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Abstract

We study in this article the stochastic 3D globally modified Cahn—Hilliard—Navier—Stokes model in
a 3D dimensional bounded domain. We prove the existence and uniqueness of strong solutions. Fur-
thermore, we discuss the relation of the stochastic 3D globally modified Cahn—Hilliard-Navier—Stokes
equations to the stochastic 3D Cahn-Hilliard-Navier—Stokes equations by proving a convergence theorem,
that as the parameter N tends to infinity, a subsequence of solutions of the stochastic 3D globally modi-
fied Cahn-Hilliard—Navier—Stokes equations converges to a weak martingale solution of the stochastic 3D
Cahn-Hilliard—Navier—Stokes equations.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

It is well accepted that the incompressible Navier—Stokes (NS) equation governs the motions
of single-phase fluids such as air or water. On the other hand, we are faced with the difficult
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problem of understanding the motion of binary fluid mixtures, that is fluids composed by either
two phases of the same chemical species or phases of different composition. Diffuse interface
models are well-known tools to describe the dynamics of complex (e.g., binary) fluids, [16].
For instance, this approach is used in [2] to describe cavitation phenomena in a flowing liquid.
The model consists of the NS equation coupled with the phase-field system, [5,16,15,17]. In the
isothermal compressible case, the existence of a global weak solution is proved in [13]. In the in-
compressible isothermal case, neglecting chemical reactions and other forces, the model reduces
to an evolution system which governs the fluid velocity v and the order parameter ¢. This system
can be written as a NS equation coupled with a convective Allen—Cahn equation, [16]. The asso-
ciated initial and boundary value problem was studied in [ 16] in which the authors proved that the
system generated a strongly continuous semigroup on a suitable phase space which possesses a
global attractor. They also established the existence of an exponential attractor. This entails that
the global attractor has a finite fractal dimension, which is estimated in [16] in terms of some
model parameters. The dynamic of simple single-phase fluids has been widely investigated al-
though some important issues remain unresolved, [32]. In the case of binary fluids, the analysis is
even more complicate and the mathematical studied is still at it infancy as noted in [16]. As noted
in [15], the mathematical analysis of binary fluid flows is far from being well understood. For
instance, the spinodal decomposition under shear consists of a two-stage evolution of a homoge-
neous initial mixture: a phase separation stage in which some macroscopic patterns appear, then
a shear stage in which these patters organize themselves into parallel layers (see, e.g. [26] for
experimental snapshots). This model has to take into account the chemical interactions between
the two phases at the interface, achieved using a Cahn—Hilliard approach, as well as the hydro-
dynamic properties of the mixture (e.g., in the shear case), for which a Navier—Stokes equations
with surface tension terms acting at the interface are needed. When the two fluids have the same
constant density, the temperature differences are negligible and the diffuse interface between the
two phases has a small but non-zero thickness, a well-known model is the so-called “Model H”
(cf. [19]). This is a system of equations where an incompressible Navier—Stokes equation for the
(mean) velocity v is coupled with a convective Cahn—Hilliard equation for the order parameter
¢, which represents the relative concentration of one of the fluids.

Many challenges in the mathematical and numerical analysis of the Allen—Cahn—Navier—
Stokes equations (AC-NSE) or the Cahn—Hilliard—Navier—Stokes equations CH-NSE) are related
to the fact that the full mathematical theory for the 3D Navier—Stokes equation (NSE) is still
lacking at present. Since the uniqueness theorem for the global weak solutions (or the global
existence of strong solutions) of the initial-value problem of the 3D Navier—Stokes system is not
proved yet, the known theory of global attractors of infinite dimensional dynamical systems is
not applicable to the 3D Navier—Stokes system. Using regular approximation equations to study
the classical 3D Navier—Stokes systems has become an effective tool both from the numerical
and the theoretical point of views. As noted in [34], it was demonstrated analytically and numer-
ically in many works that the LANS-o model gives a good approximation in the study of many
problems related to turbulence flows. In particular, it was found that the explicit steady analytical
solution of the LANS-« model compare successfully with empirical and numerical experiment
data for a wide range of Reynolds numbers in turbulent channel and pipe flows, [34]. Let us
recall that the inviscid 3D LANS-« equations was first proposed in [21,20]. As described in [24],
the 3D LANS-a equations are a systems of partial differential equations for the mean velocity
in which a nonlinear dispersive mechanism filters the small scales. As such, the 3D LANS-«
equations serve as an appropriate model for turbulent flows and a suitable approximation of the
3D NS as documented in [7,9,8,10].
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In [6], the authors proposed a three dimensional system of a globally modified Navier—
Stokes equations (GMNSE). They studied the existence and uniqueness of strong solutions and
established the existence of global V -attractors. As noted in [6], the GMNSE prevents large gra-
dients dominating the dynamic and leading to explosion. Motivated by the results given in [6],
we studied in [25] a three-dimensional system of a globally modified CH-NS equations (GM-
CHNSE) and proved the existence and uniqueness of strong solutions as well as the existence
of U-attractors. Let us note that the coupling between the Navier—Stokes and the Cahn—Hilliard
equations introduces in the coupled model a highly nonlinear term that makes the analysis more
involved. In this article, we consider a stochastic version of the model studied in [25].

Let us recall that stochastic partial differential equations (SPDE) are sometimes used to model
physical systems subjected to the influence of internal, external or environmental noises. As
noted in [4,3], SPDE can also be used to describe systems that are too complex to be described
deterministically, e.g., a flow of a chemical substance in a river subjected to wind and rain, an
airflow around an airplane wing perturbed by the random state of the atmosphere and weather,
etc. With the development of the theory of stochastic processes, systems such as the Navier—
Stokes perturbed by noises have been widely investigated with the goal to better understand the
complex phenomena of turbulent flow. The mathematical theory of the stochastic Navier—Stokes
equation is very rich, covering a broad area of deep results on existence of solutions, dynamical
system feature, ergodicity, and many more. The presence of noise in a model can lead to new and
important phenomena. For instance, contrary to the deterministic case, it is known that the 2D
Navier—Stokes system driven with a sufficiently degenerate noise has a unique invariant measure
and hence exhibits ergodic behavior in the sense that the time average of a solution is equal to
the average over all possible initial data, [4].

The aim of this article is to investigate the stochastic version of the GMCHNSE studied in
[25]. The model includes an abstract and general form of random external forces depending
eventually on the velocity v of the fluid and the phase function ¢. We prove the existence and
uniqueness of a strong solution in a three dimensional bounded domain. Here the word “strong”
means “strong” both in the sense of the theory of partial differential equations and the theory of
stochastic analysis. The proof of the existence relies on the Galerkin approximation, the local
monotonicity of the coefficients and some compactness results. Moreover we investigate the
asymptotic behavior of the unique solution when the parameter N tends to infinity. This gives the
existence of a weak martingale solution for the stochastic 3D CH-NSE.

The article is organized as follows. In the next section we present the stochastic 3D GM-
CHNSE model and its mathematical setting. The existence and uniqueness a solution is given in
Section 3. The asymptotic behavior of the solution is investigated in Section 4. Finally in the Ap-
pendix for the reader’s convenience, we recall two compacts embedding theorems, a convergence
theorem for the stochastic integral and a stochastic Gronwall lemma.

