discussion on the mentioned compatibility 
conditions and on the behavior of spatially homogeneous solutions.

2. Main results

We let � be a smooth bounded domain of R3 with boundary �. For simplicity, but with 
no loss of generality, we assume |�| = 1. We set H := L2(�) and V := H 1(�). We will use 
the same symbols H and V for denoting vector valued functions (we may write, for instance, 
∇ϕ ∈ H ). The standard scalar product in H will be noted as (·, ·). Since the immersion V ⊂ H

is continuous and dense, identifying H with its topological dual H ′ through the above scalar 
product we obtain the Hilbert triplet (V , H, V ′). The duality pairing between a generic Banach 
space X and its dual X′ will be generally noted as 〈·, ·〉X . We let R denote a weak form of the 
Laplace operator with Neumann boundary conditions. Namely, we set

R : V → V ′, 〈Rv, z〉V :=
∫
�

∇v · ∇z dx. (2.1)

For a generic function (or functional) v defined over �, we will note its spatial mean value as

v� := 1

|�| (v,1) = (v,1), (2.2)

the latter equality holding since |�| = 1. For, say, v ∈ V ′, the above holds replacing scalar prod-
ucts with duality pairings. We also recall the Poincaré-Wirtinger inequality

‖v − v�‖ ≤ c�‖∇v‖ ∀v ∈ V. (2.3)
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Next, for any ζ ∈ V ′ we set

V ′
0 := {ζ ∈ V ′ : ζ� = 0}, V0 := V ∩ V ′

0. (2.4)

The above notation V ′
0 is suggested just for the sake of convenience; indeed, we mainly see V0, V ′

0
as (closed) subspaces of V , V ′, inheriting their norms, rather than as a pair of spaces in duality.

Clearly, R maps V onto V ′
0 and its restriction to V0 is an isomorphism of V0 onto V ′

0. We 
denote by N : V ′

0 → V0 the inverse of R, so that for any u ∈ V and ζ ∈ V ′
0 there holds

〈Ru,N ζ 〉V0 = 〈RN ζ,u〉V = 〈ζ,u〉V . (2.5)

We can now introduce a set of assumptions on the coefficients and data that will be kept for the 
rest of the paper, noting that some results will in fact require more specific conditions.

Assumption 2.1. The coefficients are assumed to satisfy

P,A,B,C > 0, σs ∈ (0,1). (2.6)

The configuration potential ψ lies in C1,1
loc (R). Moreover its derivative is decomposed as a sum 

of a monotone part β and a linear perturbation:

ψ ′(r) = β(r) − λr, λ ≥ 0, r ∈R. (2.7)

The monotone part β is normalized so that β(0) = 0 and further complies with the growth con-
dition

∃ cβ > 0 : |β(r)| ≤ cβ(1 + ψ(r)) ∀ r ∈R, (2.8)

which is more or less equivalent to asking ψ to have at most an exponential growth at infinity. It 
will also be convenient to indicate by β̂ the antiderivative of β such that β̂(0) = 0. It then follows 
that β̂ takes only nonnegative values; moreover, from (2.7), it turns out that

ψ(r) = β̂(r) − λr2/2 + K for all r ∈ R, (2.9)

where K is an integration constant which, thanks to (2.8), can be chosen in such a way that 
minψ = 0. Only for the sake of proving uniqueness, condition (2.8) has to be slightly reinforced: 
we ask that there exists c > 0 such that

|β(r) − β(s)| ≤ c|r − s|(1 + |β(r)| + |β(s)|) ∀ r, s ∈R. (2.10)

Note that this is still consistent with having at most an exponential growth of β . Next, we assume 
that h is in C1(R), increasingly monotone and it satisfies at least h(−1) = 0 and h(r) ≡ 1 for all 
r ≥ 1. Moreover, we ask that there exist h ≥ 0 and ϕ ≤ −1 such that h(r) ≡ −h for all r ≤ ϕ. 
Note that, as a consequence, h is globally Lipschitz continuous. Finally, we assume the initial 
data to satisfy
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σ0 ∈ L∞(�), 0 ≤ σ0 ≤ 1 a.e. in �, (2.11)

ϕ0 ∈ V, ψ(ϕ0) ∈ L1(�). (2.12)

We note that the second condition in (2.11) is not strictly necessary for proving existence. On the 
other hand, it makes sense to assume it in view of the physical interpretation of σ as a nutrient 
concentration.

Remark 2.2. The simplest situation of a function h satisfying the above assumption is given by 
the “symmetric” case corresponding to h = 0 and ϕ = −1. On the other hand we will see in what 
follows that dissipativity of trajectories may not hold in such a case. This motivates our choice 
to consider the possibility of having h > 0.

Remark 2.3. As mentioned in the introduction, it would also be significant to consider the case 
when h(ϕ) = kϕ + h0(ϕ), where k > 0 and h0 is smooth and uniformly bounded; namely, h is 
decomposed as a main linear part plus a bounded perturbation. This situation is somehow simpler 
because, at least as long as we can guarantee that Pσ − A < 0, the linear part of h drives some 
mass dissipation effect in (1.1).

Remark 2.4. As will be clear in a while when we discuss dissipativity, condition (2.12) corre-
sponds to finiteness of the initial value of the “physical” energy (cf. (2.28) below). In particular, 
if ψ grows at infinity as a polynomial of (possibly large) degree p, then the latter of (2.12)
essentially prescribes that ϕ0 ∈ Lp(�).

Remark 2.5. An explicit expression of a potential satisfying our hypotheses and having very 
slow (linear) growth at infinity is the following:

ψ(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
− r2 if |r| ≤ 1

2 ,

(r − 1)2 if r ∈
(

1
2 ,2

)
,

(r + 1)2 if r ∈
(

− 2,− 1
2

)
,

2|r| − 3 if |r| ≥ 2.

(2.13)

Then, the conditions in Assumption 2.1 are satisfied with λ = � = 2. On the other hand, we will 
see below that a potential like that in (2.13) is not suitable for having dissipativity, which seems 
to require a faster than cubic (but at most exponential) growth rate at infinity. This growth rate is 
satisfied, for instance, by the standard double-well potential (1.4).

We are now ready to introduce our basic concept of weak solution:

Definition 2.6. We say that a triplet (ϕ, μ, σ) : (0, ∞) × � → R3 is a global weak solution to 
the tumor-growth model if the following conditions are satisfied:

(a) for every T > 0, there hold the regularity properties

ϕ ∈ H 1(0, T ;V ′) ∩ C0([0, T ];V ) ∩ L2(0, T ;H 2(�)), (2.14)

β(ϕ) ∈ L2(0, T ;H), (2.15)



JID:YJDEQ AID:9777 /FLA [m1+; v1.298; Prn:2/04/2019; 16:27] P.7 (1-27)

A. Miranville et al. / J. Differential Equations ••• (••••) •••–••• 7
μ ∈ L2(0, T ;V ), (2.16)

σ ∈ H 1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) ∩ L∞(0, T ;L∞(�)); (2.17)

(b) equations (1.1)-(1.3) are satisfied in the following weak sense:

ϕt + Rμ = (Pσ − A)h(ϕ) in V ′, a.e. in (0,∞), (2.18)

μ = Rϕ + ψ ′(ϕ) in H, a.e. in (0,∞), (2.19)

σt + Rσ = −Cσh(ϕ) + B(σs − σ), in V ′, a.e. in (0,∞); (2.20)

(c) there hold, a.e. in �, the initial conditions

ϕ|t=0 = ϕ0, σ |t=0 = σ0. (2.21)

Note that the homogeneous Neumann boundary conditions are now incorporated in the equa-
tions by definition of the operator R (cf. (2.1)). Observe also that (2.19) could in fact be inter-
preted as a pointwise relation (complemented with an explicit boundary condition) thanks to the 
regularity (2.14).

