期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:253
A note on the 2D generalized Zakharov-Kuznetsov equation: Local, global, and scattering results
Article
Farah, Luiz G.2  Linares, Felipe1  Pastor, Ademir3 
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Fed Minas Gerais, ICEx, BR-30123970 Belo Horizonte, MG, Brazil
[3] IMECC UNICAMP, BR-13083859 Campinas, SP, Brazil
关键词: Local and global well-posedness;    Nonlinear scattering;   
DOI  :  10.1016/j.jde.2012.05.019
来源: Elsevier
PDF
【 摘 要 】

We consider the generalized two-dimensional Zakharov-Kuznetsov equation u(t) + partial derivative(x)Delta u + partial derivative(x)(u(k+1)) = 0, where k >= 3 is an integer number. For k >= 8 we prove local well-posedness in the L-2-based Sobolev spaces H-s(R-2), where s is greater than the critical scaling index s(k) = 1 - 2/k. For k >= 3 we also establish a sharp criteria to obtain global H-1(R-2) solutions. A nonlinear scattering result in H-1(R-2) is also established assuming the initial data is small and belongs to a suitable Lebesgue space. (c) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2012_05_019.pdf 214KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次