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equation ut + ∂x�u + ∂x(uk+1) = 0, where k � 3 is an integer
number. For k � 8 we prove local well-posedness in the L2-based
Sobolev spaces Hs(R2), where s is greater than the critical scaling
index sk = 1 − 2/k. For k � 3 we also establish a sharp criteria
to obtain global H1(R2) solutions. A nonlinear scattering result in
H1(R2) is also established assuming the initial data is small and
belongs to a suitable Lebesgue space.
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1. Introduction

This note sheds new light on the local and global well-posedness of the initial-value problem (IVP)
associated with the generalized Zakharov–Kuznetsov (gZK) equation in two-space dimensions:

{
ut + ∂x�u + ∂x

(
uk+1

) = 0, (x, y) ∈R2, t > 0,

u(x, y,0) = u0(x, y),
(1.1)

where u is a real-valued function, � = ∂2
x + ∂2

y stands for the Laplacian operator, and k � 1 is an

integer number. Here we will concern with the L2-supercritical case, i.e. k � 3 in (1.1).
In the case k = 1, the equation in (1.1) has a physical meaning and it was formally deduced

by Zakharov and Kuznetsov [18] as an asymptotic model to describe the propagation of nonlinear
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ion-acoustic waves in a magnetized plasma. The gZK equation may also be seen as a natural, two-
dimensional extension of the well-known generalized Korteweg–de Vries (KdV) equation

ut + uxxx + ∂x
(
uk+1) = 0, x ∈R, t > 0.

Our main purpose here lies in establishing local and global (in time) well-posedness results.
These issues have already been studied in Faminskii [4], Biagioni and Linares [1], and Linares and
Pastor [9,10]. In [4], Faminskii considered the case k = 1 and showed local and global well-posedness
in Hm(R2), m � 1 integer. In [1], Biagioni and Linares dealt with the case k = 2 and proved local
well-posedness for data in H1(R2). By considering the cases k = 1 and k = 2 Linares and Pastor [9]
improved the local results in [1,4] by showing that both IVP’s are locally well-posed in Hs(R2),
s > 3/4. Moreover the authors also show that if u0 ∈ H1(R2) and satisfies ‖u0‖L2 < ‖Q ‖L2 , where
Q is the unique positive radial solution (hereafter refereed to as the ground state solution) of the
elliptic equation

−�Q + Q − Q 3 = 0, (1.2)

then (for k = 2) global well-posedness holds in H1(R2). The case k � 3 was studied in [10] where
the authors established local well-posedness in Hs(R2), s > 3/4, if 3 � k � 7 and in Hs(R2), s > s∗

k :=
1 − 3/(2k − 4), if k � 8. A global result for small initial data in H1(R2) was also proved.

The best local well-posedness results known are summarized in the following theorem.

Theorem 1.1. (See [9,10].) The following statements hold.

(i) Assume 1 � k � 7. Then for any u0 ∈ Hs(R2), s > 3/4, there exist T = T (‖u0‖Hs ) > 0, a space XT ⊂
C([0, T ]; Hs(R2)) and a unique solution u ∈ XT of the IVP (1.1) defined in [0, T ]. Moreover, continuous
dependence upon the data holds.

(ii) Assume k � 8. Then for any u0 ∈ Hs(R2), s > s∗
k := 1 − 3/(2k − 4), there exist T = T (‖u0‖Hs ) > 0,

a space XT ⊂ C([0, T ]; Hs(R2)) and a unique solution u ∈ XT of the IVP (1.1) defined in [0, T ]. Moreover,
continuous dependence upon the data holds.

Concerning other questions on the gZK equation we refer the reader to [2,3,11,13,14], and refer-
ences therein.

To motivate the results to follow, let us perform a scaling argument: if u solves (1.1), with initial
data u0, then

uλ(x, y, t) = λ2/ku
(
λx, λy, λ3t

)
also solves (1.1), with initial data uλ(x, y,0) = λ2/ku0(λx, λy), for any λ > 0. Hence,

∥∥uλ(·, ·,0)
∥∥

Ḣ s = λ2/k+s−1‖u0‖Ḣ s , (1.3)

where Ḣ s = Ḣ s(R2) denotes the homogeneous Sobolev space of order s. As a consequence of (1.3),
the scale-invariant Sobolev space for the gZK equation is Hsk (R2), where sk = 1 − 2/k. Therefore, one
expects that the Sobolev spaces Hs(R2) for studying the well-posedness of (1.1) are those with indices
s > sk .