Our first result is devoted to proving well-posedness in the class of weak solutions:

Theorem 2.7. Let Assumption 2.1 hold. Then the tumor-growth model admits one and only one 
global in time weak solution in the sense of Definition 2.6. Moreover, for any T > 0 there exists 
σT ≥ 1 such that

0 ≤ σ(t, x) ≤ σT , for a.e. (t, x) ∈ (0, T ) × �, (2.22)

where we can take σT independent of time if B − Ch > 0 and, in particular, σT = 1 if h = 0.

It is worth observing that existence and uniqueness hold without assuming any compatibility 
conditions on the parameters P, A, B, C, σs . On the other hand, as far as one wants to prove 
dissipativity of the dynamical process associated to weak solutions, it seems necessary to take 
more restrictive assumptions. Note, for instance, that (2.22) may allow the L∞-norm of σ to 
increase in time. Hence, we introduce a new

Assumption 2.8. Let the parameters satisfy

h > 0, B − Ch > 0, (2.23)

Bσs

B − Ch
< 1, (2.24)

A − P
Bσs

B − Ch
> 0. (2.25)

Let also β have a superquadratic behavior at infinity, namely

∃κβ > 0,Cβ ≥ 0,pβ > 2 : β(r) sign r ≥ κβ |r|pβ − Cβ ∀ r ∈ R. (2.26)
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Remark 2.9. In order to provide some explanation on the above assumptions, we first observe 
that (2.23)-(2.24) essentially prescribe h to be strictly positive, but small. Whereas the choice 
h = 0 seems natural from the “physical” viewpoint, mathematically, the condition h > 0 is re-
quired for having dissipativity. Indeed, when h = 0, if ϕ ≤ −1 at some point (which we cannot 
exclude under our conditions on ψ ), then the right-hand side of (1.1) correspondingly vanishes. 
In particular, whenever ϕ(t, x) ≤ −1 for some t ≥ 0 and a.e. x ∈ �, then integrating (1.1) over 
� we obtain that (ϕ�)t = 0 at that t , i.e., globally there is no instantaneous tumor mass variation 
at t . We recall that, when dealing with the “standard” Cahn-Hilliard equation

ϕt − �μ = 0, (2.27)

which has zero right-hand side, the mass conservation constraint can be “embedded” into the 
definition of the phase space because it is an a priori information holding at any time and for all 
solutions. Here, however, we cannot do the same because the right-hand side of (1.1) may vanish 
at some point and have a sign elsewhere. Taking h > 0 prescribes that, if ϕ attempts to go below 
the value −1 (i.e., to assume a somehow “unphysical” value), then, at least for Pσ − A < 0, 
the right-hand side of (1.1) assumes a positive sign forcing ϕ to somehow “reenter” the physical 
interval. In this sense, the subsequent conditions (2.24)-(2.25) are finalized to keep the solution 
in the significance interval, and in particular to ensure that the forcing term (tumor mass source) 
given by the right-hand side of (1.1) has the appropriate sign at least for large |ϕ|. Additional 
considerations on this fact will be given in Subsection 3.4 below referring to the model case of 
spatially homogeneous solutions.

Our next result is actually devoted to proving that, if both Assumptions 2.1 and 2.8 hold, then 
weak solutions eventually lie in a bounded absorbing set in a proper phase space. To define the 
latter, we introduce the usual Cahn-Hilliard energy functional

E(ϕ) = 1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx, (2.28)

arising as the sum of the interfacial and configurational energy. Then, we can define the “energy 
space”

X := {
(ϕ,σ ) ∈ V × L∞(�) : ψ(ϕ) ∈ L1(�)

}
(2.29)

and correspondingly introduce the “magnitude” of an element (ϕ, σ) ∈X as

‖(ϕ,σ )‖X := ‖ϕ‖V + ‖σ‖L∞(�) + ‖ψ(ϕ)‖L1(�). (2.30)

Note that, in view of condition (2.22) (which holds with σ independent of T thanks to (2.23)), 
we already know that the component σ of any weak solution stays bounded in L∞(�) uniformly 
in time. Observe also that the quantity in (2.30) is not a true norm due to the occurrence of the 
nonlinear function ψ . On the other hand, convenience justifies the use of the above notation.

We can state our second result about dissipativity of the dynamical process generated by weak 
solutions:
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Theorem 2.10. Let Assumptions 2.1 and 2.8 hold. Then there exists a positive constant C0 inde-
pendent of the initial data and a time T0 depending only on the X -magnitude of the initial data 
such that any weak solution satisfies

‖(ϕ(t), σ (t))‖X ≤ C0 for every t ≥ T0. (2.31)

This property states that the dynamical system associated with our problem possesses a 
bounded absorbing set, i.e., a bounded subset of the phase space in which the images of all 
bounded sets of initial data enter in finite time; this property is often used as a mathematical 
definition of dissipation.

The final result of this paper is devoted to the existence of the global attractor. We recall that 
the global attractor is the unique compact set of the phase space which is invariant by the flow 
and attracts all bounded sets as time goes to infinity; as it is the smallest closed set satisfying such 
properties, it appears as a suitable object in view of the study of the asymptotic behavior of the 
system. Furthermore, once the existence of a bounded absorbing set is known, the existence of 
the global attractor follows from some compactness argument, e.g., the existence of a relatively 
compact absorbing set (this is typical of parabolic systems for which the trajectories regularize; 
one can speak, more generally, of asymptotic compactness of trajectories). We refer the reader 
to, e.g., [2,27,29] for more details.

Theorem 2.11. Let Assumptions 2.1, 2.8 hold. Then the dynamical system generated by weak 
trajectories on the phase space X admits the global attractor A. More precisely, A is a compact 
subset of X which is also bounded in H 2(�) × H 1(�) and uniformly attracts the trajectories 
emanating from any bounded set B ⊂X .

Remark 2.12. In view of the fact that system (1.1)-(1.3) has a good parabolic structure, we expect 
the elements (ϕ, σ) ∈A to be in fact smooth functions. More precisely their regularity may only 
be limited by the smoothness of the nonlinear functions h and ψ . In particular, if h and ψ are 
C∞, then the elements of the attractor are expected to be infinitely differentiable as well.

3. Proofs

3.1. Proof of Theorem 2.7: Well-posedness

Approximation and a priori estimates. The main ingredient of the existence proof consists 
in obtaining a suitable set of a priori estimates. To get them, we proceed here in a formal way 
by working directly on equations (1.1)-(1.3). The argument, however, may be easily justified 
within the framework of an appropriate regularization scheme. For the sake of brevity, we prefer 
not to detail any explicit approximation of the system; indeed, the situation seems to work very 
similarly with related models (cf. in particular [16]). A possible method will be sketched in 
Remark 3.2 below.

