期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:249
Asymptotic behavior for the Stokes flow and Navier-Stokes equations in half spaces
Article
Han, Pigong1,2 
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
关键词: Navier-Stokes equations;    Weak and strong solutions;    Asymptotic behavior;    Solution formula;   
DOI  :  10.1016/j.jde.2010.05.021
来源: Elsevier
PDF
【 摘 要 】

Using the solution formula in Ukai (1987)[27] for the Stokes equations, we find asymptotic profiles of solutions in L-1 (R-+(n)) (n >= 2) for the Stokes flow and non-stationary Navier-Stokes equations. Since the projection operator P: L-1 (R-+(n)) --> L-sigma(1)(R-+(n)) is unbounded, we use a decomposition for P(u . del u) to overcome the difficulty, and prove that the decay rate for the first derivatives of the strong solution u of the Navier-Stokes system in L-1 (R-+(n)) is controlled by t(-1/2)(1 + t(-n+2/n)) for any t > 0. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2010_05_021.pdf 359KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次