It should be noted that sk < 3/4 if 1 � k � 7, sk = s∗
k = 3/4 if k = 8, and s∗

k > sk if k > 8. Thus, in
view of Theorem 1.1, except in the case k = 8, a gap for the local well-posedness is left between the
index conjectured by the scaling argument and that one known in the current literature. One of our
goals here is to fulfill this gap by reaching the critical index sk = 1 − 2/k (up to the endpoint) in the
case k > 8. More precisely, we prove the following.



2560 L.G. Farah et al. / J. Differential Equations 253 (2012) 2558–2571
Theorem 1.2. Let k > 8 and sk = 1 − 2/k. For any u0 ∈ Hs(R2), s > sk, there exist T = T (‖u0‖Hs ) > 0 and a
unique solution of the IVP (1.1), defined in the interval [0, T ], such that

u ∈ C
([0, T ]; Hs(R2)), (1.4)

‖ux‖L∞
x L2

yT
+ ∥∥Ds

xux
∥∥

L∞
x L2

yT
+ ∥∥Ds

yux
∥∥

L∞
x L2

yT
< ∞, (1.5)

‖u‖
L3k/2+

T L∞
xy

+ ‖ux‖L3k/(k+2)
T L∞

xy
< ∞, (1.6)

and

‖u‖
Lk/2

x L∞
yT

< ∞. (1.7)

Moreover, for any T ′ ∈ (0, T ) there exists a neighborhood U of u0 in Hs(R2) such that the map ũ0 �→ ũ(t)
from U into the class defined by (1.4)–(1.7) is smooth.

The technique to show Theorem 1.2 will be the one developed by Kenig, Ponce, and Vega [8], which
combines smoothing effects, Strichartz-type estimates, and a maximal function estimate together with
the Banach contraction principle. One of the obstacles which prevent us in proving a similar result
for k � 7 is that we have a maximal function estimate that holds in Hs(R2) only for s > 3/4 (see
Lemma 2.1).

After proving Theorem 1.2 we turn our attention to the issue of global well-posedness. As we
already mentioned, such question has already been addressed in [4,1,9,10]. In particular, in [9] it was
proved that if k = 2 and ‖u0‖L2 < ‖Q ‖L2 (where Q is the ground state solution) then the solution is
global in H1(R2) (for global results below H1(R2), see [10]). Also, in [10] it was shown if k � 3 and
‖u0‖H1 is small enough then global well-posedness holds in H1(R2). The proof of this last result is
quite standard and relies on conservation laws and the Gagliardo–Nirenberg inequality,∫

uk+2 dx dy � c‖u‖2
L2‖∇u‖k

L2 , (1.8)

to get an a priori estimate. Indeed, first recall that the flow of the gZK is conserved by the quantities:

Mass ≡ M
(
u(t)

) =
∫

u2(t)dx dy (1.9)

and

Energy ≡ E
(
u(t)

) = 1

2

∫ ∣∣∇u(t)
∣∣2

dx dy − 1

k + 2

∫
uk+2(t)dx dy, (1.10)

where the symbol ∇ stands for the gradient in the space variables.
Combining (1.9), (1.10) and (1.8), we obtain that

∥∥u(t)
∥∥2

H1 = M
(
u(t)

) + 2E
(
u(t)

) + 2

k + 2

∫
uk+2(t)dx dy

� M(u0) + 2E(u0) + c‖u0‖2
L2

∥∥∇u(t)
∥∥k

L2 . (1.11)

Denote X(t) = ‖u(t)‖2
H1 . Since k � 3, we then have

X(t) � C
(‖u0‖H1

) + c‖u0‖2
2 X(t)1+ k−2

2 .
L
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Thus, if ‖u0‖H1 is small enough, a standard argument leads to ‖u(t)‖H1 � C(‖u0‖H1 ) for t ∈ [0, T ].
Therefore, we can apply the local theory to extend the solution globally.