In what follows, we will denote by c > 0 and κ > 0 some generic positive constants (whose 
specific value may vary on occurrence) depending only on the given parameters of the system 
(and neither on the initial data, nor on any hypothetic approximation parameter). The symbol 
κ will be used in estimates from below. Specific values of the constants will be noted as ci, κi , 
i ≥ 1. Constants depending on additional parameters will be noted using subscripts (e.g., cT if 
the constant depends on the final time T ).
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To start with, we derive the basic boundedness properties for the nutrient. To this aim, we test 
(1.3) by −σ− (with σ− ≥ 0 denoting the negative part of σ ) to deduce

1

2

d

dt
‖σ−‖2 + ‖∇σ−‖2 ≤ c‖σ−‖2. (3.1)

We used here the uniform boundedness of h and the fact that B(σs − σ) is positive for σ ≤ 0
because σs > 0. Then, by (2.11) and the Gronwall lemma, we obtain that σ(t, x) ≥ 0 for (almost) 
every t ≥ 0 and x ∈ �.

To get an upper bound, we test (1.3) by (σ − σ)+ with σ ≥ 1 to be chosen below. Using the 
assumptions on h and performing standard manipulations, we deduce

1

2

d

dt
‖(σ − σ)+‖2 + ‖∇(σ − σ)+‖2≤ −

∫
�

(
(B − Ch)σ − Bσs

)
(σ − σ)+ dx

≤
∫
�

|B − Ch|(σ − σ)2+ dx −
∫
�

(
(B − Ch)σ − Bσs

)
(σ − σ)+ dx . (3.2)

We now have two cases. If B − Ch > 0, then we can always choose σ ≥ 1 large enough so that 
(B − Ch)σ − Bσs ≥ 0. As a consequence, the latter term on the right-hand side is nonpositive 
and we can apply Gronwall’s lemma to deduce that σ(t, x) ≤ σ for a.e. (t, x) ∈ (0, ∞) ×�. Note 
that, if h = 0 the above certainly holds with σ = 1 in view of the fact that σs < 1.

On the other hand, if B − Ch ≤ 0, then the above procedure fails because we cannot control 
the last term in (3.2). Nevertheless, an L∞-estimate on σ on finite times intervals can be obtained 
also in that case. Indeed, one may test (1.3) by σp−1 (recall that we already know that in any 
case σ ≥ 0) for a generic p > 2. Then the boundedness of h and easy computations give

1

p

d

dt
‖σ‖p

Lp(�) ≤ c
(
1 + ‖σ‖p

Lp(�)

)
, (3.3)

with c > 0 independent of p. Hence, setting yp := ‖σ‖p

Lp(�)
, we obtain the differential inequality

(1 + yp)′ ≤ cp(1 + yp), (3.4)

whence

‖σ(t)‖p

Lp(�) ≤ 1 + yp(t) ≤ (1 + yp(0))ecpt ≤ 2ecpt . (3.5)

Thus, taking the 1/p-power and then letting p ↗ ∞, we get the desired conclusion. Summariz-
ing, in any case we have obtained

‖σ‖L∞(0,T ;L∞(�)) ≤ cT . (3.6)

This relation may be intended as an a priori estimate independent of any hypothetic regularization 
parameter. Note that the constant on the right-hand side is independent of T if B − Ch > 0, and 
in particular it can be taken as cT = 1 if h = 0.
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As a next step, we derive the Energy estimate for the Cahn-Hilliard system. This is the basic 
a priori information that any hypothetic weak solution is expected to satisfy. To obtain it, we test 
(1.1) by μ, (1.2) by ϕt and sum up to obtain

d

dt

(1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx
)

+ ‖∇μ‖2 =
∫
�

(Pσ − A)h(ϕ)μdx. (3.7)

Then let us replace the expression for μ as given by (1.2):

d

dt

(1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx
)

+ ‖∇μ‖2 =
∫
�

(Pσ − A)
(
h′(ϕ)|∇ϕ|2 + h(ϕ)β(ϕ)

)
dx

+
∫
�

λ(A − Pσ)h(ϕ)ϕ dx + P

∫
�

h(ϕ)∇σ · ∇ϕ dx, (3.8)

where ψ ′(ϕ) has been decomposed according to (2.7). Let us now control the terms on the 
right-hand side. First, as a consequence of Assumption 2.1, |h(r)| + |h′(r)| ≤ c for every r ∈ R. 
Hence, using also (3.6),

∫
�

(Pσ − A)h′(ϕ)|∇ϕ|2 dx ≤ c
(
1 + ‖σ‖L∞(�)

)‖∇ϕ‖2 ≤ cT ‖∇ϕ‖2. (3.9)

Next, thanks to (2.8),

∫
�

(Pσ − A)h(ϕ)β(ϕ)dx ≤ c
(
1 + ‖σ‖L∞(�)

)(
1 +

∫
�

ψ(ϕ)dx

)
≤ cT + cT

∫
�

ψ(ϕ)dx. (3.10)

Finally, using also Young’s inequality it is not difficult to deduce

∫
�

λ(A − Pσ)h(ϕ)ϕ dx + P

∫
�

h(ϕ)∇σ · ∇ϕ dx

≤ 1

2
‖∇σ‖2 + cT

(
1 + ‖ϕ‖L1(�) + ‖∇ϕ‖2). (3.11)

Note that the above constants cT depend on T only through the L∞-norm of σ (cf. (3.6)). In order 
to control the first term on the right-hand side of (3.11), we test (1.3) by σ . Then, straightforward
calculations yield

1

2

d

dt
‖σ‖2 + ‖∇σ‖2 ≤ c

(
1 + ‖σ‖2). (3.12)

Summing (3.8) to (3.12) and using (3.9)-(3.11), we arrive at
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d

dt

(1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx + 1

2
‖σ‖2

)
+ ‖∇μ‖2 + 1

2
‖∇σ‖2

≤ cT

(
1 + ‖ϕ‖L1(�) + ‖∇ϕ‖2 + ‖σ‖2 +

∫
�

ψ(ϕ)dx

)
. (3.13)

Now, testing (1.1) by ϕ, using the uniform boundedness of σ and of the function h, and perform-
ing standard manipulations, we deduce

1

2

d

dt
‖ϕ‖2 ≤ 1

2
‖∇μ‖2 + 1

2
‖∇ϕ‖2 + c

(
1 + ‖ϕ‖2). (3.14)

Summing the above to (3.13) and recalling (2.9), we infer

d

dt

(1

2
‖ϕ‖2

V +
∫
�

ψ(ϕ)dx + 1

2
‖σ‖2

)
+ 1

2
‖∇μ‖2 + 1

2
‖∇σ‖2

≤ cT

(
1 + ‖ϕ‖2

V + ‖σ‖2 +
∫
�

ψ(ϕ)dx

)
. (3.15)

Hence, by Gronwall’s lemma, (3.15) provides the following set of a priori estimates:

‖ϕ‖L∞(0,T ;V ) ≤ cT , (3.16)

