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Abstract

In this paper, we investigate the global existence and uniqueness of strong solutions to the initial boundary 
value problem for the 3D compressible Navier–Stokes equations without heat conductivity in a bounded 
domain with slip boundary. The global existence and uniqueness of strong solutions are obtained when the 
initial data is near its equilibrium in H 2(�). Furthermore, the exponential convergence rates of the pressure 
and velocity are also proved by delicate energy methods.
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1. Introduction

Let � ⊂ R
3 be a smooth bounded domain, we consider the following well-known compress-

ible Navier–Stokes equations for the motion of compressible viscous fluids:
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⎧⎪⎨
⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) + ∇p = divT ,

(ρE)t + div(ρEu + pu) = div(uT ) + κ�θ,

(1.1)

for (x, t) ∈ � × R
+. Here ρ, u, p, θ denote the density, velocity, pressure and temperature re-

spectively. The specific total energy E = 1
2 |u|2 + E , E is the specific internal energy. The stress 

tensor is given by

T = μ(∇u + ∇uT ) + λ(divu)I.

μ and λ are the coefficient of viscosity and second coefficient of viscosity, respectively. κ is the 
coefficient of heat conduction. In this paper, it will be always assumed that

μ > 0, 3λ + 2μ > 0, κ = 0. (1.2)

We will consider only polytropic fluids, so that the equations of state for the fluid is given by

p = Rρθ, E = cνθ, p = Ae
s
cν ργ , (1.3)

where A > 0 is a constant, γ > 1 is the adiabatic exponent, s is the entropy, and cν = R/(γ − 1).
To begin with, we note the fact that all thermodynamics variables ρ, θ, E, p as well as the 

entropy s can be represented by functions of any two of them. To overcome the difficulties 
arising from the non-dissipation on θ , we will rewrite system (1.1). We take the two variables to 
be p and s. In light of the state equation (1.3), we deduce that

ρ = A
− cν

cν+R p
cν

cν+R e
− s

cν+R . (1.4)

Under the aforementioned assumptions, we can rewrite the system (1.1) in terms of (p, u, s) as 
follows: ⎧⎪⎨

⎪⎩
pt + γpdivu + u · ∇p = 
[u]

cν
,

ρut + ρu · ∇u + ∇p = μ�u + (μ + λ)∇divu,

st + u · ∇s = 
[u]
p

,

(1.5)

where 
[u] is the classical dissipation function:


[u] = μ

2
|∇u + ∇uT |2 + λ(divu)2. (1.6)

It should be mentioned that system (1.5) is a hyperbolic–parabolic system, while the dissipation 
property comes from viscosity. In this paper, we consider the initial boundary value problem for 
system (1.5), which is supplemented by the following initial and boundary conditions:

⎧⎪⎨
⎪⎩

(p,u, s)(x,0) = (p0, u0, s0), x = (x1, x2, x3) ∈ �,

u|∂� = 0, t ≥ 0,∫
p

1
γ
dx

/|�| = p̄
1
γ

> 0.

(1.7)
� 0 0
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As one of the most important systems in continuum mechanics, there is a huge literature on 
the large-time existence, stability and behavior of solutions to the compressible Navier–Stokes 
equations. The theory of global well-posedness of solution to the Cauchy problem and initial-
boundary-value problem for the system (1.1) has been studied extensively in [1–15,17,18,20–22]
and the references therein. The global classical solutions were first obtained by Matsumura–
Nishida [20–22] for initial data close to a non-vacuum equilibrium in H 3(R3). In particular, the 
theory requires that the solution has small oscillations from a uniform non-vacuum state so that 
the density is strictly away from the vacuum and the gradient of the density remains bounded 
uniformly in time. Later, Hoff [9,10] and Huang et al. [13] studied the problem for discontin-
uous initial data. For the existence of solutions for arbitrary data, the major breakthrough is 
due to Lions [17] (see also Feireisl et al. [7]), where he obtained global existence of weak so-
lutions, defined as solutions with finite energy. The main restriction on initial data is that the 
initial energy is finite, so that the density vanishes at far fields, or even has compact support. 
When κ = 0, the one-dimensional system in the Lagrangian coordinates was studied by Liu 
and Zeng [19], they showed that the elaborate pointwise estimates and large-time behavior of 
solutions to (1.5) by studying the Green’s function and the nonlinear interaction of waves. In 
the three dimensional case, the global existence solutions of system (1.5) were first announced 
by Kawashima [16]. Later, Duan et al. [2] and Tan et al. [23] studied the global existence and 
convergence rates of solutions to system (1.5) when the initial data is near its equilibrium in 
H�(� = 2, 3)-framework. The key point in [2,23] is to observe that in the Eulerian’s coordinates, 
the dissipative variables p and u satisfy (1.5)1 and (1.5)2 whose linear parts possess the same 
structure as ones of the isentropic viscous compressible Navier–Stokes equations, and the non-
dissipative variable s satisfies the transport equation (1.5)3 with the nonlinear source term. Then 
by the standard energy method as in [20,21], the uniform bound of (p, u) under a priori assump-
tion that ‖(p, u, s)(t)‖� is sufficiently small. Finally, the uniform bound of s will be obtained 
by making a priori decay-in-time estimates on (p, u), which is based on the decay property 
of the linearized equations together with energy estimates of higher order. The boundedness of 
L1-norm is needed in the proof of the global existence, which is different from the previous work 
[20,21] for the case of κ > 0, where just H 3-norm of the perturbation is supposed for the global 
existence.

Before we state the main results, let us introduce some notations for the use throughout this 
paper. C denotes some positive constant. The norms in the Sobolev Spaces Hm(�) and Wm,q(�)

are denoted respectively by || · ||m and || · ||m,q for m ≥ 0 and q ≥ 1. In particular, for m = 0 we 
will simply use || · || and || · ||Lq . Finally,

∇ = (∂1, ∂2, ∂3), ∂i = ∂xi
, i = 1,2,3,

and for any integer � ≥ 0, ∇�f denotes all derivatives of order � of the function f .
For the global existence and large time behavior of strong solutions, we have the following:

Theorem 1.1. Given two constants p̄0 > 0 and s̄, assume that the initial boundary value (p0 −
p̄0, u0, s0 − s̄) ∈ H 2(�) satisfies the compatibility condition, i.e., ∂�

t u(x, 0)|∂� = 0, � = 0, 1, 
where

∂tu(x,0) = μ�u0 + (μ + λ)∇divu0 − ρ0u0 · ∇u0 − ∇p0
.