2. A stochastic GMCHNSE model and its mathematical setting

2.1. Governing equations

In this article, we consider a stochastic version of the GMCHNSE a three-dimensional do-
main. We assume that the domain M of the fluid is a bounded domain in 3. We first recall the
following 3D stochastic CH-NSE
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dv(t)=[viAv— W.VIv+Vp —gi(v,¢) + KuVeldt + Z&k (v, (p)(z‘))dW,{1 @),
k=1

d¢(t) =[vsAp —v.V — g2(v, §)ldi + ) 57 (0. H) D)AWL (D), @1
k=1

u=-—0A¢+af(p),

V.u=0,

in M x [0, T], where Wtk = (Wk], sz)(t),t >0,k =1,2,... is a sequence of independent
one dimensional standard Brownian motions on some complete filtration probability space
(2, F,P, (F)ie,1))- If (ex)k>1 is an orthonormal basis of I, we may formally define W by tak-
ing W= Z Wyex. As such W is a cylindrical Brownian motion evolving over /2. We recall that

k
1% is the Hilbert space consisting of all sequences of square summable real numbers. We define

(0.¢] o0
the auxiliary space Uy D 1% via Uy = {v = Z e : Z o{,%k_z < oo ¢ endowed with the norm

k=1 k=1
00 052 [e'¢)
|v|i{0 = Z k—lz‘ forv= Z afei. Note that the embedding of 12 C Uy is Hilbert—Schmidt. More-
k=1 k=1

over, using standard martingale arguments with the fact that each Wy is almost surely continuous
(see [28]), we have that for almost every w € @2, W(w) € C([0, T]; Up). The external volume
oo o

force (g1(v. $). g2(v, ¢) are given. The terms Y &' (v, §) (AW, (1), Y G2 (v, $)(1)d W (¢)
k=1 k=1
represent random external forces depending eventually on (v, ¢). See Section 3 for the precise

assumptions on the coefficients g = (g1, g2) and {6} = (&kl, &,?); k=1,.., 00}

In (2.1), the unknown functions are the velocity v = (v, v2, v3) of the fluid, its pressure p
and the order (phase) parameter ¢. The quantity w is the variational derivative of the following
free energy functional

Fi@) = [ (196 +ar @) ds 22)
M

X
where, e.g., F(x) = /f({)d{. Here, the constants v; > 0, v3 > 0 and /C > 0 correspond to

the kinematic viscosi?y of the fluid, the mobility constant and the capillarity (stress) coefficient
respectively. Here vy, o > 0 are two physical parameters describing the interaction between the
two phases. In particular, v, is related with the thickness of the interface separating the two
fluids. Hereafter, as in [16] we assume that vy < «. A typical example of potential F is that of
logarithmic type. However, this potential is often replaced by a polynomial approximation of
the type F(x) = y1x4 — yzxz, ¥1, y2 being positive constants. As noted in [15], (2.1); can be
replaced by
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o
dv(t) =[v1Av — (0.V)v = Vp — g1 (v, ¢) — Kdiv (V @ V§)1dt + Y & (v, p)(1))d W] (1),
k=1
(2.3)
where p = p — K(}|Vo|* + aF(¢)), since KuVep = V(IK(2|Ve|> +aF(¢))) — Kdiv (Vo ®
V). The stress tensor V¢ ® V¢ is considered the main contribution modeling capillary forces
due to surface tension at the interface between the two phases of the fluid.

Regarding the boundary conditions for these models, as in [15] we assume that the boundary
conditions for ¢ are the natural no-flux condition

3y = 3y =0 on dIM x (0, 00), (2.4)

where d. M is the boundary of M and 7 is the outward normal to M. For ¢ a scalar function
defined on M, we denote

$(0) = ﬁ / 6 (x. 1)dx, 2.5)
M

where | M| stands for the Lebesgue measure of M. Concerning the boundary condition for v,
we assume the Dirichlet (no-slip) boundary condition

v=0 onadM x (0, 0). (2.6)

Therefore we assume that there is no relative motion at the fluid—solid interface.
The initial condition is given by

(v, 9)(0) = (vo, o). 2.7)
Now, we define the function Fy : it — RT by
Fx(r) =min{l, N/r}, r € R+, (2.8)

for some (fixed) N € ®™.
The following lemma gives some important properties of the map Fy (see [6,31] for the proof)

Lemma 1. For Vpy, po, M, N e R, py #0, we have
N
D 0<Fn(p2) =—, 2.9)
P2

1
2) 1Fn(p1) = Fn(p2)l = 5 Fn(P1) Fn (p2)|p1 = pal. (2.10)

M_N pi—
3) |Fy(pn) — Fy(pa)] <. 2 | = pal

p2

@2.11)
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Now we consider the following stochastic 3D GMCHNSE

dv(t) = [vi Av = Fx(|v|D[(v.V)v] = Vp — g1 (v, ¢) + u Vel dt
+Y & WA OdW (),
k=1
>, ) (2.12)
dp (1) = [v3An —v.V — g2 (v, 91 dt + Y 57 (v, $) ()W (1),
k=1
=—1A¢ +af (@),
V. =0,

in M x (0, +00), where ||v]|| is a norm defined below.

As noted in [6] in the case of the GMNSE, the GMCHNSE are indeed globally modified.
The factor Fy(||v]]) depends on the norm |v||. It prevents large values of ||v|| dominating the
dynamics. Just like the GMNSE, the GMCHNSE violates the basic laws of mechanics, but math-
ematically the model is well defined, [25].

2.2. Mathematical setting

We first recall from [15] a weak formulation of (2.1), (2.4), (2.6)—(2.7). Hereafter, we assume
that the domain M is bounded with a smooth boundary d M (e.g., of class C?). We also assume
that f € C3(R) satisfies

lim f'(x) >0,
[x]—400

(2.13)
FO@I S ep( 4 [xP7), Vx et i =012,

where ¢y is some positive constant.

If X is a real Hilbert space with inner product (-, -)x, we will denote the induced norm by
| - |x, while X* will indicate its dual. We set

Vi={ueCrM): divu=0in M}.
We denote by H; and V; the closure of V) in (L*(M))3 and (HO1 (M))3 respectively. The scalar

product in H; is denoted by (-, -);2 and the associated norm by | - |;2. Moreover, the space V] is
endowed with the scalar product

3
(@, v) =Y (@t 0 )2, el = (@, u))'/.

i=1

We now define the operator Ag by

Agv = —PAv, Yv € D(Ag) = H>(M)N Vy,
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where P is the Leray—Helmotz projector in L?(M) onto Hj. Then, Ay is a self-adjoint positive
unbounded operator in H; which is associated with the scalar product defined above. Further-
more, A, Visa compact linear operator on Hj and |Ag - |;2 is anorm on D(Ap) that is equivalent
to the H?-norm.

Hereafter, we set

Hy=L*(M), Va=H'M), H=H, x H), V=V| x Va. (2.14)

We introduce the linear non-negative unbounded operator on Lz(./\/l)

Ajp=—Ad, Vo € D(A)) = {p € HX(M), 3,0 =0, on M}, (2.15)

and we endow D(A) with the norm |A; - |2 4 |(-)|,2, which is equivalent to the H*-norm. Also
we define the linear positive unbounded operator on the Hilbert space Lg(/\/l) of the L?-functions
with null mean

By = —A¢, V¢ € D(B,) = D(A1) N LG(M). (2.16)

Note that B, !'is a compact linear operator on L%(M). More generally, we can define B} for
any s € N, noting that |B,“;/ 2, |12, s > 0, is an equivalent norm to the canonical H*-norm on
D(B)?) C H¥ (M) N L2(M). Also note that A; = B, on D(B,). If ¢ is such that ¢ — (¢) €
D(B,'i/z), we have that |B,§/2(¢ — (N2 + 1{p)|;2 is equivalent to the H*-norm. Moreover, we
set H ¥ (M) = (H*(M))*, whenever s < 0. Now we define the Hilbert spaces H and U by

32

H=H; x H'(M), U=V, x D(A)), Z=V; x DAY, 2.17)

endowed with the scalar products whose associated norms are respectively

(v, 915, = 17, + 020V, +v117,), 1w, &) = v + 141917,

(2.18)
3/2
. &% = 11> + 14} %612,
We will also use the following notation:
(Ui, uz) z = (Agvi, v2) + (Ald1, A1), Yuy = (v, 1), uz = (v2, ) € Z,
(2.19)
(U1, u2)y = (Aovi, v2) + (AT1, ), VYuy = (v, $1), uz = (v2, $2) € U.
It follows that
(i, ur)y = lurllyy, Yur €U, (1) z = luil, Yui € 2. (2.20)

We introduce the bilinear operators BY, B! (and their associated trilinear forms b0, bl) as well
as the coupling mapping R, which are defined from D(Ag) x D(Ag) into Hy, D(Ag) x D(A})
into L2(M), and L?>(M) x D(A?) into Hj, respectively. More precisely, we set
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(Bo(u, V), w) = /[(u -V)v] - wdx = bo(u, v,w), Yu,v,w € D(Ap),
M

(B'(u, ), p) = /[M -V¢lpdx =b'(u, ¢, p), Yu € D(Ao), ¢, p € D(A),
M

(RO, ¢), w) = / 1V - widx = b (w, ¢, 1), Yw € D(Ap), (u,d) € L2 (M) x D(A?).