‖∇μ‖L2(0,T ;H) ≤ cT , (3.17)

‖ψ(ϕ)‖L∞(0,T ;L1(�)) ≤ cT , (3.18)

‖σ‖L2(0,T ;V )∩L∞(0,T ;H) ≤ cT , (3.19)

with cT as in (3.6).
Next, integrating (1.2) over � and using once more (2.8), we deduce

|μ�| =
∣∣∣∣
∫
�

μdx

∣∣∣∣ =
∣∣∣∣
∫
�

(β(ϕ) − λϕ)dx

∣∣∣∣ ≤ cT

(
1 +

∫
�

ψ(ϕ)dx

)
, (3.20)

where we have used (3.16) to control the λ-term. Recalling (3.18) we then infer

‖μ�‖L∞(0,T ) ≤ cT , (3.21)

which, combined with (3.17), gives in turn

‖μ‖L2(0,T ;V ) ≤ cT . (3.22)

Now, testing (1.2) by β(ϕ) and using (3.16), (3.22) and the monotonicity of β , it is a standard 
matter to deduce

‖β(ϕ)‖L2(0,T ;H) ≤ cT . (3.23)
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Then, a comparison of terms in (1.2) and elliptic regularity results give

‖ϕ‖L2(0,T ;H 2(�)) ≤ cT . (3.24)

Finally, we derive some estimates on the time derivatives of ϕ and σ . Multiplying (1.1) by a 
generic nonzero test function v ∈ V and using the previous estimates, we actually get

〈ϕt , v〉V = (∇μ,∇v) +
∫
�

(Pσ − A)h(ϕ)v dx, (3.25)

whence estimates (3.16), (3.22) and standard manipulations yield

‖ϕt‖L2(0,T ;V ′) ≤ cT . (3.26)

Operating in an analogue way with equation (1.3) we similarly obtain

‖σt‖L2(0,T ;V ′) ≤ cT . (3.27)

Remark 3.1. Using a more refined regularity argument in (1.2) and 3D Sobolev embeddings 
(see, e.g., [26]) one could improve (3.23)-(3.24) up to

‖β(ϕ)‖L2(0,T ;L6(�)) + ‖ϕ‖L2(0,T ;W 2,6(�)) ≤ cT . (3.28)

Weak sequential stability. We assume here to have a sequence of weak solutions (ϕn, μn, σn)

satisfying the a priori estimates obtained above uniformly with respect to the approximation pa-
rameter n. In other words, the constants c or cT on the right-hand sides of the bounds are assumed 
independent of n. We then prove that, up to the extraction of subsequences, (ϕn, μn, σn) tends 
in a suitable way to a triplet (ϕ, μ, σ) solving the tumor growth model in the sense of Defini-
tion 2.6 on the assigned but otherwise arbitrary time interval (0, T ). This argument, generally 
noted as a “weak stability property”, may be seen as an abbreviated procedure for passing to the 
limit in some approximation, for instance a Faedo-Galerkin scheme, that may also involve the 
regularization of some terms (see Remark 3.2 below for more details).

Actually, using the bounds (3.6), (3.16)-(3.19), (3.22)-(3.24), (3.26)-(3.27) and standard 
weak compactness argument, we are able to take a (nonrelabelled) subsequence of n such that 
(ϕn, μn, σn) → (ϕ, μ, σ) in the sense of weak or weak star convergence in proper Sobolev 
spaces. Moreover, using (3.26), (3.27), and the Aubin-Lions lemma, we obtain that (ϕn, σn)

tends to (ϕ, σ) strongly in some Lp-space, hence pointwise. This allows us to pass to the limit in 
the nonlinear terms thanks to continuity of h and β . In particular, we may observe that, combin-
ing (3.23) with the pointwise convergence of ϕn and using a generalized version of Lebesgue’s 
dominated convergence theorem, there follows

β(ϕn) → β(ϕ) weakly in L2(0, T ;H). (3.29)

Actually, even if in the approximation β is replaced by some regularization βn the above property 
still works (with βn(ϕn) in place of β(ϕn) on the left-hand side) up to adaptations, provided that 
one assumes that βn tends to β uniformly on compact subsets of R.
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Uniqueness. We give here a proof of uniqueness. A different (and somehow simpler) proof is 
given in [18] (cf. also [15]) in the case where ψ has polynomial (of degree four) growth. On the 
other hand, the argument given here works also for exponential ψ (cf. (2.10)). Assume to have 
two solutions (ϕ1, μ1, σ1) and (ϕ2, μ2, σ2) corresponding to two sets of initial data (ϕ1,0, σ1,0)

and (ϕ2,0, σ2,0). Then the differences (ϕ, μ, σ) := (ϕ1 − ϕ2, μ1 − μ2, σ1 − σ2) satisfy the fol-
lowing equations:

ϕt + Rμ = Pσh(ϕ1) + (Pσ2 − A)(h(ϕ1) − h(ϕ2)) in V ′, a.e. in (0,∞), (3.30)

μ = Rϕ + ψ ′(ϕ1) − ψ ′(ϕ2) in H, a.e. in (0,∞), (3.31)

σt + Rσ = −Cσh(ϕ1) − Cσ2(h(ϕ1) − h(ϕ2)) − Bσ, in V ′, a.e. in (0,∞); (3.32)

with the initial conditions

ϕ|t=0 = ϕ0, σ |t=0 = σ0, (3.33)

where ϕ0 := ϕ1,0 − ϕ2,0, σ0 := σ1,0 − σ2,0. In particular, integrating (3.30) over �, we obtain

(ϕ�)t =
∫
�

Pσh(ϕ1)dx +
∫
�

(Pσ2 − A)(h(ϕ1) − h(ϕ2))dx. (3.34)

Testing the above by ϕ� and using the boundedness of h and of σ2 with the Lipschitz continuity 
of h, we obtain

1

2

d

dt
|ϕ�|2 ≤ c

(|ϕ�|2 + ‖σ‖2 + ‖ϕ‖2). (3.35)

Next, let us take the difference of (3.30) and (3.34) and test it by N (ϕ −ϕ�). Simple calculations 
yield

1

2

d

dt
‖ϕ − ϕ�‖2

V ′ +
∫
�

μ(ϕ − ϕ�)dx ≤ c
(‖ϕ − ϕ�‖2

V ′ + ‖σ‖2 + ‖ϕ‖2). (3.36)

Now, testing (3.31) by ϕ − ϕ�, we infer

‖∇ϕ‖2 =
∫
�

μ(ϕ − ϕ�)dx −
∫
�

(ψ ′(ϕ1) − ψ ′(ϕ2))(ϕ − ϕ�)dx

≤
∫
�

μ(ϕ − ϕ�)dx + ϕ�

∫
�

(β(ϕ1) − β(ϕ2))dx + λ‖ϕ − ϕ�‖2, (3.37)

where we also used the decomposition (2.7) and the monotonicity of β .
Next, testing (3.32) by σ , using the Lipschitz continuity of h and performing standard manip-

ulations, we deduce

1 d ‖σ‖2 + ‖∇σ‖2 ≤ c
(‖σ‖2 + ‖ϕ‖2). (3.38)
2 dt
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Combining (3.35)-(3.38), we obtain