ρ0
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Then there exists a constant δ0 such that if

‖(p0 − p̄0, u0, s0 − s̄)‖2 ≤ δ0, (1.8)

the initial boundary value problem (1.5)–(1.7) admits a unique solution (p, u, s) globally in time 
with p > 0, which satisfies

p − p̄, s − s̄ ∈ C0([0,∞);H 2(�)) ∩ C1([0,∞);H 1(�)),

u ∈ C0([0,∞);H 2(�) ∩ H 1
0 (�)) ∩ C1([0,∞);L2(�)),

where p̄ satisfies p̄
1
γ (t) = ∫

�
p

1
γ (t)dx/|�|. Moreover, there exist two positive constants C0 > 0

and η0 > 0 such that for any t ≥ 0, the following estimates hold

p̄(t) ≥ p̄0, (1.9)

‖(p − p̄, u)(t)‖2
2 +

t∫
0

(‖p(τ) − p̄(τ )‖2
2 + ‖u(τ)‖2

3)dτ ≤ C0‖(p0 − p̄0, u0)‖2
2, (1.10)

‖s(t) − s̄‖2 ≤ C0‖(p0 − p̄0, u0, s0 − s̄)‖2 exp{C0‖(p0 − p̄0, u0)‖2}, (1.11)

‖(p − p̄, u)(t)‖2 + ‖∂t (p − p̄, u, s)(t)‖ ≤ C0‖(p0 − p̄0, u0)‖2 exp{−η0t}. (1.12)

Finally, p̄(t) is a monotonically increasing function on t . Let lim
t→∞ p̄(t) = p̃, then there exists 

positive constant c0 such that

p̃ − p̄(t) ≤ C0‖(p0 − p̄, u0)‖2
2 exp{−η0t} with p̃ ≥ p̄0 + c0. (1.13)

Remark 1.1. It is worth noting that the convergence of pressure in (1.12) is somewhat surprising, 
since the solution relaxes in the maximum norm to the constant background state at a rate of 
(1 + t)−5/4 in Cauchy problem case (see [2,23]).

Remark 1.2. Our results of this paper are also right for the two-dimensional case. However, since 
‖∇(P, u)(t)‖1 of the linear solution to system (1.5) decays only as (1 + t)−1 in Cauchy problem 
(see [2,23]), which is not integrable, in particular making the strategy of [2,23] difficult to apply, 
construction of global existence and optimal convergence rates for Cauchy problem of system 
(1.5) in the two-dimensional case is still an open problem.

Let us now outline the main points for the study and explain some of the main difficulties 
and techniques in this paper. System (1.5) is a typical example of the quasilinear hyperbolic–
parabolic system in [16], for which local well-posedness of initial boundary value problems have 
been studied with full generality. As usual, the global existence of the strong solutions can be es-
tablished by combining a priori estimates and the local existence result. As [2] likes to point out, 
one of main observations is that the dissipative variables p and u satisfy (1.5)1 and (1.5)2 whose 
linear parts possess the same structure as that of the compressible isentropic Navier–Stokes equa-
tions, while the non-dissipative variable s satisfies the homogeneous transport equation (1.5)3. 
Thus, in order to obtain a priori estimates to (1.5)–(1.7), we can apply the similar energy method 
as in [22] to the first two equations of (1.5) to obtain the uniform bound of (p − p̄, u) under 
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the assumption that ‖(p − p̄, u, s − s̄)(t)‖2 is sufficiently small. With these in hand, the norm 
‖(p − p̄, u)(t)‖2 can be shown to converge exponentially to zero from the Poincaré’s and Gron-
wall’s inequality. However, we should point out that we can’t use Poincaré’s inequality directly to 
estimate ‖p(t) − p̄(t)‖ since p̄(t) is not a constant, which make the problem much more difficult 
and need us to develop some new energy estimates. It is worth mentioning that the crucial part of 
the proof is to obtain a Lyapunov-type energy inequality. Then, the bound of s will be derived by 
the exponential decay estimates on (p − p̄, u) and the Gronwall’s inequality. Second, compar-
ing to Cauchy problem [2], when establishing a priori estimates by the standard energy method, 
a new difficulty arises since the spatial derivatives are unknown on the boundary. To overcome 
this difficulty, we separate the energy estimates for the spatial derivatives into that over the region 
away from the boundary and near the boundary in spirit of Matsumura and Nishida [22]. In other 
words, we establish the energy estimates for the spatial derivatives by using cutoff functions and 
localizations of ∂�. Although our proofs are in spirit of those for the isentropic Navier–Stokes 
equations, we should derive the new estimates due to the different dissipative effect and the spe-
cial nonlinearity of (1.5). We point out the essential point in the proof of the global existence 
of small solutions is that under the initial condition (1.8) the initial density is bounded far away 
from the vacuum. A natural question to ask is whether one can still obtain the strong solutions 
when there exists vacuum initially and surely small initial data. However, the answer is negative. 
It is well known in [24,25] that the smooth or strong solutions will blow up in finite time if the 
initial data has an isolated mass group, no matter how small the initial data are.

The rest of this paper is devoted to prove Theorem 1.1. In Section 2, we give some basic 
facts that will be used in this paper together with the local existence result. In Section 3, we do 
some careful a priori estimates for the strong solutions and then the global existence of the strong 
solutions is established by combining a priori estimates and the local existence result.

2. Local existence and preliminaries

In this section, we will recall some known facts and elementary inequalities that will be used 
frequently later.

We start with the local existence and uniqueness of the strong solutions of problem (1.5)–(1.7). 
This does not rely much on the structure of the equations. Recently, Kagei and Kawashima [16]
have proved the local Hs-solvability (s ≥ [n/2] + 1 being an integer) of the initial boundary 
problem for a general class of hyperbolic–parabolic system. In fact, we have the following local 
well-posedness theorem, which is directly from the classical result in [16].

Proposition 2.1. (Local existence). Let (p0, u0, s0) ∈ H 2(�) be such that

inf
x∈�̄

{p0(x)} > 0 and ∂�
t u0|∂� = 0, � = 0,1.