M
2.21)

Note that

R%(u,¢) =Puve.

We recall from [16,15,17] the following properties of BY, B! and R.

160, v, w)] < clul S|l V2| gl 2wl 2. Yu € Vi, v € D(Ag), w € H,
(2.22)

1/2
1B, v)| 12 < cllull[[v]]V/?| Avl 5. Yu € Vi, v € D(A),

2
16", ¢, )| < clul )57l Al 212, Yu € Viid € D(A). ¥ € Ha,
(2.23)
1 1/2 1/2
1B (v, $)I 2 < cllvlllig/?| 41915, Yv e Vi, ¢ € D(A),
1/2, ,3/2 172 3/2
IRO(A1¢. p)I 12 < clAigl 2l Aol 21472017, Vo € D(AY). pe D(AT?).  (224)
Hereafter we set
bR, v, w) = Fy([oIDb° (u, v, w), (B (u,v), w) = b (u, v, w), Yu,v,w e Vi.  (2.25)
We note that

b(x,(u, v,v)=0, Yu,veVp,
(2.26)

b' (v, ¢, A19) = (R* (A1, ), v), ¥(v,$) € Vi x D(A}).

To further simplify the presentation, we define the operators A : U — U*, By : U x U — U*,
B:UxU—-U*"R:UXU—U* and E :U — U* as follows.

(Auy,uz) = (Agvy, v2) + (A11, ), (2.27)

for uy = (vy, ¢1), uz = (v2, ¢2) € U, where (-, -) denotes the duality pairing between U/ and U/*
or between V; and V*,i =1,2.
Note that

(Au,u)y = (Aov, Agv) + (A9, ATp) = |Aul3,, Vu= (v, ¢) €U. (2.28)
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We also set

(B (uy,u2), u3) = by (uy, uz, uz) = b (vi, v2, v3) + b1 (v1, ¢, $3),
Vup = (v, ¢1), uz = (v2, ¢2), uz = (v3,¢3) €U,
(2.29)

(B(uy,uz), uz) = b(uy, uz, u3) = b°(vy, vz, v3) + b (v1, 2, $3),
Yuy = (v1, 1), uz = (2, ¢2), uz = (v3, ¢3) €U,

R(u1,u2) = (R°(A191, ¢2), 0),
Yup = (v, ¢1), ur = (v2, ) €U, (2.30)

E(u1) = (E1(u1), E2(u1)) = (0, A1 f($1)), Yui = (vi,¢1), uz2 = (v2, $2) € V2. (2.31)
For simplicity we will also set
By(uy) =By, u1), R(u)=R(u,u). (2.32)
We also set
D(A) ={u=(v,¢) € H, AucH}= D(Ag) x D(A}).

Without loss of generality, we set vy = v, =v3=a =K =1.
With the above notations, if we set u = (v, ¢), ug = (vo, ¢o), G(u) = g(v, ¢) = (g1 (v, @),
g2(v, 9)), ok (1) = (6 (v, $), 07 (v, $)) then we can rewrite (2.12) as:

du(t)=[—Au — By(u) — Eu+ R(u) + G(u)]dt + Zok(u(t))de(t), u(0)=ug. (2.33)
k=1

Here G = (g1, g2) is a mapping from U (resp. H) into U (resp. H) and ox(.), kK > 1 is a sequence
of mappings from U (resp. H) into U (resp. H).
Consider the following hypothesis.

IG(u) — G, < clu —vl3, Yu,veH, 1Gw) — G}, <cllu— vl Yu,veld,

o o
2 2 2
> " llow ) — ox @)y < cllu —vli7;, Y lox@)lif; < oo, Yu,veld,

k=1 k=1 (2.34)

o0 o
D low)l3 <00, Y low(w) — o ()3, < clu —vl3,, VYu,veH.
k=1 k=1

Remark 2.1. The hypothesis (2.34) imply that for every u € U (H resp.) the map o (u) :=
(ok (U)ken : 12 — U (H resp.) defined by

o0
oh =Y orhi, h=(h)ren €,
k=1
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isin Ly (I%,U(H resp.)) = Hilbert—Schmidt operators from [ to I{ (# resp.), and that u > o (u)
is Lipschitz.

Hereafter, we will denote by ¢ a generic positive constant that depends on the domain M.
The next result will be useful in our study of the stochastic 3D GMCHNSE.

Lemma 2. Let uy = (vi, ¢1), uz = (v2, ¢2) € U and (w, ) = (vy, ¢1) — (v2, ¢2). Let NL de-
fined by:

NL uy, uz) = (Fy (o1 1) B (w1, v1) — Fy (o2 1) B (v2, v2), w). (2.35)
There exists a constant ¢z > 0 independent of uy and uy such that
NL uy, uz) < gllur — uall, + sN*|uy — ua 3, (2.36)
Proof. See [6,31]. O

The next lemma shows that BR,, B!, R? and E are locally Lipschitz.

Lemma 3. The maps BY,, B' and R® defined from U — U* are locally Lipschitz continuous i.e.
for every r > 0, there exists a constant L, such that

1B (u1) — B (u2) s < Lyt — uzliyg
IRO(u1) — ROu2) llgg+ < L llur — uallyys
(2.37)
B (1) — B u2)llys < Ly lluy — uzllys
IE 1) — E2)llys < Lelluy —uz iy,

Sforuy,uy eU with |luy |y, lluzlly <.

Proof. Let u; = (v, ¢1),ur = (v2,¢) € U and (w, ) € U. We assume that ||u;] < r and
|luz2|l <r. To prove (2.37);, we note that

(B (v1) — BY (v2), w) = BY, (v1, vy, w) — BY (02, v2, w)
= Fyn(lualb’(v1 — v2, v2, w) + (Fx([[v2]]) — Fx (o1 1)) B (v1, v2, w)
+ Fx (o1 D62 (v1, v1 — v2, w)

c c
< —Nllvi —vaflllv2lllwll + ——=—Nllvi — v2[[[lv1 [l [[v2 [ w]]
[[v2]] lloalHfvrll
C
+ — Nlvillllvr = vzl lwl],
vl
=cNlvr —v2fllw]. (2.38)

From this, we deduce (2.37);.
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For (2.37),, we note that

(RO(A1¢1, d1) — RO(A1a, ¢2), w)| < b (w, 1, A1(p1 — )| + |b' (w, 1 — ¢, A1)
<cllwll|A1¢11721A1(P1 — P22 +cllwl|A1P2]2|A1 (D1 — P2)| 12
<crlwll|Aipil2|1A1 (@1 — ¢2)l 2. (2.39)

It follows that

IR (A11, ¢1) — RO(A1dha, ) llvs < Lyl Ar(d1 — )12 < Lylluy — uzlly.- (2.40)

We also have

(B (v1,¢1) — B' (v2, $2), A1)| < [b' (v1 — v2, §1, Ary)| + b (v2, b1 — ¢, A1)
<cllvi —v2ll[A11] 21 A1 |2 + cllv2ll| A1 [ 2| AL (@1 — d2) 2

<cr(llvi — vl + [A1(d1 — d2) | 2) A1 2

<crluy —uzlly A1yl p2. (2.41)

It follows that
(B (1. ¢1) = B (02, )l pg-1) =< Lr (1AL (@1 =) 12+ 1 = 02]]) < Ly llur —ualles. (242)
For (2.37)4, we note that (see [15])

al{ALf (@) — ALf(d2), A1¥)| < Q1(IA111 12, |A1d2]12)| A1 (@1 — @) |12 A1r] 2

(2.43)
<01 N)A1(d1 — )| 2| A1 2,
where Q1 = Q1(x1, x2) is a monotone non-decreasing function of x; and x;.
We derive that
IA1LSf(é1) — Alf(cbz)IID(Al—l) < Qi1(rn A1 — P2) 12 < Lylluy — uzlly- (2.44)

Therefore (2.37), follows. O
Now for u = (v, ¢) € U, we set
Gu) :=—Au— By(u) — G(u) + R(u) — E(u) = (G1(w), G2(w)),
where

Gi(u) = —Agv — B (v,v) + R%(A1¢, ¢) — g1 (v, $),
Go(u) = A?¢p — B (v, ¢) — E2(¢) — £2(v, ¢).