1

2

d

dt

(|ϕ�|2 + ‖ϕ − ϕ�‖2
V ′ + ‖σ‖2) + ‖∇ϕ‖2 + ‖∇σ‖2

≤ ϕ�

∫
�

(β(ϕ1) − β(ϕ2))dx + c
(‖ϕ − ϕ�‖2 + ‖σ‖2 + |ϕ�|2). (3.39)

In order to control the terms on the right-hand side we first observe that, thanks to the Poincaré-
Wirtinger inequality and to Ehrling’s lemma,

c‖ϕ − ϕ�‖2 ≤ 1

4
‖∇ϕ‖2 + c‖ϕ − ϕ�‖2

V ′ . (3.40)

To control the remaining term, we need to use assumption (2.10) and then we derive

ϕ�

∫
�

(β(ϕ1) − β(ϕ2))dx ≤ c|ϕ�|
∫
�

|ϕ|(1 + |β(ϕ1)| + |β(ϕ2)|
)

dx

≤ c|ϕ�|‖ϕ‖(1 + ‖β(ϕ1)‖ + ‖β(ϕ2)‖
)

≤ c|ϕ�|2(1 + ‖β(ϕ1)‖2 + ‖β(ϕ2)‖2) + c‖ϕ − ϕ�‖2 + c|ϕ�|2

≤ c|ϕ�|2(1 + ‖β(ϕ1)‖2 + ‖β(ϕ2)‖2) + c‖ϕ − ϕ�‖2
V ′ + 1

4
‖∇ϕ‖2. (3.41)

Thanks to (3.40) and (3.41), (3.39) gives

1

2

d

dt

(|ϕ�|2 + ‖ϕ − ϕ�‖2
V ′ + ‖σ‖2) + 1

2
‖∇ϕ‖2 + ‖∇σ‖2

≤ c|ϕ�|2(1 + ‖β(ϕ1)‖2 + ‖β(ϕ2)‖2) + c
(‖ϕ − ϕ�‖2

V ′ + ‖σ‖2). (3.42)

Then, using the regularity property (2.15) both for ϕ1 and for ϕ2 and applying Gronwall’s lemma, 
we get uniqueness whenever (ϕ0,1, σ0,1) = (ϕ0,2, σ0,2). In the general case, we obtain the con-
tinuous dependence estimate

|(ϕ1)�(t) − (ϕ2)�(t)|2 + ∥∥(
ϕ1(t) − (ϕ1)�(t)

) − (
ϕ2(t) − (ϕ2)�(t)

)∥∥2
V ′ + ‖σ1(t) − σ2(t)‖2

≤ CT

(
|(ϕ0,1)� − (ϕ0,2)�|2 + ∥∥(

ϕ0,1 − (ϕ0,1)�
) − (

ϕ0,2 − (ϕ0,2)�
)∥∥2

V ′ + ‖σ0,1 − σ0,2‖2
)
,

(3.43)

for every T > 0 and every t ∈ (0, T ], the constant CT > 0 depending on the X -magnitude of the 
initial data and on T .

Remark 3.2. As mentioned above, the procedure given to prove existence should in fact be per-
formed on a suitable approximation of the system. We now sketch one of the many possible ways 
to construct a discretization scheme. Actually, in view of the facts that the system (1.1)-(1.3) has 
a good semilinear parabolic structure and that the unknowns ϕ, μ, σ satisfy identical no-flux 
boundary conditions, it appears very natural to obtain existence of a weak solution by using the 
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Faedo-Galerkin method. Note that the variable μ can be easily eliminated by replacing (1.2)
into (1.1). Then, one can use as a “special” basis for the discretization the set of eigenfunctions 
of the Neumann Laplacian, properly normalized, e.g., with respect to the H -norm. In this way, 
(1.1)-(1.3) is converted into a system of two ODE’s for the discretized variables ϕ and σ . More-
over, these ODE’s are in normal form and only involve locally Lipschitz nonlinearities (indeed, 
both the nonlinear functions h and ψ ′ are assumed to have such a regularity, cf. Assumption 2.1). 
As a consequence, Cauchy’s theorem provides existence of one and only one local in time so-
lution to the Faedo-Galerkin discretized system. This solution is sufficiently smooth both with 
respect to space (because as a function of time it takes values in finite-dimensional subspaces 
consisting of regular functions) and to time variables (indeed it is at least C1 as a consequence 
of Cauchy’s theorem). For this reason, the a priori estimates reported above can be performed 
rigorously when one works on the discretized solution, with the only exception being given by 
the maximum principle used in order to prove uniform boundedness of σ . Indeed, that argu-
ment cannot be reproduced at the discretized level because it uses powers, or truncations, of σ
as test functions, which is not allowed once the equations are projected onto finite-dimensional 
subspaces. To overcome such a difficulty one may replace the function σ in (1.1) with a suit-
able truncation of it. In this way, the boundedness of σ required for the energy estimate (cf. in 
particular (3.10)-(3.11)) is “forced” and the argument still works. The resulting information is 
sufficient to take the limit in the Faedo-Galerkin scheme. After this is achieved, one can operate 
the maximum principle argument for σ at a second stage (i.e., on the limit version of (1.3)). 
The resulting L∞-bound on σ automatically eliminates the truncation operator from (1.1). We 
finally observe that all the estimates proved above are uniform over the assigned reference inter-
val (0, T ). Hence, standard extension arguments imply that, after taking the limit with respect to 
the approximation parameter, we obtain in fact a global in time solution.

3.2. Proof of Theorem 2.10: Dissipativity

As a first step, we consider some auxiliary ODE’s. Namely, we define S+ and S− as the 
solutions to the following Cauchy problems:

S′+ = −(B − Ch)S+ + Bσs, (3.44)

S+(0) = 1, (3.45)

and

S′− = (−B − C)S− + Bσs, (3.46)

S−(0) = 0. (3.47)

Then we can readily compute

S+(t) = e−(B−Ch)t + Bσs

B − Ch

(
1 − e−(B−Ch)t

)
, (3.48)

S−(t) = Bσs

B + C

(
1 − e−(B+C)t

)
. (3.49)
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Lemma 3.3. Let the assumptions of Theorem 2.10 hold. Let (ϕ, σ) be any weak solution to
(1.1)-(1.3). Then we have

S−(t) ≤ σ(t, x) ≤ S+(t) for every t ≥ 0 and x ∈ �. (3.50)

Proof. We first recall that σ(t, x) ≥ 0 for a.e. t ≥ 0, x ∈ � thanks to the minimum principle 
argument in the proof of Theorem 2.7 (cf. (3.1)). Then, we can prove that S− is a subsolution, 
namely the first inequality in (3.50) holds. Taking the difference between (1.3) and (3.46) we 
actually obtain

(σ − S−)′ − �(σ − S−) = −B(σ − S−) − C(σh(ϕ) − S−), (3.51)

whence testing by −(σ − S−)− and using the fact that h ≤ 1 we readily get the assert. Indeed, 
since σ ≥ 0, we notice that

C(σh(ϕ) − S−)(σ − S−)− ≤ C(σ − S−)(σ − S−)− ≤ 0. (3.52)

Analogously, the difference between (1.3) and (3.44) gives

(σ − S+)′ − �(σ − S+) = −B(σ − S+) − C(σh(ϕ) + S+h). (3.53)

Testing by (σ − S+)+, noting that

−C(σh(ϕ) + S+h)(σ − S+)+ ≤ −C(−σh + S+h)(σ − S+)+ ≤ Ch(σ − S+)2+, (3.54)

and recalling (2.23), we easily obtain the second assertion. �
Recalling (2.24) and (2.25), we can take ε > 0 to be a small number satisfying

2ε < A − P
Bσs

B − Ch
and

Bσs

B − Ch
+ ε

P
< 1. (3.55)

We can then prove the following.