Then there exist positive numbers T and C such that problem (1.5)–(1.7) has a unique solu-
tion (p, u, s) ∈ C([0, T ]; H 2(�)). Moreover, the solution satisfies inft∈[0,T ],x∈�̄{p(t, x)} > 0, 
pt , st ∈ C([0, T ]; H 1(�)), u ∈ L2([0, T ]; H 3(�)), ut ∈ C([0, T ]; L2(�)) and

‖(p,u, s)(t)‖2 ≤ C‖(p0, u0, s0)‖2.

For later use we list some inequalities of Sobolev type.
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Lemma 2.1. Let � be any bounded domain in R3 with smooth boundary. Then

(i) ‖f ‖L∞ ≤ C‖f ‖2,

(ii) ‖f ‖Lp ≤ C‖f ‖1, 2 ≤ p ≤ 6,

for some constant C > 0 depending only on �.

Finally, we introduce the following lemma on the stationary Stokes equations to get the esti-
mates on the tangential derivatives of both u and p, cf. [22].

Lemma 2.2. Let � be any bounded domain in R3 with smooth boundary. Consider the problem⎧⎪⎨
⎪⎩

−μ�u + ∇p = g,

divu = f,

u|∂� = 0,

where f ∈ Hk+1(�) and g ∈ Hk(�) (k ≥ 0). Then the above problem has a solution (p, u) ∈
Hk+1 × Hk+2 ∩ H 1

0 which is unique modulo a constant of integration for p. Moreover, this 
solution satisfies

‖u‖2
k+2 + ‖∇p‖2

k ≤ C{‖f ‖2
k+1 + ‖g‖2

k}. (2.1)

3. The proof of global existence

In this section, we shall prove the global existence of the solution with small initial data 
(Theorem 1.1). The global existence of smooth solution of problem (1.5)–(1.7) can be established 
by the local existence theory, the uniformly a priori estimates, and the continuity argument. Thus 
it suffices for us to establish a priori estimate. Therefore, we assume a priori that

‖(p − p̄, u, s − s̄)(t)‖2 ≤ δ � 1, for any t ≥ 0. (3.1)

In order to derive both the time-independent low and upper bound for the pressure, we start 
with the basic energy estimate and the initial layer analysis, and succeed in deriving an estimate 
on the time-independent low and upper bound for p̄(t).

Lemma 3.1. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant c1
such that

p̄0 < p̄(t) ≤ p̄0 + c1, (3.2)

for any t ≥ 0.

Proof. First, we rewrite the system (1.1) in terms of (ρ, u, θ) as follows:⎧⎪⎨
⎪⎩

ρt + div(ρu) = 0,

ρut + ρu · ∇u + ∇p = μ�u + (μ + λ)∇divu,

c ρ(θ + u · ∇θ) = −pdivu + 
[u].
(3.3)
ν t
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Adding (3.3)2 multiplied by u

θ̄0
to (3.3)3 multiplied by 1

θ̄0
− 1

θ
, we obtain after integrating the 

resulting equality over (0, t) × � and using (3.3)1 and u|∂� = 0 that

∫
�

(
1

2θ̄0
|u|2 + R(ρ̄0 + ρ log ρ

ρ̄0
− ρ) + cνρ( θ

θ̄0
− log θ

θ̄0
− 1)

)
(t)dx

+ ∫ t

0

∫
�

1
θ

[u](s)dxds

= ∫
�

(
1

2θ̄0
|u0|2 + R(ρ̄0 + ρ0 log ρ0

ρ̄0
− ρ0) + cνρ0(

θ0
θ̄0

− log θ0
θ̄0

− 1)
)
dx,

(3.4)

where ρ̄0, θ̄0 can be calculated by taking p̄0, ̄s into (1.3) and (1.4). We rewrite (1.5)1 in the 
following form:

(p
1
γ )t + div(p

1
γ u) = 
[u]p 1

γ
−1

R + cν

. (3.5)

Integrating the above equality over (0, t) ×� and noticing that θ−1 = RA
− 1

γ p
1
γ

−1e− s
γ cν , which 

together with (3.4) gives (3.2) under the assumption (3.1). �
Under the assumption (3.1), (3.2) together with Sobolev’s inequality implies in particular that 

‖(p − p̄)(t)‖2 is equivalent to ‖(p 1
γ − p̄

1
γ )(t)‖2, i.e. there exists a constant C > 1, such that

1

C
‖(p − p̄)(t)‖2 ≤ ‖(p 1

γ − p̄
1
γ )(t)‖2 ≤ C‖(p − p̄)(t)‖2, (3.6)

and

1

2
p̄0 ≤ p(t) ≤ 2p̄0,

1

C
≤ ρ(t) ≤ C for any t ≥ 0. (3.7)

This should be kept in mind in the rest of this paper.
In order to deduce a priori estimate, in what follows, we will give some energy estimates in a 

few lemmas. First of all, the energy estimate of lower order for (p, u) is obtained in the following 
lemma.

Lemma 3.2. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C
such that

1

2

d

dt

∫
�

ρ(t)|u(t)|2 + (p(t) − p̄(t))2

γ p̄(t)
dx + μ

∫
�

|∇u(t)|2dx + (μ + λ)

∫
�

|divu(t)|2dx

≤ Cδ‖(∇p,∇u)(t)‖2,

(3.8)

for any t ≥ 0.

Proof. A standard energy estimate for the equation (3.3)2 on u gives

1

2

d

dt

∫
ρ|u|2dx + μ

∫
|∇u|2dx + (μ + λ)

∫
|divu|2dx +

∫
u · ∇pdx = 0. (3.9)
� � � �
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To get the estimate on p, we shall deduce the equation of p̄. By integrating (3.5) over � gives

p̄t = γ

|�| p̄
1− 1

γ

∫
�


[u]p 1
γ

−1

R + cν

dx. (3.10)

Combining the above equality, (3.1) and (3.2), we obtain

∣∣p̄t

∣∣ ≤ C‖∇u‖2. (3.11)

We rewrite (1.5)1 in the following form:

(p − p̄)t

γ p̄
+ divu + p̄t + γ (p − p̄)divu + u · ∇p

γ p̄
= 
[u]

γ cνp̄
. (3.12)