With these notations, it is clear that (2.33) can be written as
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00
du(t) = G)dt + Y 0 (u()d Wi (1), u(0) = uo. (2.45)
k=1

Hereafter, we assume that the function f satisfies the additional conditions:

(AL @) = ALf ($2). A1(d1 = 92)) = ~a1| 4291 = p2)I} — aollgn — .
(2.46)
(ALf (@), Ardr) = —al AT 2112, — aolir 17, Vebr € D(AT),

where g > 0 and 1 > 0 are positive constants independent of ¢, ¢ with 0 < 1 < %. The next
lemma shows some local monotonicity of the operator G.

Lemma 4. For u;,uy € D(A) CU, we have

(Gu1) — Guz), ur — up) < —%nul —u2ll% + (1 + lluallf)lur — ual3y. (2.47)
where the constant ¢ > 0 is independent of uy, u».
Proof. Letu; = (vi, ¢1), uz = (v2, ¢2), (w, ¥) = (v1, $1) — (v2, ¢2). Note that
(Gu1) = Gu2),ur —uz) =(G1(u1) — G1(u2), w) + (G2 (u1) — G2 (u2), A1)
= —llur —u1||% — (BY (v1.v1) — By (v2, v2), w) + (RO(A1¢1. 1) — RO(A1 2. ), w)

—(BY(vi,¢1) — B (v2, ¢2), A1) — (Ea(¢1) — E2(2), A1yr) — (G(uy) — G(uz), uy — uz).

(2.48)
From [6,31], we have
(B (v1.v1) — By (v2, v2), w) < €1 |w]* + csN*|w|7. (2.49)
for €; > 0 to be chosen later.
We also have
(RO(A1¢1, 1) — RO(A1¢2, $2), w) = b1 (w, p1, Aryr) + bi(w, ¥, Ai¢n),
(2.50)
—(B(v1, ¢1) — Bl (v2, 2), A1) = —b1(w, ¢1, A1) — by (v2, ¥, A1),
which gives
(RO(A1¢1,¢1) — RO(A1¢2, $2), w) — (Bl (v1, 1) — B (v2, ¢2), A1)
(2.51)

=b1(u), W, A1¢2) _bl(v2v I/f’ AIW)

From (2.22), we have

Please cite this article in press as: G. Deugoué, T. Tachim Medjo, Convergence of the solution of the stochastic 3D
globally modified Cahn—Hilliard—Navier—Stokes equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.03.002




YJDEQ:9246

G. Deugoué, T. Tachim Medjo / J. Differential Equations eee (eeee) see—eee 13
b A <clw"w)'/?1A A
b1 (w, ¥, A1) < clwl 5 lwll7“[A1¥ ] 2|A1¢2],2
1/2 3/2 1/2
< clwl 2wl 21y 121472y ] Aol 2 (2.52)

3/2
<er(lwl?+ 1472912, + claigal2, (w2, + 1w 1),

b1 (v2, ¥, A1p)| < cllvalllAry 17,

(2.53)
< el Ay, +clvl Py )%
From (2.34), and (2.46), we also have
—(Gu1) — G(up),uy —uz) <cluy —ul,,
—(E2(¢1) — Ea(d2), A1y) =—(A1f (1) — A1 f(¢2), A1y) (2.54)

<aolur —uzlj, +arlluy — uzll%.

It follows from (2.48)—(2.54) that

1
(Gu1) = Gua), ur —u2) < =3 lluy = wall 3 + e(l+ uzllgplur — walyy, (255

where ¢ > 0 is independent of u1, uy and € > 0 is chosen such that 3e; 4+ o1 < 1/2. Therefore
(2.47) is proved. O

3. Existence and uniqueness of solutions
In this section, we present one of the main results of the paper.
Theorem 1. Assume that the hypotheses (2.34), (2.46) hold and uy € L*(S2, Fo; U). Then there

exists a unique solution to the stochastic 3D GMCHNSE (2.45) that satisfies the following energy
inequality

1€[0,T]

T
E( sup ||u(r)||§,) +Ef |Au()|3,dt < oo.
0

Proof. e I) Uniqueness
Let X and X two solutions to (2.45) starting from the same initial value uq. For any & > 0,
define the stopping time

7 ;= inf{t € [0, T1: [ X (0l VI X (@0 lg] = &)

Set ©(t) = X (1) — X(r). Then by Itd’s formula, we have
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t

O3, =2/(Q(X(S)) — G(X(5)), O(s))ds

0

00 t
+2)° / (0 (X (5)) — 0 (X (5)), O())d Wi ()

k=1 0
00 t
+3 / 0k (X (5)) — o (X () ds. G3.1)
k=1 0

From Lemma 4, there exists a constant cg > 0 such that

- 1 .
(G(X () —G(X(s), O(s)) < —§||®(S)||23 +e(L+ X OIZIO) 5, (3.2

Combining the estimates (3.2) with (3.1), we get

t
EWUWM%fQj/E@GAQMﬂ&
0

By Gronwall’s inequality, we get for any ¢ € [0, T']
E|O(t A t¢)l3; = 0.

And the uniqueness follows by letting & — oo and Fatou’s lemma.

1) Existence

We will use the Galerkin approximation combined with the strong monotonicity of the
stochastic 3D GMCHNSE. We shall do this in two steps:

Step 1: Assume ug € Lo, Fo: U).

Let {e; : i > 1} C D(A) be a fixed orthonormal basis of H consisting of eigenvectors of A,
so that it is also orthogonal in /. Denote ,, the orthogonal projection from H onto the finite
dimensional space H,, := spanf{ey, ea, ..., e, }:

n
TR = Z(v,ei)ei.
i=1

Thus m, is also the orthogonal projection onto H,, in U/.
Consider the following finite dimensional stochastic differential equations in H,:

ditn (1) = [, Gun Ot + Y 1003 (AW (D), 1n(0) =0 (3.3)
k=1

For u € H,,, we have
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o0

(u, aG)) < Cn(1+ [ulfy ) and Y |lmaox @), <c(+ulz, ).  (34)
k=1

Moreover by Lemma 3, and (2.34), the maps

ueHM,—n,Gw)eH, andu € H, — m,o

are respectively locally Lipschitz continuous and Lipschitz continuous. Then by the theory of
stochastic differential equations (see [23,22]), there exists a unique continuous (J;)-adapted
process u,(t) satisfying

t

(1) = 1 (0) + / 710G (1 (5))dls + Z / 00k (1t (5))d W

0 k=179

and for any n > 1,

(un (1), eiys = (o eiy + / (Ta Gt (5)). eiuuds + Y f (Ta0k (0 (5)). 1)y d W
0 k=1

We now prove some a priori estimates of the approximated solution.