Lemma 3.4. Let the assumptions of Theorem 2.10 hold. Let (ϕ, σ) be any weak solution in the 
sense of Definition 2.6. Then there exist T1 > 0 and C1 > 0 independent of the initial data such 
that

Bσs

C + B
− ε

P
≤ σ(t, x) ≤ Bσs

B − Ch
+ ε

P
for all t ≥ T1, a.e. x ∈ �, (3.56)

‖(ϕ(T1), σ (T1))‖X ≤ C1
(
1 + ‖(ϕ0, σ0)‖X

)
. (3.57)

Proof. Thanks to (3.50) the component σ evolves between the subsolution S− and the superso-
lution S+. Then, a simple computation based on (3.48)-(3.49) shows that (3.56) holds provided 
that we choose

T1 := max

{
1

log
( BσsP

)
,

1
log

(P(B − Ch − Bσs)
)}

. (3.58)

B + C ε(B + C) B − Ch ε(B − Ch)
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Notice in particular that the argument of the second logarithm is strictly positive thanks to as-
sumption (2.24). Next, to prove (3.57), it suffices to repeat the a priori estimates of Subsec. 3.1. 
We may incidentally notice that the constant cT in (3.13) can now be taken independent of T
thanks to Lemma 3.3. Anyway, integrating (3.13) over the time interval (0, T1) and applying 
once more the Gronwall lemma, we readily obtain the assertion. �
Proof of Theorem 2.10. We start again from relation (3.8), which we will now consider for 
t ≥ T1. Hence, in particular we can take advantage of the second inequality in (3.56). As a 
consequence, we can observe that, thanks to (3.55),

σ ≤ Bσs

B − Ch
+ ε

P
⇒ Pσ − A ≤ P

Bσs

B − Ch
+ ε − A ≤ −ε. (3.59)

Consequently, for t ≥ T1 (3.8) implies the following inequality:

d

dt

(1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx
)

+ ‖∇μ‖2 + ε

∫
�

h′(ϕ)|∇ϕ|2 dx

+
∫
�

(A − Pσ)h(ϕ)β(ϕ)dx ≤
∫
�

λ(A − Pσ)h(ϕ)ϕ dx + P

∫
�

h(ϕ)∇σ · ∇ϕ dx. (3.60)

Now, the terms on the right-hand side can be controlled as in (3.11). On the other hand, using 
Assumptions 2.1 and 2.8 (and in particular the facts that h is strictly positive and that β(ϕ) has 
the same sign as ϕ), it is not difficult to check that

h(ϕ)β(ϕ) ≥ κ|β(ϕ)| − c, (3.61)

whence the latter term on the left-hand side of (3.60) gives

∫
�

(A − Pσ)h(ϕ)β(ϕ)dx ≥ κε‖β(ϕ)‖L1(�) − c, (3.62)

so that (3.60) implies the differential inequality

d

dt

(1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx
)

+ ‖∇μ‖2 + κε‖β(ϕ)‖L1(�)

≤ 1

2
‖∇σ‖2 + c

(
1 + ‖ϕ‖L1(�) + ‖∇ϕ‖2). (3.63)

Adding (3.12) to the above relation, we arrive at

d

dt

(1

2
‖∇ϕ‖2 +

∫
�

ψ(ϕ)dx + 1

2
‖σ‖2

)
+ 1

2
‖∇σ‖2 + ‖∇μ‖2

+ κε‖β(ϕ)‖L1(�) ≤ c
(
1 + ‖ϕ‖L1(�) + ‖∇ϕ‖2), (3.64)
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where the norm of σ on the right-hand side of (3.12) has disappeared because we now know that 
0 ≤ σ ≤ 1 almost everywhere.

Next, let us multiply (1.2) by −�ϕ. We deduce

‖�ϕ‖2 +
∫
�

β ′(ϕ)|∇ϕ|2 dx ≤ (∇ϕ,∇μ)−λ(ϕ,�ϕ) ≤ (∇ϕ,∇μ)+ 1

2
‖�ϕ‖2 + λ2

2
‖ϕ‖2. (3.65)

Correspondingly, testing (1.1) by ϕ we obtain

1

2

d

dt
‖ϕ‖2 + (∇ϕ,∇μ) +

∫
�

(A − Pσ)h(ϕ)ϕ dx = 0, (3.66)

whence in particular

1

2

d

dt
‖ϕ‖2 + (∇ϕ,∇μ) ≤ c

(
1 + ‖ϕ‖2). (3.67)

Adding (3.65) and (3.67) to (3.64) and adding also the inequality 1
2‖σ‖2 ≤ c, neglecting some 

positive term on the left-hand side, we obtain

d

dt

(1

2
‖ϕ‖2

V +
∫
�

ψ(ϕ)dx + 1

2
‖σ‖2

)
+ 1

2
‖�ϕ‖2 + ‖∇μ‖2

+ κε‖β(ϕ)‖L1(�) + 1

2
‖σ‖2

V ≤ c
(
1 + ‖ϕ‖2 + ‖∇ϕ‖2). (3.68)

Now, to control the right-hand side, we first observe that

c‖∇ϕ‖2 = c(−�ϕ,ϕ) ≤ 1

4
‖�ϕ‖2 + c‖ϕ‖2. (3.69)

Then, by virtue of assumption (2.26), for κ, ε as in (3.68), we have

c‖ϕ‖2 ≤ κε

2
‖β(ϕ)‖L1(�) + cκ,ε. (3.70)

Taking (3.69) and (3.70) into account, (3.68) gives

d

dt

(1

2
‖ϕ‖2

V +
∫
�

ψ(ϕ)dx + 1

2
‖σ‖2

)
+ 1

4
‖�ϕ‖2 + κε

2
‖β(ϕ)‖L1(�)

+ ‖∇μ‖2 + 1

2
‖σ‖2

V ≤ c. (3.71)

Now, using (2.26) again together with the continuous embedding H 2(�) ⊂ L∞(�), we notice 
that

1‖�ϕ‖2 + κε ‖β(ϕ)‖L1(�) ≥ κ‖ϕ‖H 2(�) − c ≥ κ1‖ϕ‖L∞(�) − c. (3.72)

4 2



JID:YJDEQ AID:9777 /FLA [m1+; v1.298; Prn:2/04/2019; 16:27] P.20 (1-27)

20 A. Miranville et al. / J. Differential Equations ••• (••••) •••–•••
Let us then define

Z(r) := β̂(r) + β̂(−r), ∀ r ≥ 0, (3.73)

where β̂ is the antiderivative of β satisfying β̂(0) = 0 (hence in particular β̂ is convex and 
nonnegative due to Assumption 2.1). Noting that Z is monotone over [0, ∞) with Z(0) = 0, 
we have ∫