Multiplying the above equality by p − p̄ and integrating over � gives

1
2

d
dt

∫
�

(p−p̄)2

γ p̄
dx + 1

2

∫
�

(p−p̄)2p̄t

γ p̄2 dx + ∫
�

divu(p − p̄)dx

= ∫
�


[u](p−p̄)
γ cν p̄

dx − ∫
�

[p̄t+γ (p−p̄)divu+u·∇p](p−p̄)
γ p̄

dx.
(3.13)

Adding the above equality to (3.9), we finally obtain

1
2

d
dt

∫
�

ρ|u|2 + (p−p̄)2

γ p̄
dx + μ

∫
�

|∇u|2dx + (μ + λ)
∫
�

|divu|2dx

= − 1
2

∫
�

(p−p̄)2p̄t

γ p̄2 dx + ∫
�


[u](p−p̄)
γ cν p̄

dx − ∫
�

[p̄t+γ (p−p̄)divu+u·∇p](p−p̄)
γ p̄

dx.
(3.14)

The right terms of the above equation can be estimated by using (3.1), (3.2), (3.11), Lemma 2.1, 
Hölder’s inequality and Poincaré’s inequality. In fact, it holds that

∣∣ ∫
�

(p − p̄)2p̄t

γ p̄2
dx

∣∣ ≤ C
∣∣ p̄t

p̄2

∣∣‖p − p̄‖2 ≤ C‖∇u‖2‖p − p̄‖2 ≤ Cδ‖∇u‖2, (3.15)

∣∣ ∫
�


[u](p − p̄)

γ cνp̄
dx

∣∣ ≤ C‖p − p̄

p̄
‖L∞‖∇u‖2 ≤ Cδ‖∇u‖2, (3.16)

∣∣ ∫
�

[p̄t+γ (p−p̄)divu+u·∇p](p−p̄)
γ p̄

dx
∣∣

= ∣∣ ∫
�

[p̄t+(1−2γ )u·∇p](p−p̄)
γ p̄

dx
∣∣

≤ C[∣∣ p̄t

p̄

∣∣‖p − p̄‖ + ‖∇p‖‖u‖L3‖p − p̄‖L6 ]
≤ C[‖∇u‖2‖p − p̄‖ + ‖∇p‖2‖∇u‖]
≤ Cδ(‖∇p‖2 + ‖∇u‖2).

(3.17)

Taking the above three estimates into (3.14) gives (3.8). The proof of lemma is completed. �
Our next goal is to deal with the energy estimate of the time derivative for (p, u).
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Lemma 3.3. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C
such that

1
2

d
dt

∫
�

ρ(t)|ut (t)|2 + (pt (t)−p̄t (t))
2

γ p̄(t)
dx + μ

∫
�

|∇ut (t)|2dx + (μ + λ)
∫
�

|divut (t)|2dx

≤ Cδ(‖∇u(t)‖2
1 + ‖∇ut (t)‖2),

(3.18)

for any t ≥ 0.

Proof. Differentiating (1.5)2 and (3.12) with respect to t , we have

{
ρutt + ρtut + (ρu · ∇u)t + ∇pt = μ�ut + (μ + λ)∇divut ,
(p−p̄)tt

γ p̄
− (p−p̄)t p̄t

γ p̄2 + divut + { p̄t+γ (p−p̄)divu+u·∇p
γ p̄

}t = { 
[u]
γ cν p̄

}t . (3.19)

Multiplying the above equation by ut, (p − p̄)t respectively, we get

1
2

d
dt

∫
�

ρ|ut |2 + (pt−p̄t )
2

γ p̄
dx + μ

∫
�

|∇ut |2dx + (μ + λ)
∫
�

|divut |2dx

= − 1
2

∫
�

ρt |ut |2 − (pt−p̄t )
2p̄t

γ p̄2 dx − ∫
�
(ρu · ∇u)tutdx

+ ∫
�
{ 
[u]
γ cν p̄

}t (p − p̄)t dx − ∫
�
{ p̄t+γ (p−p̄)divu+u·∇p

γ p̄
}t (p − p̄)t dx.

(3.20)

Noticing that ut

∣∣
∂�

= 0, it follows from (3.1), (3.2), (3.7), (3.11), Lemma 2.1, Hölder’s inequality 
and Poincaré’s inequality that

∣∣ ∫
�

ρt |ut |2 − (pt−p̄t )
2p̄t

γ p̄2 dx
∣∣

= ∣∣ ∫
�

div[ρu]|ut |2 + (pt−p̄t )
2p̄t

γ p̄2 dx
∣∣

= ∣∣ ∫
�

2ρu∇utut − (pt−p̄t )
2p̄t

γ p̄2 dx
∣∣

≤ C[‖ρ‖L∞‖u‖L3‖∇ut‖L2‖ut‖L6 + ∣∣ p̄t

p̄2

∣∣‖(pt − p̄t )‖2]
≤ Cδ(‖∇ut‖2 + ‖∇u‖2),

(3.21)

where by (3.1) and (3.12), we have used the fact

‖pt − p̄t‖ ≤ C(‖∇u‖ + δ‖∇p‖). (3.22)

Similarly,

∣∣ ∫
�
(ρu · ∇u)tutdx

∣∣
= ∣∣ ∫

�
ρtu · ∇uut + ρut · ∇uut + ρu · ∇ututdx

∣∣
= ∣∣ ∫

�
−[∇ρu + ρdivu]u · ∇uut + ρut · ∇uut + ρu · ∇ututdx

∣∣
≤ C[‖∇ρ‖L3‖u‖2

L∞‖∇u‖L2‖ut‖L6 + ‖ρ‖L∞‖u‖L∞‖ut‖L6‖∇u‖L2‖∇u‖L3

+ ‖ρ‖L∞‖∇u‖L3‖ut‖2
L3 + ‖ρ‖L∞‖u‖L3‖∇ut‖L2‖ut‖L6]

≤ Cδ(‖∇u‖2 + ‖∇ut‖2),

(3.23)

where by (1.4) and (3.1), we have used the fact
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‖∇ρ‖1 ≤ C(‖∇p‖1 + ‖∇s‖1) ≤ Cδ. (3.24)

Next, from (3.1) and (3.12), we have

‖(p − p̄)t‖L3 ≤ C(‖∇u‖L3 + ‖∇u‖2 + ‖u∇p‖L3 + ‖∇u‖2
L6)

≤ C(‖∇u‖L3 + ‖∇u‖2 + ‖u‖L∞‖∇p‖L3 + ‖∇u‖2
L6)

≤ C‖∇u‖1.