Lemma 5. There exists a constant C independent of n such that

1) sup E <|u,,(t)|%_l> + ]E/ ln ()1 %ds < CE (1 + |uo|2H) <cC, (3.5)
t€l0,T]
2)IE< sup |un(t)|H) C (1 +E(uol)), ¥p =2. (3.6)
1€[0,T]

Proof. The proof is similar to that of Lemma 7 given in Section 4. O

Lemma 6. There exists a constant C independent of n such that

T
D sup B (lun0I) + E [ 1416 sds < e 1+ Eduolfy) (3.7)
te[0,T] 0
2)E( sup ||un(t)||u> ¢ (1+EQuold) . (3:8)
t€l0,T]

3 sup Bl Ol +E / litn I A () 22ls < ¢ (1+Edlluolfp) . (3.9)
tel0,T]
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T

4) sup/‘E|nng(un(t))|%{dt < 0. (3.10)
0

Proof. 1) By It6’s formula, we have

t

litn (17, = llun 017, + 2 f (Gun(s), tn(s))yyds

0

o0 ! o !
+2)° / (0% (1t (5)), 14 (5))g d Wi () + Y / low (un () I7ds. (3.11)
k:lo

k=1 0
Note that for u,, = (v, ¢,), we have

(G(un), tn)rs = (—Attn, ttn)rg — (B (n, Vi), Aovn) — (B (U, ), A26h0)

(3.12)
+(RO(A1dndn), Agvn) — (A1 f(Pn), An) — (G (un), un)uy-
But we have
— (A, un)yg = —| Aty 7. (3.13)
As noted in [6], we have
16 (v, v, A 1 2 Hlonll? 14
N s vn, Aova)| = 2l Aovalps + N v . (3.14)
‘We also have
(B (Vn, n), ATdn)| = (D" (Vn, B, ATbn)
1/2 1/2 2
< cllvall/21Aoval /5 lgnll | ATnl 2 (3.15)

< (1 Aoval2, + 1430 12,) + cllvnlPll .

1

2

. . . 1
where we have used the Agmon’s inequality in the second line: |v,|ro < ||v,[|2|Aovp| 12>

see [33],

[(RO(A1¢n, ¢n), Aova)| = [b' (Ao, ¢n, A1)

3/2, ,3/2 1/2
< ¢l Aoval 21 A1 22 1A g
6 (3.16)
<1 A0vnl21A3n 35 | onl) /0

< LA 22 + 143012, + clipull ™.
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In the second line of these inequalities, we have used the inequality (2.24). We note that

AL (n), ATbn) | = 1" D) (A0 + £/ (@) A1, Alb)| < T+ Ja. (3.17)

Using the properties (2.13) of f, we can check that

= 1" (@) (A2 B)%, A2¢)|

<cf|A“2¢n| |A2¢,1dx < c|A) 23241 A2l 2
(3.18)

3/2 3/2 3/4
< cllpull 21 A19n 31 A3l 12 < clignll¥HAY >3l ATl 12
< $1430,12, + cllgnl°.

The second line of the preceding inequalities uses the following Ladyzhenkaya’s inequal-

ity in 3D: ||¢ |14 < ¢l |41T x|l 3 , see [29] for the proof.
Similarly, we have

= [(f"(dn) A1, Al$n)|

/(1 16D A1l | A2, |dx

M
3.19
< c|A1dul 12| A2l 2 + clbulll Ardal 131 A26n] 12 (3.19)
3/2 7/4
< cllpull V2 1A30u 25 + cligullldnll /21 ATn s
< 11430u 2, + cligull® + cllgn a1,
Using the Young’s inequality, it follows that
| = (E@un), un)yy] < g1 Aun|2, + clun|}f +c. (3.20)
The properties of G give
| = (G n), un)rs) < c(1+ llunll3))- (3.21)

The estimates (3.13)—(3.20), and (3.11) yield
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t t
lunONIZ; < lluollf; — / |Autn(5)[72ds + ¢ f (4 Nun (17 + lun($)13Dds
0 0

00 t
+2)° / (01t (). 4 () d Wi (s). (3.22)

k=1},
Taking expectation, we get

1 t

B lun 017, ] < ol — B [ 14a ) Bads + CE [ (14 1ta )1+ tn 6115 .
0 0
(3.23)

Hence by Gronwall’s inequality and Lemma 5, we have for any 7 > 0,

T
sup Ellun()7, +E / |Attn(5)[7,ds < CE (1 + lluollZ, + |uo|;§) <C. (329
t€[0,T]

0

This proves 1).
2) Taking the supremum over [0, 7] with (3.22), we get

T T
sup [lun (D117, + / |Aun ()17 2ds < lluollf, + ¢ / (4 un()IIZ + lun ()13 ds
tel0,T]

0 0

tel0.T] =

00 t
+ sup 22[((%(%@)),un(S)))ude(S)~
0
(3.25)

Applying the Burkholder’s inequality, we have

00 t
E( sup |Y° f (Ok (1 (9)), 4 ()0 d Wi (5)
0

1el0.71 |1 =

T 00 2
<cE / D ok un(s)), un(s))7ds |
0 k=1

1

2

Nl—

§c1E< sup ||un<s>||£,)

s€[0,T]

T
/ (1 + llun ()7 ds
0
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T
= €E< sup IIun(S)llz%{> + CeE/(l + llun () 17)ds.
5€[0,T]
0
Combining (3.25), (3.24) and the above inequalities, we get

E( sup ||un(r)||z%,) = € (1+Eluol},) +6E< sup ||un<r>||i,)

t€[0,T] 1€[0,T]

Choosing € small enough, we obtain

E( sup ||un(r>||i,) = C(1+EJuoly).

tel0,T]

This ends the proof of 2).
3) We apply Itd’s formula the function f(x) = x3 and the real-valued process Y (1) =
||u,,(t)||%l and we get

t
lin S, =lun (05, + 6 / et (N7, ((G n (), n($))rsds
0

00 t
+3)° / et ()17 17700k (n ()) 17,

k=1

00 1
+12)° / 1t ()17 (0% (4 ()), 1 (5)) dls

k=1

00 t
+6Y / it () 1 (001 (0 (5)). 10 (5)))ead Wi ).

k=17

Note that

(GUn(9)), un ()t < —|Aun(®)|72 + cllun ()17, + clun(s)[9). (3.26)

It follows that

t t
lun O, < lun O[S, — 6 / lun ()17, Aten ()17 ,ds + ¢ / llun ()15 ds
0 0

t t
+e f lun (5)|9)ds + 12¢ / ln (I (1 + en ()17 d s
0 0
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o ¢
+6Z/ it ()17 (0% (n (5)), tn ($)))24d Wi (). (3.27)

k=1

Using the inequality |x|>?~2 < 1+ |x|?” for p > 1, we get

t t
lun (IS, +6 f lun ()71 Aten ()17 s < lluollf; + ¢ / (4 Nun (NI, + lun ()15 dss
0 0

0o !
+6Z/ it () 1177 (0% (4 (5)), tn ($)))24d Wi ().

k=1 0

Taking the supremum over [0, ¢], we obtain

t
sup [lun ()15, +6 / lun ()71 Aten ()17 ds
s€[0,1] 5

t
<ol +c/(1  ln (IS, + lin ()]s
0

+6 sup Z/IIMn(S)IIZ((nnak(un(S)),un(S)))ude(S) . (3.28)
0

By Burkholder’s inequality, we have

E sup | Y / i () (T (1t (5)), 0 ()))d Wi (5)
0

s'el0] \ =1
. :
< B { [ 3l (G0 57 057 P

0 k=1

1
2

! o0
<cB | [ D Nua@IF 17n0k en ()1 len ()17,
0 k=1

2

t
<E / Nt )IL2C1 + 1 () 12l
0
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1 t %
<cE ( sup ||un<s)||2,> E / lun (N7, (1 + ln () 17)ds
s€[0,7]
0
t t
c 6 ¢ 4 ¢ 6
< zeE| sup un()l )+ —E | lun)l7ds + —E | llun($)lljds
2 s€[0.1] 2e 2¢
0 0
t
C 6 C C 6
< z€E| sup un)lly )+ =T+ =E [ llun(s)l;,ds. (3.29)
2 \sepo.r 2e €