�

β̂(ϕ)dx ≤
∫
�

Z(|ϕ|)dx ≤
∫
�

Z
(‖ϕ‖L∞(�)

)
dx = Z

(‖ϕ‖L∞(�)

)
. (3.74)

As a consequence,

‖ϕ‖L∞(�) ≥ Z−1
(∫

�

β̂(ϕ)dx

)
. (3.75)

Hence, recalling also (3.72), relabelling some constants, and rearranging some terms, (3.71) im-
plies

d

dt

[1

2
‖ϕ‖2

V + 1

2
‖σ‖2 +

∫
�

ψ(ϕ)dx
]
+ κ3

2

(‖ϕ‖2
V + ‖σ‖2)

+ κ1Z
−1

(∫
�

β̂(ϕ)dx

)
+ κ2

(‖�ϕ‖2 + ‖∇μ‖2 + ‖∇σ‖2) ≤ c, (3.76)

where the term κ3
2 ‖ϕ‖2

V has been added to both hands sides. Then its occurrence on the right-hand 
side has been controlled essentially by repeating the procedure in (3.69)-(3.70). Now, for K > 0
as in Assumption 2.1, there holds

β̂(r) = ψ(r) + λ

2
r2 − K ≥ ψ(r) ∀ |r| ≥

(2K

λ

)1/2
. (3.77)

As a consequence, for some c > 0 we have

κ1Z
−1

(∫
�

β̂(ϕ)dx

)
≥ κ1Z

−1
(∫

�

ψ(ϕ)dx

)
− c. (3.78)

Actually, to prove this relation it suffices to split the integration domain � into the sets where |ϕ|
is smaller and respectively larger than 

(2K
λ

)1/2
and to use (3.77).

Thanks to the above relations, (3.76) takes now the form

d

dt

(
E1 + E2

) + κ3E1 + κ1Z
−1(E2) + κ2D ≤ c1, (3.79)

where we have set
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E1 := 1

2

(‖ϕ‖2
V + ‖σ‖2), E2 :=

∫
�

ψ(ϕ)dx, (3.80)

D := ‖�ϕ‖2 + ‖∇μ‖2 + ‖∇σ‖2 (3.81)

and we can notice that the above quantities are nonnegative. In order to prove that the above 
differential inequality is dissipative, we first observe that, as a consequence of (2.8),

|β(r)|
β̂(r)

≤ c for sufficiently large |r|, (3.82)

whence, recalling (3.73), it is easy to deduce, for some c ≥ 0,

Z(r) ≤ c + ecr ∀ r ≥ 0 (3.83)

and, in turn, passing to inverse functions,

Z−1(r) ≥ κ ln(y − c) ∀ r ≥ r̄ , (3.84)

where r̄ is some computable positive number. The above implies

κ1Z
−1(r) ≥ κ4 ln(y + 1) − c ∀ r ≥ 0, (3.85)

so that inequality (3.79) takes the form

d

dt

(
E1 + E2

) + κ3E1 + κ4 ln(E2 + 1) ≤ c2. (3.86)

Then, setting φ(r) = ln(1 + r) for r ≥ 0 and using the elementary inequalities r ≥ φ(r) and 
φ(r + s) ≤ φ(r) + φ(s) holding for every r, s ≥ 0, we readily obtain

d

dt

(
E1 + E2

) + κ5 ln(E1 + E2 + 1) ≤ c3, (3.87)

which is a dissipative differential inequality and implies the desired condition (2.31). Actually, it 
can be easily checked that there exists a finite and computable time T0 ≥ T1 depending only on 
the “energy” (in the sense of (2.30)) of the initial data such that for every t ≥ T0 there holds

κ5 ln(E1 + E2 + 1) ≤ 2c3, i.e. E1 + E2 ≤ e
2c3
κ5 − 1. (3.88)

Indeed, if condition (3.88) is violated, then the time derivative of E1 + E2 is less than −c3, 
implying that E1 + E2 decreases at least linearly with time until (3.88) starts holding after some 
computable time T0. Relation (2.31) is then an immediate consequence of (3.88). �
Remark 3.5. We point out that it may be possible to allow pβ = 2 in (2.26) at least in the case 
when κβ is large enough. We leave the details to the reader.
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3.3. Proof of Theorem 2.11: Attractor

Thanks to the dissipativity property of Theorem 2.10, we only need to show asymptotic com-
pactness of solutions. To this aim, we prove a further regularity estimate. As above, we will 
directly work on system (1.1)-(1.3), being intended that this formal procedure may be justified 
within some approximation scheme. In what follows the various constants c will be allowed to 
depend on the X -radius C0 (cf. (2.31)) of the absorbing set.

That said, we first test (1.1) by μt . Then, integrating by parts in time the term on the right-hand 
side, we get

(μt , ϕt ) + 1

2

d

dt
‖∇μ‖2 + d

dt

∫
�

(A − Pσ)h(ϕ)μdx =
∫
�

μ
(
(A − Pσ)h(ϕ)

)
t
dx

=
∫
�

(A − Pσ)h′(ϕ)ϕtμdx −
∫
�

Pσth(ϕ)μdx

≤ c
(‖ϕt‖ + ‖σt‖

)‖μ‖ ≤ 1

2
‖ϕt‖2 + 1

2
‖σt‖2 + c‖μ‖2. (3.89)

We used here the boundedness of h and h′, and the fact that 0 ≤ σ ≤ 1. These conditions will 
be repeatedly used again below without further mentioning them. Next, we differentiate (1.2) in 
time and test the result by ϕt to obtain

(μt , ϕt ) = ‖∇ϕt‖2 +
∫
�

β ′(ϕ)ϕ2
t dx − λ‖ϕt‖2. (3.90)

Multiplying now (1.1) by (1 + 2λ)ϕt we obtain

(1 + 2λ)‖ϕt‖2 = −(1 + 2λ)(∇μ,∇ϕt ) + (1 + 2λ)

∫
�

(
Pσ − A)h(ϕ)ϕt dx

≤ 1

2
‖∇ϕt‖2 + cλ‖∇μ‖2 + λ‖ϕt‖2 + cλ. (3.91)

Finally, multiplying (1.3) by 2σt and standardly controlling the right-hand side, it is not difficult 
to deduce

‖σt‖2 + d

dt
‖∇σ‖2 ≤ c. (3.92)

Taking the sum of relations (3.89), (3.91) and (3.92), and using (3.90), we arrive at

d

dt

[
1

2
‖∇μ‖2 + ‖∇σ‖2 +

∫
�

(A − Pσ)h(ϕ)μdx

]
+ 1

2
‖∇ϕt‖2 +

∫
�

β ′(ϕ)ϕ2
t dx

+ 1

2
‖σt‖2 + 1

2
‖ϕt‖2 ≤ c + c‖∇μ‖2 + c‖μ‖2. (3.93)
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Now, using the Poincaré-Wirtinger inequality (2.3) we have

c‖μ‖2 = c‖μ − μ�‖2 + c‖μ�‖2 ≤ c‖∇μ‖2 + c

∣∣∣∣
∫
�

ψ ′(ϕ)dx

∣∣∣∣2

≤ c‖∇μ‖2 + c + c

∣∣∣∣
∫
�

ψ(ϕ)dx

∣∣∣∣2

≤ c + c‖∇μ‖2, (3.94)

where we have also used condition (2.8) and the uniform bound on the L1-norm of ψ(ϕ).
Then, noting as E3 the sum of the terms in square brackets on the left-hand side of (3.93), we 

can observe that

E3 ≥ 1

2
‖∇μ‖2 + ‖∇σ‖2 − c‖μ‖L1(�)