Unfortunately, the above argument does not precise how small the initial data should be. Here, we
study this question and obtain the following result.

Theorem 1.3. Let k � 2 and sk = 1 − 2/k. Assume u0 ∈ H1(R2) and suppose that

E(u0)
sk M(u0)

1−sk < E(Q )sk M(Q )1−sk , E(u0) � 0. (1.12)

If

‖∇u0‖sk

L2‖u0‖1−sk

L2 < ‖∇ Q ‖sk

L2‖Q ‖1−sk

L2 , (1.13)

then for any t as long as the solution exists,

∥∥∇u(t)
∥∥sk

L2‖u0‖1−sk
L2 = ∥∥∇u(t)

∥∥sk

L2

∥∥u(t)
∥∥1−sk

L2 < ‖∇ Q ‖sk
L2‖Q ‖1−sk

L2 , (1.14)

where Q is the unique positive radial solution of

�Q − Q + Q k+1 = 0.

This in turn implies that H1(R2) solutions exist globally in time.

To prove Theorem 1.3, we follow closely our arguments in [5] where we have proved a similar
result for the L2-supercritical generalized KdV equation. We point out that these results are inspired
by those ones obtained by Kenig and Merle [7] and Holmer and Roudenko [6].

Remark 1.4. In the limit case k = 2 (the modified ZK equation), conditions (1.12) and (1.13) reduce to
the same one and it writes as

‖u0‖L2 < ‖Q ‖L2 .

Such a condition was already used in [9] and [10] to show the existence of global solutions, respec-
tively, in H1(R2) and Hs(R2), s > 53/63.

Once Theorem 1.3 is established, we go on studying the asymptotic behavior of such global solu-
tions as t → ±∞. We prove that under a smallness condition the solution scatters to a solution of
the linear problem. Precisely,

Theorem 1.5. Let k � 3 and p′ = 2(k+1)
2k+1 . Assume that u0 ∈ H1(R2) ∩ L p′

(R2) satisfies

‖u0‖L p′ + ‖u0‖H1 < δ (1.15)

for some δ small enough. Let u(t) be the global solution of (1.1) given in Theorem 1.3. Then, there exist f± ∈
H1(R2) such that ∥∥u(t) − U (t) f±

∥∥
H1 → 0, (1.16)

as t → ±∞.

Note that the smallness condition (1.15) promptly implies the existence of global solutions in
H1(R2). The proof of Theorem 1.5 is quite standard and it follows closely the arguments in [12,15,17].
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Remark 1.6. Theorem 1.5 provides scattering whenever the initial data is small in H1(R2) and in
L p′

(R2). We do not know if the smallness condition in Theorem 1.3 is sharp in the sense that any
global solution given by Theorem 1.3 scatters or not.

The paper is organized as follows. In Section 2 we introduce some notation and recall the useful
linear estimates to our arguments. The local and global results, in Theorems 1.2 and 1.3, are proved
in Sections 3 and 4, respectively. The concluding section, Section 5, is devoted to show Theorem 1.5.

2. Notation and preliminaries

Let us start this section by introducing the basic notation used throughout this note. We use c to
denote various constants that may vary line by line. Given any positive numbers a and b, the notation
a � b means that there exists a positive constant c such that a � cb. We use a+ and a− to denote
a + ε and a − ε, respectively, for arbitrarily small ε > 0.

For α ∈ C, the operators Dα
x and Dα

y are defined via Fourier transform by D̂α
x f (ξ,η) = |ξ |α f̂ (ξ,η)

and D̂α
y f (ξ,η) = |η|α f̂ (ξ,η), respectively. We use ‖ · ‖Lp and ‖ · ‖Hs to denote the norms in L p(R2)

and Hs(R2), respectively. If necessary, we use subscript to inform which variable we are concerned
with. The mixed space–time norm is defined as (for 1 � p,q, r < ∞)

‖ f ‖L p
x Lq

y Lr
T

=
( +∞∫

−∞

( +∞∫
−∞

( T∫
0

∣∣ f (x, y, t)
∣∣r

dt

)q/r

dy

)p/q

dx

)1/p

,

with obvious modifications if either p = ∞, q = ∞ or r = ∞. Norms with interchanged subscript
are similarly defined. If the subscript Lr

t appears in some norm, that means one is integrating the
variable t on the whole R.