Taking the expectation in (3.28) and using (3.29), we obtain

E sup [lun(s)[If, + 6E / lun ()| Aten ()13, ds

s€[0,1]

t

SEIIMOIIZJrCTJr/E sup ”Mn(s)”uds+_T

s7€l0,s] 2e
t t
+SeE sup  [lun ()11, + /]E sup IIMn(S)||udS+C/E sup |un (s")|9yds.
2 s€[0,1] € §'€[0,5] s'€[0,s]

Taking € sufficiently small, we get

E sup lun(s)1S; + 6E f ()71 An (917 2ds
5€(0,1]

<1Elluo||u+(CT+—T)+(1+ )/E sup un(s")15,ds
s’€[0,s]

t

/E sup [un (s")|3yds. (3.30)
s'€[0,s]

Applying Gronwall’s inequality, we obtain

E sup [lun(s)lIf, + 6E / lun ()71 Aen ()13 ,ds < C. (3.31)
5s€[0,1]

This ends the proof of 3).
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4) We also have

TG un (D)2, < c (|Aun|iz + BN )72 + G n) |72 + |ROun)7 + |E<un>|iz)
(3.32)

We can easily check that

1
|BYy (Vn, va) |75 < cllvnll|Aovnl 2 < §|Aun|iz + cllunll,, (3.33)

1
B (n, )72 = cllvalllAovalpzlignll < SlAualy +cllunllfylunly, — (3.34)

3/2
IR (A1pn. dn) 2> < clA1epnl 5| A7 ul 2

(3.35)
3/2 5/2
< c|AYpu 25 10u 1Y < Sl AU L2, + )
E@n) 2, =a?|A1f(@)2s < §1430012, + I |0
(3.36)
< 3l Aun |, + lunly)
From (2.34), we also have

1G(un)l3; < 1+ lunl3) < (1 + llunllz)- (3.37)

It follows that

TGt ()25 < (| Au 25 + 10l + 1+ NunI))

and

E / 172G (1 (D)7, < 00.
0

This ends the proof of the lemma. O

Let Q7 = Q x [0, T]. Using the energy estimates (3.7)—(3.10) along with the Banach—
Alaoglu theorem, we can extract a subsequence of {u,} still denoted by (u,), and processes
ieL?(Qr; H)NL>(Q; L®([0, T1; U)),G € L>(Qr; H) and & := (6% )xen € La(l2: U) for
which the following hold:

i) u, — it weakly in L>(Q7; D(A)), hence weakly in L*>(Q7; U),

i) u, — @ in L2 (2, L*°([0, T1; U)) with respect to the weak star topology,
iti) 7,G(u,) — G weakly in L?(Qr; H),
iv) m,0(u,) — & weakly in L? (Q7; Ly(l2; U)),

V) u, — i weakly also in L8(Q7; U).
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For 0 <t < T, define

t 50 t
u(t):uo—l—/g(s)ds—{—Z/&k(s)de(s).
0

k=1

It follows from [27] that u = & dt x P-a.e. and u has continuous paths in ¢/. To complete the
proof of the theorem, we need to show that

G(s) =G(u(s)) and oy(s) = o (it(s)) —a.e. on Q7.

The proof follows the same steps as in [30]. Fix an integer K. Take ¢ € L*(Q27, Hi) where
Hk is the linear span of ey, e, ..., ex. By Itd’s formula, writing u = u — ¥ 4 ¢}, we have

E[lu)Be ] ~ [ luol,

t t 00

=F /Ze_r(s)(g(s),u(s))ds +E fe_r(s)2|5k(s)|%_[ds
Lo 0 k=1

¢

—E /efr(s)r/(s)lu(s)@ds

Lo

r ¢ t 00

=E /Ze*r(s)(g(s),u(s))ds +E /efr(S)Zk"rk(s)@_lds
Lo 0 k=1

t
-E f e O () {|u(s) — D ()15, + 2(uls) — V(). D (5)) + [ ()[3,ds)ds |,
LO

(3.38)

where r(¢) is a non-negative stochastic process which is absolutely continuous and to be
chosen later. A similar expression also holds for E [|u,, (1) |%_le_’(’)] —E [|u0|%{], that is

E [lua )¢ ]~ E[ 1uol}, |

t

_E / 267" (G U (5)), ttn (5))ds
L0

t 1

o0
+E /e_r(s)zwk(un(s)ﬂ%{ds -E /e_r(s)r'(s)|un(s)|%_[ds

Lo k=1 0
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¢t t 00
=E| [27 9 Gunn.un s | +E| [ 7S im0 Byds
Lo 0 k=1

t

~E f e ($){|un(s) — ¥ ()3, + 2un(s) — ¥ (5), D (s)) + [9(s)]3,ds}ds

L0
(3.39)
For any non-negative ¥y € L*°([0, T'], R), the weak convergence implies that
T
[ v [luerie ] - fuof,
0
T
= f YOdE (10 e 0| B[ uol}, |
0
T
< 1}1113@/ v (1)diE [|un(r)|%{e*’<’)] _E [|u0|%_i]. (3.40)
0

By substituting the corresponding expressions, (3.40) becomes

t t

T o
/w(t)dt E /Ze_r(s)(g(s),u(s))ds +E /e_r(s)2|5’k(s)|g;.[ds
0 0 0 k=1

t

T
— / Y(t)dt {E / e Or () {lu(s) — ()13, + 20u(s) — 9(s), ¥ (s))}ds
0 0

t

T
gliln;ioréf/w(t)dt Efze*’“)(g(un(s)),un(s))ds
0 0

t

T o0
+13lrgioréf/1/f(z)dt E fe—’(‘)Zmok(un(s))I%{ds
0

Lo k=1

T r
— 1i§gf/ v(t)dt E fe_r(s)r/(s){|un(s) — 93, + 2(un(s) — 9(s), D (s))}ds
0 LO
= liminf Z,, (3.41)

where Z, = Z} + 72 + Z with

Please cite this article in press as: G. Deugoué, T. Tachim Medjo, Convergence of the solution of the stochastic 3D
globally modified Cahn—Hilliard—Navier—Stokes equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.03.002




YJDEQ:9246
G. Deugoué, T. Tachim Medjo / J. Differential Equations eee (eeee) see—eee 25

t

T
= [vware [ O | i) - 001
0

0

+2(G(un () = GO (), un(5) — D (5)) | s

t

/ Ve [ 3 I (59) — 003 (35 By, (3.42)

o k=1

t

= / Y(t)dt E / e "2 () (un (5) — D (), 9(5)) + 2(G(un (5)), ¥ (5)) } ds

0

+2 f Y(t)dt E / e UG (), un(5)) — 2(G(D (5)), ¥ (s))} ds
0

+2 / Y(t)dt E f e—’(”z Tk (U (5)), ok (9 (5)))d's (3.43)
0

! o0
= / Y(1)di E / e {2Z<nnok(un<s>>,nnokw(s)) — ok (D (5)))
0

0 k=1

t

/w(t)dtIE/ *’“)Zmnak(ﬁ(s))mds (3.44)

0 k=1

Set r'(s) =C1(1 + ||19(s)||a) + c. In view of (2.47) and (2.34) we see that zl <o. By the
weak convergence, it is clear that Z2 — Z2, where

t

:/w(t)th/e_r(s) [=2r(s)(u(s) — D (), 9 (s)) +2(G(s), D (s)) } ds

t
+2/w(t)dtE/e_’(”{(g(ﬁ(S)),u(SD —2(G@ (), ¥(s))}ds
0 0

t

+2 / v(t)dt E f e—’“)Z 51(s), ox (D (s)))ds (3.45)

0 k=1
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Also
T o !
73> 73 =— / Y()dty R / ok (9 () 3ds | - (3.46)
0 k=110