(3.25)

Combining (3.22) and (3.25), the third term on the right hand side of (3.20) can be estimated as 
follows

∣∣ ∫
�
{ 
[u]
γ cν p̄

}t (p − p̄)t dx
∣∣

≤ C
∣∣ ∫

�
|∇u∇ut (p − p̄)t | + |∇u|2|pt − p̄t |dx

≤ C(‖∇u‖L6‖∇ut‖‖pt − p̄t‖L3 + ‖∇u‖2
L3‖pt − p̄t‖L3

≤ Cδ(‖∇u‖2
1 + ‖∇ut‖2).

(3.26)

For the last term on the right hand side of (3.20), we first obtain through integration by parts that

∣∣ ∫
�

u·∇pt (p−p̄)t
γ p̄

dx
∣∣ = ∣∣ ∫

�
divu(pt−p̄t)

2

2γ p̄
dx

∣∣ ≤ Cδ‖∇u‖2
1, (3.27)

Then taking the same idea as in (3.21), (3.23) and (3.26), we finally conclude that

∣∣ ∫
�
{ p̄t+γ (p−p̄)divu+u·∇p

γ p̄
}t (p − p̄)t dx

∣∣ ≤ Cδ(‖∇u‖2
1 + ‖∇ut‖2). (3.28)

Taking the above (3.21), (3.23), (3.26) and (3.28) into (3.20) gives (3.18). The proof of lemma is 
completed. �

To deal with the energy estimate of the spatial derivatives for (p, u), we use the standard 
technique in [22] that involves separating the estimates of solution into that over the region away 
from the boundary and near the boundary. Let χ0 be an arbitrary but fixed function in C∞

0 (�). 
Then we have the following as the estimate on the region away from the boundary.

Lemma 3.4. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C
such that

1
2

d
dt

∫
�

ρ(t)|∇u(t)χ0|2 + |∇p(t)χ0|2
γ p̄(t)

dx + μ
∫
�

|∇2u(t)χ0|2dx

+ (μ + λ)
∫
�

|∇divu(t)χ0|2dx

≤ Cδ(‖∇u(t)‖2
1 + ‖∇ut (t)‖2 + ‖∇p(t)‖2

1) + C‖∇u(t)‖‖(∇2u(t),∇p(t))‖,
(3.29)

1
2

d
dt

∫
�

ρ(t)|∇2u(t)χ0|2 + |∇2p(t)χ0|2
γ p̄(t)

dx + μ
∫
�

|∇3u(t)χ0|2dx

+ (μ + λ)
∫
�

|∇2divu(t)χ0|2dx

≤ Cδ(‖∇u(t)‖2
2 + ‖∇ut (t)‖2 + ‖∇p(t)‖2

1) + C‖∇2u(t)‖‖(∇3u(t),∇2p(t))‖,
(3.30)

for any t ≥ 0.
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Proof. As in Lemma 3.3, here, we only sketch the outline and shall omit the detailed calcula-
tions for simplicity. Differentiating (1.5)2 and (3.12) with respect to xi , multiplying the resulting 
equations by uxi

χ2
0 , pxi

χ2
0 respectively, we obtain

1
2

d
dt

∫
�

ρ|uxi
χ0|2 + |pxi

χ0|2
γ p̄

dx + μ
∫
�

|∇uxi
(t)χ0|2dx + (μ + λ)

∫
�

|divuxi
χ0|2dx

= 1
2

∫
�

ρt |uxi
χ0|2 − |pxi

χ0|2p̄t

γ p̄2 dx − ∫
�
[ρxi

ut + (ρu · ∇u)xi
]uxi

χ2
0 dx

+ ∫
�
{ 
[u]
γ cν p̄

}xi
pxi

χ2
0 dx − ∫

�
{ γ (p−p̄)divu+u·∇p

γ p̄(t)
}xi

pxi
(t)χ2

0 dx

− μ
∫
�

uxi
(t)∇uxi

(t)∇χ2
0 dx − (μ + λ)

∫
�

divuxi
(t)uxi

(t)∇χ2
0 dx + ∫

�
pxi

(t)uxi
(t)∇χ2

0 dx

≤ Cδ(‖∇u(t)‖2
1 + ‖∇ut (t)‖2 + ‖∇p(t)‖2

1) + C‖∇u(t)‖‖(∇2u(t)χ0,∇p(t)χ0)‖,
which gives (3.29). Repeating the above procedure again for 2nd order spatial derivatives we get 
the following

1
2

d
dt

∫
�

ρ|uxixj
χ0|2 + |pxixj

χ0|2
γ p̄

dx + μ
∫
�

|∇uxixj
χ0|2dx + (μ + λ)

∫
�

|divuxixj
χ0|2dx

= 1
2

∫
�

ρt |uxixj
χ0|2 − |pxixj

χ0|2p̄t

γ p̄2 dx + ∫
�
(ρu · ∇u)xixj

uxixj
χ2

0 dx

+ ∫
�
{ 
[u]
γ cν p̄

}xixj
pxixj

χ2
0 dx − ∫

�
{ γ (p−p̄)divu+u·∇p

γ p̄
}xixj

pxixj
χ2

0 dx

− μ
∫
�

uxixj
∇uxixj

∇χ2
0 dx − (μ + λ)

∫
�

divuxixj
uxixj

∇χ2
0 dx

+ ∫
�

pxixj
uxixj

∇χ2
0 dx − ∫

�
[ρxixj

ut + ρxi
uxj t + ρxj

uxi t ]uxixj
χ2

0 dx

≤ Cδ(‖∇u‖2
2 + ‖∇ut‖2 + ‖∇p‖2

1) + C‖∇2uχ0‖‖(∇3u,∇2p)‖,
which gives (3.30). The proof of lemma is completed. �

Finally, let us establish the estimates near the boundary. Similar to that in [22], we need a 
more detailed argument using the trick of estimating the tangential derivatives and the normal 
derivatives separately. We choose a finite number of bounded open sets {Oj }Nj=1 in R3, such that 

∂� ⊂ ∪N
j=1Oj . In each open set Oj we choose the local coordinates y = (y1, y2, y3) as follows:

• The surface Oj ∩∂� is the image of a smooth vector function zj(y1, y2) = (z
j

1, zj

2, zj

3)(y1, y2)

(e.g., take the local geodesic polar coordinate), satisfying

|zj
y1 | = 1, z

j
y1 · zj

y2 = 0 and |zj
y2 | ≥ δ1 > 0, (3.31)

where δ is some positive constant independent of 1 ≤ j ≤ N .
• Any x = (x1, x2, x3) ∈ Oj is represented by

xi := �i(y) = y3ni(z
j (y1, y2)) + z

j
i (y1, y2) for i = 1, 2, 3, (3.32)

where nj (y1, y2) = (n
j

1, n
j

2, n
j

3)(z
j (y1, y2)) represents the internal unit normal vector at the 

point zj (y1, y2) of the surface ∂�.