Next we introduce the main tools to prove the local well-posedness. Consider the linear IVP

{
ut + ∂x�u = 0, (x, y) ∈R2, t ∈ R,

u(x, y,0) = u0(x, y).
(2.17)

The solution of (2.17) is given by the unitary group {U (t)}∞t=−∞ such that

u(t) = U (t)u0(x, y) =
∫
R2

ei(t(ξ3+ξη2)+xξ+yη)û0(ξ,η)dξ dη. (2.18)

The smoothing effect of Kato type, the Strichartz estimate, and the maximal function estimate for
solution (2.18) are presented next.

Lemma 2.1. The following statements hold.

(i) (Smoothing effect) If u0 ∈ L2(R2) then

∥∥∂xU (t)u0
∥∥

L∞
x L2

yT
� ‖u0‖L2

xy
. (2.19)

(ii) (Maximal function) For any s > 3/4 and 0 < T � 1, we have

∥∥U (t) f
∥∥

L4
x L∞

yT
� ‖ f ‖Hs

xy
. (2.20)



L.G. Farah et al. / J. Differential Equations 253 (2012) 2558–2571 2563
(iii) (Strichartz-type estimate) Let 0 � ε < 1/2 and 0 � θ � 1. Then,

∥∥Dθε/2
x U (t) f

∥∥
Lq

t L p
xy

� ‖ f ‖L2
xy

, (2.21)

where p = 2
1−θ

and 2
q = θ(2+ε)

3 .

Proof. The proof of (i) is given in [4, Theorem 2.2] while proofs of (ii) and (iii) are given, respectively,
in [9, Proposition 2.4] and [10, Corollary 2.7]. �

With Lemma 2.1 at hand, we prove the following.

Proposition 2.2. Let sk = 1 − 2/k and 0 < T � 1. Then, for any k > 8,

(i) ‖U (t) f ‖
Lk/2

x L∞
yT

� ‖ f ‖
H

sk+
xy

,

(ii) ‖U (t) f ‖
L3k/2+

T L∞
xy

� ‖ f ‖
H

sk+
xy

,

(iii) ‖∂xU (t) f ‖
L3k/(k+2)

T L∞
xy

� ‖Dsk
x f ‖L2

xy
.

Proof. Inequality (i) follows interpolating the Sobolev embedding∥∥U (t) f
∥∥

L∞
T xy

� ‖ f ‖H1+ (2.22)

with the maximal function estimate ‖U (t) f ‖L4
x L∞

yT
� ‖ f ‖Hsk+ (see (2.20)). To prove (ii) we first take

ε = 0 and θ = 1 in (2.21) to get ‖U (t) f ‖L3
T L∞

xy
� ‖ f ‖L2 . Thus (ii) follows interpolating such inequality

with (2.22). Estimate (iii) is a particular case of (2.21) just taking θ = 1 and ε = 4/k. �
Finally, we also recall the Chain rule and Leibniz rule for fractional derivatives.

Lemma 2.3 (Chain rule). Let 1 < p < ∞, r > 1, and h ∈ Lrp
loc(R). Then

∥∥Dα
z F ( f )h

∥∥
L p

z (R)
�

∥∥F ′( f )
∥∥

L∞
z (R)

∥∥Dα
z ( f )M

(
hrp)1/rp∥∥

L p
z (R)

,

where M denotes the Hardy–Littlewood maximal function.

Proof. See Kenig, Ponce, and Vega [8, Theorem A.7]. �
Lemma 2.4 (Leibniz rule). Let 0 < α < 1 and 1 < p < ∞. Then,∥∥Dα

z ( f g) − f Dα
z g − g Dα

z f
∥∥

L p
z (R)

� ‖g‖L∞
z (R)

∥∥Dα
z f

∥∥
L p

z (R)
.