Combining (3.41)—(3.46) after cancellations it turns out that

t

T
/ v (t)dt E/ e {—r’(s)|u(s) — 9(5)[3; +2(G(s) — G (s)), u(s) — ﬂ(s))}ds
0 0

t

T o0
—i—/l/f(t)th/e"(”Zwk(s) — 0k (9(5))13,ds < 0. (3.47)
0

0 k=1

As K is arbitrary, by approximation it is seen that (3.47) holds true for every ¢ €
L*(Q27, D(A)).In particular, take 9 (s) = u(s) in (3.47) to obtain oy (s) = oy (u(s)) for every
k>1.Forxe[—1,1],0 € L®(Qr, D(A)), set 9;.(s) = u(s) — A9 (s). Replace & by 9, in
(3.47) to get

T
E / 2 OB OB +21GE) — G @), B [ds | <0, (348)
0

where ry (s) is defined as r(s) with ¥ replaced by . Dividing (3.48) by A we obtain

T

E / e @I 6B +2(96) = 9@, B ds | <0, (349)
0

for A > 0, and

T

E / e‘““){—/\ri(S)ll?/‘(S)I%{+2<g(S)—Q(ﬁx(S)),é(S))}ds >0 (3.50)
0

for A <O.
By (2.47), we have

HGu(s)) — G(D(5)), ()]
<m||{9(s)||2 + C1IMP (5) 3 4 4 CLMID ()3 3.51
<= 4+ CLUMIT )15, lu) 7, + CrIMIF ()15, (3.51)

Please cite this article in press as: G. Deugoué, T. Tachim Medjo, Convergence of the solution of the stochastic 3D
globally modified Cahn—Hilliard—Navier—Stokes equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.03.002




YJDEQ:9246

G. Deugoué, T. Tachim Medjo / J. Differential Equations eee (eeee) see—eee 27

Therefore by the dominated convergence theorem, we get

T
Jim / e (G(s) = G (), B (s))ds
0
T
_E / “06)(G(s) — Glu(s)), D(s))ds | (352)

0
Letting A — 07 in (3.49) and A — 0~ in (3.50), we obtain

T

E / e (G(s) = Glu(s), D(s)ds | =0.

0

As D is arbitrary, we conclude that G(s) = G(u(s)) a.e. on Q7. Then

u(t) =uo+ / Gu(s))ds + Z/Uk(u(s))de(s). (3.53)

k=17

Step 2: General case: E ([|uoll7,) < co.
Let X,,(0) € L%(Q; Fo, U) such that E|A(X,(0) — u0)|i2 — 0.
Let X,,(t) = (un, ¢n)(t), t = 0 be the solution of the following equation

dXn(t) =G(Xn()dt + ZUk(Xn (E)dWi (1), Xa(0) =X, (0) eU. (3.54)
k=1

The existence of X,, is guaranteed by Step 1. As in the proof of (3.7), we can show that

T

sup, 1E sup [|X, ()|, +E SUP P AGIEY /|AXn(t)|izdt
tel0,T] tel0, T
0 (3.55)

< csupE[| X, (0) |7, + csupE| X, (0)|9) < oo.
n n

This implies that there exist a subsequence of X,, still denoted by the same symbol and a
process X = (v, @) € L% (; L>([0, T1; U)) N L>(27; D(A)) such that

i) X, > X weakly in L?(Q7; D(A)),

ii) X, — Xin L2 (2 L°°([0, T1;U)) equipped with the weak star topology.

Next, we show that X, also converges to X in probability in L°([0, T']; U).
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For & > 0, define the stopping time

t
o = inf{r €10, 00) | Xu (1) o > & or f X, (9)22ds > & or [X,(1)[%) > ).
0

Tgl is a stopping time since X, is continuous in . It follows from (3.58) that there exists a
constant M, independent of n, £ so that

T
P(ef <T) < IP( sup X1 s > s) +P / AX, () 2d1 > &
tel0,T]
0

+IP>< sup X, (1)|% >s)

tel0,T]
< M + M + M (3.56)
=t T .
We are going to prove that
El sup [1Xu(®) = Xu®IF, | < Cer EIX0(0) — X (0)17,. (3.57)

Oftfrg‘/\rg”

Let O(t) = (w, ¥) () = X, (t) — X,n(¢) and rgm‘" =t AT
By Itd’s formula, we have

d|1OIF; =2(G(Xn) = G(Xm). Ohyydt +2Y (0 (Xn) — 0k (Xm). O(1))y4d Wi (1)
k=1

o0
+ ) llow(Xn) — o (Xl dt
k=1

Note that
(G(Xn) = G(Xm), O)yy = —(AO, AB) — (B () — BY, (um), Agw)
— (B (Un, 9n) — B' (Ui, o), ATY) + (RO(A10n, o) — RO(A1@m, 9m), Aow)  (3.58)
—a(A1f(pn) = ALS (9m), ATY).

We now estimate each term of (3.58).
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Let us set

K= BR,(UH, Up) — B/Q](Um, Un),
Ky = R (A19n, ) — RO (A19m, 9m) = RO (A1(0n — @), ¢n) + RO (A10m, o — o),
K3 =B"(n. @n) — B' (V. o) = B' (Vn — U, ) + B (U o — o). (3.59)

We can easily check that (see [6])
(K1, Agw)| < glAowl2, + CN*wl? + cl Agval2, [w]]? + el Agua 2, 1w 2. (3.60)
We also note that

(K2, Agw)| < |b1(Aow, ¢n, A1V, @p))| + |b1(Aow, ¢ — O, A1¢m)]
1/2, .3/2 1/2 1/2, .3/2 1/2
< clAowl 2| A1l 21 Arw 1AW 113 + el Aowl 2| Avgm | 21 Ay )14 2L

(lAowl?, + ATV 132) + c(|A1gnls + |1 A1gml 1) ALY 3,

IA

2/3 2/3
(Aow 2, +[ATY 20 + e A0 125 llgnll* + 1430 25 lom /) Ay 125, (3.61)

IA
oo — 00| =

(K3, A2)| < by (w, @ns A2 + [b1 (U, ¥, A290)]
1/2 1/2
< clwl w1 A1gal 2| A3 2 + cluml )2 lom V2 A1y 2] ATy 12

1
= g (Aowlps + 1AW I72) + clArgnlp Wl + cluml 2 lum 141917
1 2/3
< §(|Aow| 2+ 1430 20 + el ATou 25 el 1wl + clum | 2 lum AT w 12

(3.62)

We also have

(A1 f(@n) = A1 f(om), ATV < Q1(llgall, lom DIAIY IS, 8|A21//|L2a (3.63)

where Q1 (lgnll, llom D) < (1 + ll@nll? + llgm[19°) for some integer go > 1.
From the properties G given in (2.34), we also have |(G(X,) — G(X,), O)y| < c||®||12/1.
By (3.58), for any pair of stopping times 0 <o, <o) < ré" A tg‘, we have

Op
E[ sup ||®||£,+/|A®(t)|izdt

t€loq,0p]
Oa

<cE ||®(ra>||i,+/(1+|Axm<s>|iz>|®(s)|%{ds

Ta
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t

o0

+E[ swp [2)° / (0 (Xn) — 0 (X, O)yyd Wi
t€[tq,wp] k=12

For the last term in (3.64), the Burkholder—Davis—Gundy inequality implies

E| sup |2

t
0
> [0~ ). Ot W
t€[tq, 5]

k=1;

1

o T 2
=B Y [0 = ). O3t
k=17

7
1
<3E swp O} +CE / 10113, ds.
te[fu»fh]

Combining (3.64) and (3.65), we get

Op

sup 1O+ f A0 (), d1
telog,op]

Oa

E

Ta

YJDEQ:9246

(3.64)

(3.65)

7
<cE|10G)I} +c¢ / 1+ [AX ()22 + 1Xal% + 1Xn 106 17,ds |, (3.66)

where c is a constant independent of the choice of t,, 7p.
By definition of /", we have

noA_m
'L'S Afs

/ (L+ [ AX 2 + X020+ X |%) < (6 + D P —aus.
0

Then by application of the Gronwall lemma for stochastic processes (see Lemma 15), we obtain

E|l sup 00} | < Cer EIOO)]3,,
Ogtsrg'/\rg’
and this proves (3.57).

