期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:476
The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces
Article
Fonseca, German1  Pastran, Ricardo1  Rodriguez-Blanco, Guillermo1 
[1] Univ Nacl Colombia, AK 30 45-03, Bogota, Colombia
关键词: Benjamin-Ono equation;    Local and global well-posedness;    Sobolev spaces;    Weighted Sobolev spaces;   
DOI  :  10.1016/j.jmaa.2019.03.047
来源: Elsevier
PDF
【 摘 要 】

We prove that the initial value problem associated to a nonlocal perturbation of the Benjamin-Ono equation is locally and globally well-posed in Sobolev spaces H-s(R) for any s > -3/2 and we establish that our result is sharp in the sense that the flow map of this equation fails to be C-2 in H-s(R) for s < -3/2. Finally, we study persistence properties of the solution flow in the weighted Sobolev spaces Z(s,r) = H-s(R) boolean AND L-2 (vertical bar x vertical bar(2r) dx) for s >= r > 0. We also prove some unique continuation properties of the solution flow in these spaces. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_03_047.pdf 618KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次