Proof. See Kenig, Ponce, and Vega [8, Theorem A.12]. �
3. Local well-posedness: proof of Theorem 1.2

As usual, we consider the integral operator

Ψ (u)(t) = Ψu0(u)(t) := U (t)u0 +
t∫

U
(
t − t′)∂x

(
uk+1)(t′)dt′, (3.23)
0
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and define the metric spaces

YT = {
u ∈ C

([0, T ]; Hs(R2)); |||u||| < ∞}
and

Ya
T = {

u ∈ YT ; |||u||| � a
}
,

with

|||u||| := ‖u‖L∞
T Hs

xy
+ ‖u‖

L3k/2+
T L∞

xy
+ ‖u‖

Lk/2
x L∞

yT
+ ‖ux‖L3k/(k+2)

T L∞
xy

+ ‖ux‖L∞
x L2

yT
+ ∥∥Ds

xux
∥∥

L∞
x L2

yT
+ ∥∥Ds

yux
∥∥

L∞
x L2

yT
,

where a, T > 0 will be chosen later. We assume that sk < s < 1 and T � 1.
First we estimate the Hs-norm of Ψ (u). Let u ∈ Ya

T . By using Minkowski’s inequality, group prop-
erties and then Hölder’s inequality, we have

∥∥Ψ (u)(t)
∥∥

L2
xy

� ‖u0‖Hs +
T∫

0

∥∥u3k/4
∥∥

L∞
xy

∥∥uk/4ux
∥∥

L2
xy

dt′

� ‖u0‖Hs + ∥∥u3k/4
∥∥

L2
T L∞

xy

∥∥uk/4ux
∥∥

L2
xyT

� ‖u0‖Hs + T γ ‖u‖
L3k/2+

T L∞
xy

‖u‖k/4

Lk/2
x L∞

yT

‖ux‖L∞
x L2

yT
, (3.24)

where γ > 0 is an arbitrarily small number.
On the other hand, using group properties and Minkowski’s inequality, we have

∥∥Ds
xΨ (u)(t)

∥∥
L2

xy
�

∥∥Ds
xu0

∥∥
L2

xy
+

T∫
0

∥∥Ds
x

(
ukux

)∥∥
L2

xy
dt′ = c‖u0‖Hs + A0. (3.25)

Applying Leibniz rule for fractional derivatives (see Lemma 2.4) and Hölder’s inequality, we get

A0 �
T∫

0

∥∥u3k/4
∥∥

L∞
xy

∥∥Ds
x

(
uk/4ux

)∥∥
L2

xy
dt′ +

T∫
0

∥∥Ds
x

(
u3k/4)uk/4ux

∥∥
L2

xy
dt′ = A1 + A2. (3.26)

Moreover,

A1 �
T∫

0

∥∥u3k/4
∥∥

L∞
xy

‖ux‖L∞
xy

∥∥Ds
xuk/4

∥∥
L2

xy
dt′ +

T∫
0

∥∥u3k/4
∥∥

L∞
xy

∥∥uk/4 Ds
xux

∥∥
L2

xy
dt′

= A11 + A12. (3.27)

First we consider the term A11. Thus, applying Hölder’s inequality, Lemma 2.3 (with h = 1) and
Hölder’s inequality again, we have
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A11 � ‖u‖3k/4

L3k/2
T L∞

xy

∥∥‖ux‖L∞
xy

∥∥Ds
xuk/4

∥∥
L2

xy

∥∥
L2

T
� ‖u‖3k/4

L3k/2
T L∞

xy

∥∥‖ux‖L∞
xy

∥∥uk/4−1
∥∥

L∞
xy

∥∥Ds
xu

∥∥
L2

xy

∥∥
L2

T

� ‖u‖3k/4

L3k/2
T L∞

xy
‖ux‖L3k/(k+2)

T L∞
xy

‖u‖(k−4)/4

L3k/2
T L∞

xy
‖u‖L∞

T Hs
xy

� T γ ‖u‖k−1

L3k/2+
T L∞

xy
‖ux‖L3k/(k+2)

T L∞
xy

‖u‖L∞
T Hs

xy
. (3.28)

To bound A12 we just apply Hölder’s inequality twice to obtain

A12 � ‖u‖3k/4

L3k/2
T L∞

xy

∥∥Ds
xux

∥∥
L∞

x L2
yT

‖u‖k/4

Lk/2
x L∞

yT

� T γ ‖u‖3k/4

L3k/2+
T L∞

xy

∥∥Ds
xux

∥∥
L∞

x L2
yT

‖u‖k/4

Lk/2
x L∞

yT

. (3.29)

