JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:265 |
Convergence of the solution of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations | |
Article | |
Deugoue, G.2  Medjo, T. Tachim1  | |
[1] Florida Int Univ, Dept Math, DM413B Univ Pk, Miami, FL 33199 USA | |
[2] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon | |
关键词: Cahn-Hilliard-Navier-Stokes; Globally modified; Stochastic; Galerkin scheme; | |
DOI : 10.1016/j.jde.2018.03.002 | |
来源: Elsevier | |
【 摘 要 】
We study in this article the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes model in a 3D dimensional bounded domain. We prove the existence and uniqueness of strong solutions. Furthermore, we discuss the relation of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations to the stochastic 3D Cahn-Hilliard-Navier-Stokes equations by proving a convergence theorem, that as the parameter N tends to infinity, a subsequence of solutions of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations converges to a weak martingale solution of the stochastic 3D Cahn-Hilliard-Navier-Stokes equations. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2018_03_002.pdf | 1973KB | download |