期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
Global existence and asymptotic behavior for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain
Article
Wu, Guochun1 
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
关键词: Navier-Stokes equations;    Global existence;    Asymptotic behavior;    Bounded domain;   
DOI  :  10.1016/j.jde.2016.09.046
来源: Elsevier
PDF
【 摘 要 】

In this paper, we investigate the global existence and uniqueness of strong solutions to the initial boundary value problem for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain with slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial data is near its equilibrium in H-2(Omega). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_09_046.pdf 914KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次