期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:265
Convergence of the solution of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations
Article
Deugoue, G.2  Medjo, T. Tachim1 
[1] Florida Int Univ, Dept Math, DM413B Univ Pk, Miami, FL 33199 USA
[2] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词: Cahn-Hilliard-Navier-Stokes;    Globally modified;    Stochastic;    Galerkin scheme;   
DOI  :  10.1016/j.jde.2018.03.002
来源: Elsevier
PDF
【 摘 要 】

We study in this article the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes model in a 3D dimensional bounded domain. We prove the existence and uniqueness of strong solutions. Furthermore, we discuss the relation of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations to the stochastic 3D Cahn-Hilliard-Navier-Stokes equations by proving a convergence theorem, that as the parameter N tends to infinity, a subsequence of solutions of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations converges to a weak martingale solution of the stochastic 3D Cahn-Hilliard-Navier-Stokes equations. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_03_002.pdf 1973KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次