We omit the subscript j in what follows for the simplicity of presentation. For k = 1, 2, we define 
the unit vectors
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e1 = zy1 and e2 = zy2

|zy2 |
.

Then Frenet–Serret’s formula gives that there exist smooth functions (α1, β1, γ1, α2, β2, γ2) of 
(y1, y2) satisfying

∂

∂y1

⎛
⎝e1

e2
n

⎞
⎠

i

=
⎛
⎝ 0 −γ1 −α1

γ1 0 −β1
α1 β1 0

⎞
⎠

⎛
⎝e1

e2
n

⎞
⎠

i

,

∂

∂y2

⎛
⎝e1

e2
n

⎞
⎠

i

=
⎛
⎝ 0 −γ2 −α2

γ2 0 −β2
α2 β2 0

⎞
⎠

⎛
⎝e1

e2
n

⎞
⎠

i

,

where ei
m denotes the i-th component of em. An elementary calculation shows that the Jacobian 

J of the transform (3.32) is

J = �y1 × �y2 · n = |zy2 | + (α1|zy2 | + β2)y3 + (α1β2 − β1α2)y
2
3 . (3.33)

By (3.33), we have the transform (3.32) is regular by choosing y3 so small that J ≥ δ/2. There-
fore, the inverse function of �(y) := (�1, �2, �3)(y) exits, and we denote it by y = �−1(x). 
Moreover (y1, y2, y3)xi

(x) make sense and can be expressed by, using a straightforward calcula-
tion,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂xi
y1 = 1

J
(�y2 × �y3)i = 1

J
(Ae1

i +Be2
i ) =: a1i ,

∂xi
y2 = 1

J
(�y3 × �y1)i = 1

J
(Ce1

i +De2
i ) =: a2i ,

∂xi
y3 = 1

J
(�y1 × �y2)i = ni =: a3i ,

(3.34)

where A = |zy2 | + β2y3, B = −y3α2, C = −β1y3, D = 1 + α1y3,

J =AD −BC ≥ δ/2. (3.35)

Obviously, (3.34) gives

3∑
i=1

a2
3i = |n|2 = 1, a1ia3i = a2ia3i = 0, J 2 = (AC +BD)2 − (A2 +B2)(C2 +D2)

and

∂xi
= aki∂yk

, (3.36)

where we have used the Einstein convention of summing over repeated indices.
Thus, in each Oj , the first two equations of (1.5) can be rewritten in the local coordinates 

(y1, y2, y3) as follows:
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Lp := dp
dt

+ γ p̄
J

[(Ae1 +Be2) · uy1 + (Ce1 +De2) · uy2 + Jn · uy3] = f 0,

Lu := ρut − μ

J 2 [(A2 +B2)uy1y1 + 2(AC +BD)uy1y2 + (C2 +D2)uy2y2 + J 2uy3y3]
+ one order terms of u + 1

J
(Ae1 +Be2)[μ+λ

γ p̄
dp
dt

+ p]y1

+ 1
J
(Ce1 +De2)[μ+λ

γ p̄
dp
dt

+ p]y2 + n[μ+λ
γ p̄

dp
dt

+ p]y3 = f,

where

d
dt

:= ∂t + u · ∇ denotes the material derivative,

f 0 := 
[u]
cν

− γ (p − p̄)divu,

f := ρu · ∇u + μ+λ
γ p̄

∇f 0,

J 2 := (AC +BD)2 − (A2 +B2)(C2 +D2).

Let us denote the tangential derivatives by ∂ = (∂y1 , ∂y2) and χj be arbitrary but fixed func-
tion in C∞

0 (Oj ). Obviously, χj∂
ku = 0 on ∂�−1

j , where 0 ≤ k ≤ 2 and �j
−1(y) := {y|y =

�−1(x), x ∈ �j = Oj ∩ �}. Estimating the tangential derivatives in a similar manner as in 
Lemma 3.4, we have

Lemma 3.5. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C
such that

d
dt

∫
�−1

j
ρ(t)|∂u(t)χj |2 + |∂p(t)χj |2

γ p̄(t)
dy + ∫

�j
−1 |∂∇u(t)χj |2dy + ∫

�−1
j

|∂ dp(t)
dt

χj |2dy

≤ Cδ(‖∇u(t)‖2
1 + ‖∇ut (t)‖2 + ‖∇p(t)‖2

1) + C‖∇u(t)‖(‖(∇u(t)‖1 + ‖∇p(t)‖),
(3.37)

d
dt

∫
�−1

j
ρ(t)|∂2u(t)χj |2 + |∂2p(t)χj |2

γ p̄(t)
dy + ∫

�−1
j

|∂2∇u(t)χj |2dy

+ ∫
�−1

j
|∂2 dp(t)

dt
χj |2dy

≤ Cδ(‖∇u(t)‖2
2 + ‖∇ut (t)‖2 + ‖∇p(t)‖2

1) + C‖∇2u(t)‖(‖∇u(t)‖2 + ‖∇2p(t)‖),
(3.38)

for any t ≥ 0.

Next, we turn to estimates of derivatives in the normal directions.