Next we consider the term A2. Lemma 2.3 (with h = 1) and Hölder’s inequality yield

A2 �
T∫

0

∥∥Ds
x

(
u3k/4)∥∥

L2
xy

∥∥uk/4ux
∥∥

L∞
xy

dt′ �
T∫

0

∥∥u3k/4−1
∥∥

L∞
xy

∥∥Ds
xu

∥∥
L2

xy
‖u‖k/4

L∞
xy

‖ux‖L∞
xy

dt′

� ‖u‖k−1

L3k/2
T L∞

xy
‖ux‖L3k/(k+2)

T L∞
xy

‖u‖L∞
T Hs

xy
� T γ ‖u‖k−1

L3k/2+
T L∞

xy
‖ux‖L3k/(k+2)

T L∞
xy

‖u‖L∞
T Hs

xy
. (3.30)

A similar analysis can be carried out to estimate the norm ‖Ds
yΨ (u)(t)‖L2

xy
. Therefore, from (3.24)–

(3.30), we deduce

∥∥Ψ (u)
∥∥

L∞
T Hs � c‖u0‖Hs + cT γ |||u|||k+1. (3.31)

The remaining norms are estimated similarly. Indeed, by combining the linear estimates (i)–(iii) in
Proposition 2.2, Lemma 2.1(i), and group properties it is easy to see that all the problem reduces to
the estimation of A0. Therefore, we infer

∣∣∣∣∣∣Ψ (u)
∣∣∣∣∣∣ � c‖u0‖Hs + cT γ |||u|||k+1.

Choose a = 2c‖u0‖Hs , and T > 0 such that

cak T γ � 1

4
.

Then, we see that Ψ : Ya
T �→ Ya

T is well defined. Moreover, similar arguments show that Ψ is a con-
traction. To finish the proof we use standard arguments, thus, we omit the details. This completes the
proof of Theorem 1.2.

4. Global well-posedness: proof of Theorem 1.3

We first note that from the discussion in (1.11) the smallness condition on ‖u0‖H1 should be
closely related to the constant appearing in the Gagliardo–Nirenberg inequality (1.8). Thus, let us
recall the classical result obtained by Weinstein [16], regarding the best constant for the Gagliardo–
Nirenberg inequality.

Theorem 4.1. Let k > 0, then the Gagliardo–Nirenberg inequality

‖u‖k+2
k+2 � K k+2

opt ‖∇u‖k
2‖u‖2

2 (4.32)

L L L
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holds, and the sharp constant Kopt > 0 is explicitly given by

K k+2
opt = k + 2

2‖ψ‖k
L2

, (4.33)

where ψ is the unique non-negative, radially-symmetric, decreasing solution of the equation

k

2
�ψ − ψ + ψk+1 = 0. (4.34)

Proof. See [16, Corollary 2.1]. �
Remark 4.2. If ψ is the solution of (4.34), then by uniqueness

Q (x, y) = ψ

(√
k

2
(x, y)

)

is the solution of

�Q − Q + Q k+1 = 0. (4.35)

Moreover,

‖Q ‖2
L2 = 2

k
‖ψ‖2

L2 .

In view of Remark 4.2 and (4.33), we deduce that

K k+2
opt = 2

k−2
2 (k + 2)

k
k
2 ‖Q ‖k

L2

. (4.36)

Now, by multiplying (4.35) by Q , integrating on R2, and applying integration by parts, we obtain

∫
R2

Q k+2 dx dy = ‖Q ‖2
L2 + ‖∇ Q ‖2

L2 .

On the other hand, by multiplying (4.35) by (x, y) · ∇ Q , integrating on R2, and applying integration
by parts, we promptly obtain the identity

∫
R2

Q k+2 dx dy = k + 2

2
‖Q ‖2

L2 .