≥ 1

2
‖∇μ‖2 + ‖∇σ‖2 − c‖μ − μ�‖L1(�) − c|μ�|

≥ 1

2
‖∇μ‖2 + ‖∇σ‖2 − c‖∇μ‖ − c − c

∣∣∣∣
∫
�

ψ(ϕ)dx

∣∣∣∣
≥ 1

4
‖∇μ‖2 + ‖∇σ‖2 − c0, (3.95)

where c0 depends only on the uniform bound on the X -magnitude of the solution (cf. (2.31)) 
holding for t ≥ T0.

Thanks to (3.94) and (3.95), (3.93) gives rise to the following inequality:

d

dt

(
E3 + c0) + 1

2
‖∇ϕt‖2 +

∫
�

β ′(ϕ)ϕ2
t dx

+ 1

2
‖σt‖2 + 1

2
‖ϕt‖2 ≤ c + c‖∇μ‖2. (3.96)

Now, coming back to (3.79), integrating it over the generic time interval (t, t + 1), t ≥ T1, and 
recalling (3.81), we obtain

t+1∫
t

(‖∇μ‖2 + ‖∇σ‖2)ds ≤ c. (3.97)

Consequently, we can apply the uniform Gronwall lemma (see, e.g., [29]) to (3.96) to obtain

‖μ(t)‖V + ‖σ(t)‖V ≤ C1 ∀ t ≥ T0 + 1, (3.98)

where C1 > 0 is independent of the initial data. To get additional regularity on ϕ it is then 
sufficient to go back to (1.2) and apply standard elliptic regularity results to obtain
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‖ϕ(t)‖H 2(�) ≤ C2 ∀ t ≥ T0 + 1, (3.99)

where C2 > 0 is independent of the initial data. Properties (3.98) and (3.99), combined with the 
dissipativity proved in Theorem 2.10, provide existence of the global attractor A as well as its 
boundedness in H 2(�) × H 1(�), which concludes the proof.

3.4. Spatially homogeneous case

We give here some evidence of the fact that, if conditions (2.23)-(2.25) do not hold, then dis-
sipativity of the process may fail. To this aim, we analyze the behavior of spatially homogeneous 
solutions. Indeed, in view of the no-flux boundary conditions, these are particular solutions to 
system (1.1)-(1.3) starting from spatially homogeneous initial data. Let us denote by X = X(t)

and by S = S(t) the spatially homogeneous versions of ϕ and σ , respectively. Then, our problem 
reduces to the following ODE system for the vector variable (X, S):

X′ + (A − PS)h(X) = 0, (3.100)

S′ + CSh(X) + B(S − σs) = 0. (3.101)

We can first observe that, if h = 0 and X(t) ≤ −1 at some time t (for instance, at t = 0), then 
X remains ≤ −1 ever after; indeed, because h(X) = 0, equation (3.100) prescribes X(t) to be 
constant and hence there is no hope to prove dissipativity. We actually recall that, when choosing 
a “smooth” potential ψ defined on the whole real line, as in our case, the values of ϕ lying outside 
the reference interval [−1, 1] are likely to be attained by the solution, even when this is not the 
case at the initial time; hence such an eventuality has to be taken into account in the long-time 
analysis of solutions.

Now, let us move to the case when h > 0. Then, we may observe that

Bσs − (C + B)S ≤ S′ ≤ Bσs − (B − Ch)S. (3.102)

The first inequality implies that

S <
Bσs

C + B
⇒ S′ > 0. (3.103)

For what concerns the second inequality, we have two cases. Let us first consider the situation 
when Ch ≥ B , i.e. (2.23) does not hold. Let also the initial data be chosen in such a way that 
X(0) ≤ −1 and S(0) is large enough so that PS(0) − A > 0. Note that, at least for P > A, we 
have Pσ > A when σ is lower than but sufficiently close to 1. Actually, even if it is not necessary 
for the mathematical analysis, the choice P > A is natural because otherwise the apoptosis effect 
would always prevail over the proliferation effect, even for high nutrient concentrations. Under 
such conditions, we have

X′ = −(PS − A)h < 0, (3.104)

S′ = Bσs + (Ch − B)S > 0, (3.105)
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a priori at t = 0, but actually ever after. As a consequence, both |X| and S grow forever. Hence, 
not only we do not have dissipativity, but both the nutrient concentration and the tumor phase 
exit their physically significant intervals.

In view of the above discussion, it looks reasonable to assume h > 0 and (2.23). Under these 
conditions, the second inequality in (3.102) implies

S >
Bσs

B − Ch
⇒ S′ < 0. (3.106)

We can then define the region

S :=
{
(X,S) ∈R2 : Bσs

C + B
≤ S ≤ Bσs

B − Ch

}
(3.107)

and it follows from (3.103) and (3.106) that S is positively invariant for the dynamical process 
generated by (3.100)-(3.101). Now, if we want to keep the physical constraint S(t) ∈ [0, 1], we 
need to assume Bσs

B−Ch
< 1, i.e. (2.24) (otherwise basically our results still hold provided that we 

allow S to take also values larger than 1). In such a situation, we need to emphasize the role of 
(2.25). To this purpose, let us assume that X ≥ 1 at some time, so that h(X) = 1. Then, (3.100)
reduces to

X′ = (PS − A) (3.108)

and in this sense condition (2.25) (which can be rewritten as A
P

> Bσs

B−Ch
) prescribes that (if we 

reason in the (X, S)-plane with X represented in the horizontal axis), in the intersection between 
S and the semiplane {X ≥ 1}, X′ stays negative (hence arbitrary growth of X is prevented, 
because trajectories tend to eventually enter the region S).

On the other hand, we can see that, when A
P

≤ Bσs

B+C
, dissipativity cannot hold. Indeed if 

S(0) ∈
[

Bσs

C+B
, Bσs

B−Ch

]
and X(0) ≥ 1, then X(t) is forced to increase forever, because (X, S)

can never leave the positively invariant region S where, now, X′ > 0. On the other hand, the 

situation when A
P

∈
(

Bσs

C+B
, Bσs

B−Ch

]
is unclear, in the sense that, when X ≥ 1, in the “upper” part 

of the strip S , X′ is positive, whereas X′ is negative in the “lower” part of S , so the evolution of 
(X, S) may be more difficult to capture. Of course, the behavior may be even more complicated 
once one considers general (i.e., not necessarily spatially homogeneous) solutions to (1.1)-(1.3), 
because in that case also equation (1.2) plays an important role (whereas (1.2) “disappears” in 
the spatially homogeneous setting).
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