Lemma 3.6. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C
such that

d
dt

∫
�−1

j
|py3(t)χj |2dy + ∫

�−1
j

|( dp(t)
dt

)y3χj |2dy

≤ C(‖(∇u(t), ut (t))‖2 + δ‖(∇p(t),∇u(t))‖2
1 + ∫

�j
−1 |∂∇u(t)χj |2dy),

(3.39)

d
dt

∫
�−1

j
|∂k∂�+1

y3
p(t)χj |2dy + ∫

�−1
j

|∂k∂�+1
y3

(
dp(t)
dt

)χj |2dy

≤ C(‖(∇u(t), ut (t))‖2
1 + δ‖(∇p(t),∇2u(t))‖2

1 + ∫
�j

−1 |∂k+1∂l
y3

∇u(t)χj |2dy),
(3.40)

for any t ≥ 0, k + � = 1.
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Proof. First, we use the equations ∂y3(Lp − f 0) = 0 and n(Lu − f ) = 0, which have the fol-
lowing form:

(
dp

dt
)y3 + γ p̄

J
[(Ae1 +Be2) · uy1y3 + (Ce1 +De2) · uy2y3 + Jn · uy3y3 ]

+ one order terms of u = f 0
y3

,
(3.41)

nρut − μ

J 2 [(A2 +B2)nuy1y1 + 2(AC +BD)nuy1y2 + (C2 +D2)nuy2y2 + J 2nuy3y3 ]
+ one order terms of u + [μ+λ

γ p̄
dp
dt

+ p]y3 = nf,
(3.42)

To eliminate nuy3y3 in (3.42), we take the summation μ
γ p̄

× (3.41) + (3.42) which gives

2μ+λ
γ p̄

(
dp
dt

)y3 + py3 = μ

J 2 [(A2 +B2)nuy1y1 + 2(AC +BD)nuy1y2 + (C2 +D2)nuy2y2]
− nρut − μ

J
[(Ae1 +Be2) · uy1y3 + (Ce1 +De2) · uy2y3 ]

+ one order terms of u + nf + μ
γ p̄

f 0 = F.

(3.43)

Multiplying the above equation by χ2
j (

dp
dt

)y3 and integrating on �−1
j , we can bound the one order 

derivatives in the normal direction to the boundary as follows.

1
2

d
dt

∫
�−1

j
|py3χj |2dy + 2μ+λ

γ p̄

∫
�−1

j
|( dp

dt
)y3χj |2dy

= ∫
�−1

j
−(u · ∇p)y3py3χ

2
j + (

dp
dt

)y3Fχ2
j dy.

(3.44)

It follows from Lemma 2.1, Hölder’s inequality and Cauchy’s inequality, for the first term in 
right side of (3.44), it holds that

∣∣ ∫
�−1

j
(u · ∇p)y3py3χ

2
j dy

∣∣
≤ ∣∣ ∫

�−1
j

uy3 · ∇ppy3χ
2
j dy

∣∣ + 1
2

∣∣ ∫
�−1

j
(py3)

2div(uχ2
j )dy

∣∣
≤ C‖∇u‖1‖∇p‖2

1 ≤ Cδ‖∇p‖2
1.

(3.45)

For the second term, we have

∣∣ ∫
�−1

j
(
dp
dt

)y3Fχ2
j dy

∣∣
≤ 2μ+λ

2γ p̄

∫
�−1

j
|( dp

dt
)y3χj |2dy + C

∫
�−1

j
|Fχj |2dy

≤ 2μ+λ
2γ p̄

∫
�−1

j
|( dp

dt
)y3χj |2dy + C(‖(∇u,ut )‖2 + δ‖∇u‖2

1 + ∫
�j

−1 |∂∇uχj |2dy).

(3.46)

Substituting (3.45) and (3.46) into (3.44), we obtain

d
dt

∫
�−1

j
|py3χj |2dy + 2μ+λ

γ p̄(t)

∫
�−1

j
|( dp

dt
)y3χj |2dy

≤ C(‖(∇u,ut )‖2 + δ‖(∇p,∇u)‖2
1 + ∫

�j
−1 |∂∇uχj |2dy),

which gives (3.39).
If we apply ∂k∂�

y3
(k + � = 1) to (3.43), multiply it by χ2

j ∂k∂�+1
y3

(
dp
dt

) and integrate it in the 
similar way as in (3.39), we get
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d
dt

∫
�−1

j
|∂k∂�+1

y3
pχj |2dy + ∫

�−1
j

|∂k∂�+1
y3

(
dp
dt

)χj |2dy

≤ C(‖(∇u,ut )‖2
1 + δ‖(∇p,∇2u)‖2

1 + ∫
�j

−1 |∂k+1∂�
y3

∇uχj |2dy),

which gives (3.40). The proof of lemma is completed. �
Finally, we use Lemma 2.2 to get the estimates on the tangential derivatives of p and u.

Lemma 3.7. Under the conditions of Theorem 1.1 and (3.1), there exists a positive constant C
such that

‖∇2u(t)‖2 + ‖∇p(t)‖2 ≤ C(‖dp(t)

dt
‖2

1 + ‖ut (t)‖2 + ‖∇u(t)‖2
1‖∇2u(t)‖2) (3.47)∫

�−1
j

|∂∇2u(t)χj |2dy + ∫
�−1

j
|∂∇p(t)χj |2dy

≤ C(‖(∇u(t), ut (t))‖2
1 + ‖∇p(t)‖2 + ∫

�−1
j

|∂∇ dp(t)
dt

χj |2dy

+ ‖∇p(t)‖‖∇ dp(t)
dt

‖ + ‖∇u(t)‖2
1‖∇3u(t)‖2),

(3.48)

for any t ≥ 0.

Proof. We rewrite equations (1.5)1,2 as the Stokes problem:

⎧⎪⎨
⎪⎩

divu = 1
γp

[− dp
dt

+ 
[u]
cν

],
−μ�u + ∇p = (μ + λ)∇divu − (ρut + ρu · ∇u),

u|∂� = 0.

(3.49)

Thus applying Lemma 2.2 to (3.49) gives (3.47).
Next operating χj∂ to Stokes equation (3.49)2, then together with (3.49)1,3, implies that the 

following Stokes problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(χj ∂u) = χj∂{ 1
γp

[− dp
dt

+ 
[u]
cν

]} + ∇χj∂u,

−μ�(χj∂u) + ∇(χj ∂p) = −2μ∇χj∇(∂u) − �χj∂u + ∇χj∂p

+ (μ + λ)χj∇∂{ 1
γp

[− dp
dt

+ 
[u]
cν

]} − χj∂(ρut + ρu · ∇u),

χj ∂u|
∂�−1

j
= 0.