Combining the last two relations, we have

k

2
‖Q ‖2

L2 = ‖∇ Q ‖2
L2 . (4.37)

With these tools at hand, we are able to prove Theorem 1.3.
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Proof of Theorem 1.3. We proceed as follows: write the Ḣ1-norm of u(t) using the quantities M(u(t))
and E(u(t)). Then we use the sharp Gagliardo–Nirenberg inequality (4.32), with the sharp constant
in (4.36), to yield

∥∥∇u(t)
∥∥2

L2 = 2E(u0) + 2

k + 2

∫
R2

uk+2(t)dx dy � 2E(u0) + 2

k + 2
K k+2

opt ‖u0‖2
L2

∥∥∇u(t)
∥∥k

L2

= 2E(u0) +
(

2

k

) k
2 1

‖Q ‖k
L2

‖u0‖2
L2

∥∥∇u(t)
∥∥k

L2 . (4.38)

Let X(t) = ‖∇u(t)‖2
L2 , A = 2E(u0), and B = ( 2

k )
k
2

‖u0‖2
L2

‖Q ‖k
L2

, then we can write (4.38) as

X(t) − B X(t)k/2 � A, for t ∈ (0, T ), (4.39)

where T is given by Theorem 1.1 (or Theorem 1.2 if k > 8).
Now let f (x) = x − Bxk/2, for x � 0. The function f has a local maximum at x0 = ( 2

kB )2/(k−2) with

maximum value f (x0) = k−2
k ( 2

kB )2/(k−2) . If we require that

2E(u0) < f (x0) and X(0) < x0, (4.40)

the continuity of X(t) implies that X(t) < x0 for any t as long as the solution exists.
Using relations (4.37), we have

E(Q ) = k − 2

4
‖Q ‖2

L2 .

Therefore, a simple calculation shows that conditions (4.40) are exactly the inequalities (1.12)
and (1.13). Moreover the inequality X(t) < x0 reduces to (1.14). The proof of Theorem 1.3 is thus
completed. �
5. Scattering: proof of Theorem 1.5

We start by recalling the following decay result for solutions u(t) = U (t) f , of the linear prob-
lem (2.17).

Proposition 5.1. Let 0 � ε < 1/2 and 0 � θ � 1. Then,

∥∥Dθε
x U (t) f

∥∥
L p

xy
� C |t|−θ

(2+ε)
3 ‖ f ‖

L p′
xy

,

where p = 2
1−θ

and p′ = 2
1+θ

. In particular,

∥∥U (t) f
∥∥

L p
xy

� C |t|− 2θ
3 ‖ f ‖

L p′
xy

.

Proof. See Linares and Pastor [9, Lemma 2.3]. �
As a consequence, we have
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Corollary 5.2. Let p and p′ be as in Proposition 5.1. If 0 � θ < 1 and f ∈ L p′
(R2) ∩ H1(R2), then

∥∥U (t) f
∥∥

L p
xy

� C
(
1 + |t|)− 2θ

3
(‖ f ‖L p′ + ‖ f ‖H1

)
.

Proof. The proof follows immediately from Proposition 5.1 and the embedding of H1(R2) in L p(R2),
2 � p < ∞. �
Theorem 5.3 (Decay). Let p = 2(k + 1), p′ = 2(k+1)

2k+1 , and θ = k
k+1 . Assume u0 ∈ L p′

(R2) ∩ H1(R2) satisfies

‖u0‖L p′ + ‖u0‖H1 < δ.

Then, the solution u(t) given in Theorem 1.3 satisfies

(
1 + |t|) 2θ

3
∥∥u(t)

∥∥
L p � C

for all t ∈ R and some constant C > 0.

Proof. From the integral formulation of (1.1), we have

u(t) = U (t)u0 −
t∫

0

U
(
t − t′)∂x

(
uk+1)(t′)dt′.

Without loss of generality assume t > 0. Thus, from Proposition 5.1 and Corollary 5.2, we have

∥∥u(t)
∥∥

L p �
∥∥U (t)u0

∥∥
L p +

t∫
0

∥∥U
(
t − t′)∂x

(
uk+1)(t′)∥∥

L p dt′

� C(1 + t)−
2θ
3
(‖u0‖L p′ + ‖u0‖H1

) + C

t∫
0

(
t − t′)− 2θ

3
∥∥∂x

(
uk+1)(t′)∥∥

L p′ dt′

� C(1 + t)−
2θ
3 δ + C

t∫
0

(
t − t′)− 2θ

3
∥∥uk∂xu

(
t′)∥∥

L p′ dt′

� C(1 + t)−
2θ
3 δ + C

t∫
0

(
t − t′)− 2θ

3
∥∥uk

∥∥
L

2(k+1)
k

‖∂xu‖L2 dt′

� C(1 + t)−
2θ
3 δ + C‖u‖L∞

T H1

t∫
0

(
t − t′)− 2θ

3
∥∥u

(
t′)∥∥k

Lp dt′.

Let

M(T ) = sup
t∈[0,T ]

(1 + t)
2θ
3
∥∥u(t)

∥∥
L p .
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Then, we can write

M(T ) � Cδ + Cδ(1 + t)
2θ
3 M(T )k

t∫
0

(
t − t′)− 2θ

3
(
1 + t′) 2θk

3 dt′. (5.41)

Since k � 3, we then obtain

M(T ) � Cδ + CδM(T )k.

Hence, if δ 
 1, we deduce from a continuity argument that M(T ) � C . This completes the proof. �
Remark 5.4. From (5.41) we see that it suffices to take k > 3+√

33
4 � 2.186. Note that the case k = 2

(L2-critical) is not cover by our result and it is a very interesting open problem.

In the proof of Theorem 1.5, we only consider the case as t → −∞, since that as t → +∞ is
similarly treated. Define

f− = u0 −
0∫

−∞
U

(−t′)∂x
(
uk+1)dt′.

Then,

u(t) − U (t) f− =
t∫

−∞
U

(
t − t′)∂x

(
uk+1)dt′.

Lemma 5.5. It also holds that, ‖U (−t)u(t) − f−‖L2(k+1) → 0, as t → −∞.

Proof. Indeed, from Proposition 5.1, we have

∥∥U (−t)u(t) − f−
∥∥

L2(k+1) � C

t∫
−∞

∣∣t′∣∣− 2k
3(k+1)

∥∥uk∂xu
∥∥

L
2(k+1)
2k+1

dt′.

From Hölder’s inequality and Theorem 1.3, we then deduce

∥∥U (−t)u(t) − f−
∥∥

L2(k+1) � C

t∫
−∞

∣∣t′∣∣− 2k
3(k+1)

∥∥uk
∥∥

L
2(k+1)

k
‖∂xu‖L2 dt′

� C‖u‖L∞
t H1 C

t∫
−∞

∣∣t′∣∣− 2k
3(k+1) ‖u‖k

L2(k+1) dt′

� C

( t∫
−∞

∣∣t′∣∣ 4k
3

) 1
2(k+1)

( t∫
−∞

‖u‖
2k(k+1)

2k+1

L2(k+1) dt′
) 2k+1

2(k+1)

.

Since k � 3 these last two integrals tend to zero as t → −∞. �
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Lemma 5.6. Let

G(u) = 1

k + 2

∫
R2

uk+2 dx.

Then, G(u(t)) → 0, as t → −∞.

Proof. From Hölder’s inequality and Theorem 5.3, we have

∣∣G(
u(t)

)∣∣ � C

∫
R2

∣∣u(t)
∣∣k+1∣∣u(t)

∣∣dx � C
∥∥u(t)

∥∥
L2

(∫
R2

∣∣u(t)
∣∣2(k+1)

dx

) 1
2

� C
∥∥u(t)

∥∥k+1
L2(k+1) � C

(
1 + |t|)− 2k

3 . �
Proof of Theorem 1.5. Since U (t) is a unitary group, from Theorem 1.3, we obtain∥∥U (−t)u(t)

∥∥
H1 = ∥∥u(t)

∥∥
H1 � C‖u0‖H1 .

Thus U (−t)u(t) ⇀ f− in H1(R2), as t → −∞. Moreover,

‖ f−‖H1 � lim inf
t→−∞

∥∥U (−t)u(t)
∥∥

H1 = lim inf
t→−∞

∥∥u(t)
∥∥

H1 = lim inf
t→−∞

(∥∥u(t)
∥∥

H1 − 2G
(
u(t)

))
� ‖ f−‖H1 .

Hence, the weak limit is strong and we have∥∥u(t) − U (t) f−
∥∥

H1 = ∥∥U (−t)u(t) − f−
∥∥

H1 → 0,

as t → −∞. This completes the proof of Theorem 1.5. �
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