(3.50)

Thus applying Lemma 2.2 to (3.50) gives (3.48). The proof of lemma is completed. �
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We do it by four steps.
Step 1: We first estimate the lower order derivatives for (p, u). Let D be a fixed but large 

positive constant. By summing up

D2 × ((3.8) + (3.18)) + D × ((3.29) + (3.37)) + (3.39),

there exists a function H1(p, u) which is equivalent to ‖(u, p−p̄, ut , pt −p̄t , ∇p)‖2 and satisfies
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d
dt

{
H1(t) + ∫

�
ρ(t)|∇u(t)χ0|2dx +

N∑
j=1

∫
�−1

j
ρ(t)|∂u(t)χ0|2dy

} + D‖(∇u(t),∇ut (t))‖2

+ ‖∇ dp(t)
dt

‖2 + ∫
�

|∇2u(t)χ0|2dx +
N∑

j=1

∫
�−1

j
|∂∇u(t)χj |2dy

≤ 1
D1/3 ‖(∇p(t),∇2u(t))‖2 + Cδ‖∇2p(t)‖2.

(3.51)

Taking (3.47) into the above inequality, and using the fact dp
dt

= −γpdivu + 
[u]
cν

, we obtain

d
dt

{
H1(t) + ∫

�
ρ(t)|∇u(t)χ0|2dx +

N∑
j=1

∫
�−1

j
ρ(t)|∂u(t)χ0|2dy

} + ‖∇u(t)‖2
1

+ ‖(∇p(t),∇ut (t))‖2 + ‖∇ dp(t)
dt

‖2 ≤ Cδ‖∇2p(t)‖2,

(3.52)

since D is large and δ is small.
Step 2: Next, we estimate the higher order derivatives for (p, u). Taking � = 0 in (3.40) and 

summing up D × [2 × (3.30) + (3.38)] + (3.40), we have

d
dt

{D ∫
�

ρ(t)|∇2u(t)χ0|2 + |∇2p(t)χ0|2
γ p̄(t)

dx + D
N∑

j=1

∫
�−1

j
ρ(t)|∂2u(t)χj |2 + |∂2p(t)χj |2

γ p̄(t)
dy

+ ∫
�−1

j
|∂∂y3p(t)χj |2dy} + ∫

�
|∇3u(t)χ0|2dx + ∫

�
|∇2 dp(t)

dt
χ0|2dx

+
N∑

j=1

∫
�−1

j
|∂2∇u(t)χj |2 + |∂∇ dp(t)

dt
χj |2dy

≤ CD(‖∇u(t)‖2
1 + ‖∇ut (t)‖2) + CDδ‖(∇p(t),∇2u(t))‖2

1

+ CD‖∇2u(t)‖(‖∇u(t)‖2 + ‖∇2p(t)‖).

(3.53)

Then taking � = 1 in (3.40) and substituting (3.48) into (3.40), we have

d
dt

∫
�−1

j
|∂2

y3
p(t)χj |2dy + ∫

�−1
j

|∂2
y3

(
dp(t)
dt

)χj |2dy

≤ C(‖(∇u(t), ut (t))‖2
1 + ‖∇p(t)‖‖(∇p(t),∇ dp(t)

dt
)‖ + δ‖(∇p(t),∇2u(t))‖2).

(3.54)

Adding D × (3.53) to (3.54), there exists H2(t) which is equivalent to ‖∇2p(t)‖2, such that

d
dt

{D2
∫
�

ρ(t)|∇2u(t)χ0|2dx + D2
N∑

j=1

∫
�−1

j
ρ(t)|∂2u(t)χj |2dy + H2(t)}

+ ∫
�

|∇3u(t)χ0|2dx +
N∑

j=1

∫
�−1

j
|∂2∇u(t)χj |2dy + ∫

�
|∇2 dp(t)

dt
|2dx

≤ CD2(‖∇u(t)‖2
1 + ‖(∇ut (t),∇p(t))‖2) + CD2δ‖(∇p(t),∇2u(t))‖2

1

+ CD2‖∇2u(t)‖(‖∇u(t)‖2 + ‖∇2p(t)‖).

(3.55)

Applying Lemma 2.2 to (3.49) as (3.48), we obtain

‖(∇3u(t),∇2p(t))‖2 ≤ C(‖(∇u(t), ut (t))‖2
1 + ‖∇p(t)‖2 + ‖∇ dp(t)

dt
‖2

1

+ ‖∇u(t)‖2‖∇3u(t)‖2).
(3.56)
1
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Step 3: Now, we are able to establish the energy estimate of Gronwall-type. An application 
of the Lp-estimate of elliptic system to (1.5)2 gives

‖∇2u(t)‖2 ≤ C‖(ut (t),∇p(t),∇u(t))‖2. (3.57)

Thus by summing up D4 × (3.52) + D × (3.55) + (3.56), there exists a function H3(p, u) which 
is equivalent to ‖(p(t), u(t))‖2

2 + ‖(pt (t), ut (t))‖2 such that

dH3(p(t), u(t))

dt
+ CH3(p(t), u(t)) + C‖∇3u(t)‖2 ≤ 0, (3.58)

where we use the Poincaré’s inequality ‖p(t) − p̄(t)‖ ≤ C‖∇p(t)‖. Integrating the above in-
equality over [0, t] gives (1.9).

By Gronwall’s inequality, (3.58) leads to

H3(p(t), u(t)) ≤ CH3(p(0), u(0))e−Ct .

Taking the above estimate into the homogeneous transport equation (1.5)3 we arrive at (1.11).
Step 4: By symmetry and some tedious but straightforward calculation, we have the energy 

estimates on the entropy as following:

d

dt
‖s(t) − s̄‖2

2 ≤ C‖u(t)‖2‖s(t) − s̄‖2
2 + Cδ

1
2 ‖u(t)‖2

3.

Adding the above inequality to (3.58), and by Gronwall’s inequality, we have

‖s(t) − s̄‖2
2 ≤ C‖(p0 − p̄0, u0, s0 − s̄)‖2 exp{C

t∫
0

‖u(τ)‖2dτ },

taking (1.11) into the above inequality, we arrive at (1.10).
Finally, from (3.5) we have

p̃ − p̄(t) = 1

|�|
∞∫
t

∫
�


[u]p 1
γ

−1

R + cν

dxdτ,

then taking (1.11) into the above equality we prove (1.12) and this completes the proof of Theo-
rem 1.1. �
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