For n > 0 and any £ > 0, we get

IP’( sup [[©(1)llzs > n) SPar<D)+PE' <T)+P sup  [[©@)ller > n
te[0,T]

te[O,rg Aré"]

(3.67)
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Given an arbitrary small constant § > 0, in view of (3.56), one can choose & such that
IP’(ri’f <T) < % and P(ré” <T)< %. For such &, by (3.57) there exists Ny such that for
m,n > Ny,

AIOO

P sup [[O@)]ly >n | =<

n m
zelO,rS AT |

Therefore

IP’( sup |O@) |l > n) <46 and lim ]P’( sup |©@®)]ly > n) =0

t€[0,T] n,m—>00 1€[0,T)

This proves that X,, converges to X in probability in L°°([0, T]; U). Finally we want to show
that X solves (2.45). To this end, it suffices to prove that for 9 € V| x C.(M),

T o0
(X@.9)=w0.9)+ [(GX ). 015 =Y [@xen.mdwie).  Gos)
0 k=1

But for every n > 1, we know that

T o0
(X0 0),9) = (0.9) + [ (G, (). 9)a =3 / O (Xa(s)), DAWR(5).  (3.69)
J =

Since X, converges to X in probability in L°°([0, T']; U), there exists a subsequence of X, (still
denoted by the same symbol) such that X,, converges to X in I/ for almost all 7 € [0, T'], that is

X, > Xinl p.p.t€[0,T]. (3.70)
Using Vitali’s theorem, we can prove as in [12] that

t

t
f (G(Xn(s)), B)ds — / \G(X(5)), 9)ds in LX),
0

0

We also have

> / {0k (Xn(5)), ﬂ>de(s)»Z / {0k (X (5)), 9)dWi(s) in L*(Q).
k:lo

k=17

We conclude that X satisfies (3.68) and this ends the proof of the existence. O
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4. Convergence to martingale solutions of the stochastic 3D CH-NSE

Let po be a probability measure on U/ such that fu ||U||6d,u0(U ) < oo. Let ug be an
Fo-random variable in &/ with distribution . Let u” be the unique strong solution of the
stochastic 3D GMCHNSE. In this section, we are going to study the asymptotic behavior of
u™ when N — oco.

4.1. Some a priori estimates

Lemma 7. We have the following a priori estimates on u™

E sup |u" ()3 <c1. .1
s€[0,T]

T
E / lu (s)1%ds < e, (4.2)
0

E sup [u™(s)lf, <cs. (4.3)
s€[0,7T]

2

T
E / lu ()1%ds | <ea, (4.4)
0

where the constants c1, c2, c3 and ca are independent of N.

Proof. By It6’s formula, we get

t

00 t
™ ()3, =luolz, +2 f (G, uNyds +27 / (o ™), u™)d Wi (s)
0

0 k=1

00 t
+ Z/|ak(uN(s))|%_Lds. (4.5)

k=1 0

Note that for u™ = (vV, ¢"V) € U, we also have (see (2.26), (2.34), (2.28) and (2.46))

—(Au™, uy = — )%, (4.6)
—(By@™), uly + (ROu™), u®)
4.7
=—b% N, vV, o) — bV, 9N, A19N) + b1 (WY, ¢V, A19"N) =0,
and
—(E@™), u™y < aolu™ 13, +aru 1%, (4.8)
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9]
Ny 2 N2
> lor@™) 3, < e+ 1w 3)). (4.9)
k=1

The properties of G give
| = (G™), u™)| < c(1+ [u™]3)). (4.10)
It follows that
Gy, uy < =uM% + e+ uV3). 4.11)

Using the estimates (4.5)—(4.11), we arrive at

t

3+ /||uN<s>||st<|uo|H+c/(1+|uN|H>ds+22/ (0 ™), uN YA Wi (s).

0 k=17
(4.12)
Taking the supremum over [0, T'], we get
sup [uN ()15, + f I )1 %ds < luol?, +c fy (1+ 1M (9)[2)ds
5€[0,T]
(4.13)

2 sup Z / (or ™). uM)dWe(s)

tel0,T]

Raising both sides to the power g for p > 2, then taking expectations, we obtain with the
Minkowski inequality and Fubini’s theorem

T

E sup |u (S)|H < E|ug|? —l—cE/(l + |uN|§_[)ds
5€[0,T] o

(4.14)

AS]

[N

125 sup Z/(Uk(MN),MN)de(S)
k=1

t€[0,T]

For the stochastic term, we use the Burkholder—Davis—Gundy inequality

[STaS]

E sup /(Uk(uN) u™Yd Wy (s)
te[0,T] k=1
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P
x

00 T
> / u™ 3 low (™) 3,ds
0

k=1
P
T 7
<cE| sup |uN|%_l/(1+|uNI%{)dt
s€[0,T]
0
1
<-E sup |uN|$_t+c/IE/|uN|pHdt+c/. (4.15)
2 sel0,7]

Applying the above estimate to (4.14), we obtain

1 N / N p /
—E sup |u (S)|7-L §E|M0|H+CE |u (s)IHds+c . (4.16)
2 ie00,1]

Since

T

T
IE/|MN(I)|§)_Ldt§/E sup |u™ (s)[7 dt,
0

5s€[0,1]
the deterministic Gronwall lemma implies that

E sup [u™ (05, <Eluolf, +¢'. 4.17)
+€[0,T]

Letting p =4 and p = 2, we obtain the estimates (4.1) and (4.3).
The estimate (4.12) implies

f||u (s)||st<|u0|H+c/(l+|u |H)ds+22/(ok(uN) uMydWi(s).  (4.18)
k=17

Taking the supremum over [0, T'], raising both sides to the power 2 then taking expectation, we
obtain with Minkowski’s inequality and Fubini’s theorem

2
/||uN(s)||22ds §cE|u0|§{+c]E/|uN(s)|‘7‘_lds (4.19)
2
+4E sup / (or ™), u™dWi(s) | . (4.20)
t€[0,T] k=19
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For the stochastic term, we have

2
oo
E sup Z/(ak(uN),uN)de<s)
t€[0,T] =1
00 T
Z / NZilow ™) [5,ds
k=19

1
<-E sup |uN(t)|;L_L+c//|uN(s)|;‘{ds+c/.
2 ief0,1]

This together with (4.20) implies the estimate (4.4). The proof of Lemma 7 is complete. 0O
4.2. Estimates in fractional Sobolev spaces

We will apply the compactness result based on fractional Sobolev spaces in Lemma 13 (of the
Appendix) with

1
Y=L*O0,T:Uh)NnW"20,T;: D(A™")), 0<y < 5 4.21)

For this purpose, we will need the following estimates on fractional derivatives of u’Y

Lemma 8.
Elul|y <ki, (4.22)
¢ 2
E |[u” —/U(uN)dW(s) <k, (4.23)
0 HY(0.T:U")
¢ 2
E /o(uN)dW(s) <k3, Vy< % (4.24)
0 W70(0,7;H)

where the constants ki, ky and k3 are independent of N.

Proof. Note that u¥ = (v, ") can be written as

uM (1) =uo + f G (s)ds + Z / ok ()dWi(s) :=Ji + J+ J5. (425

k=17
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Note that for ¢ = (v, ¢), we have
(2, 0) = (G@™), 0) = (= AuN,9) — (B, M), v) = (B N, ¢N), )
+(RO(A19", M), v) — (A1 f(9M), 9) — (GWN), 9) (4.26)
= () 4+ JF T3+ T+ IS0,
For J21, we note that
|AuM e < cllu? . (4.27)
With (4.2), we obtain
E|J§|%V1,2(0,T;u*) is bounded independently of N. (4.28)
For J22, we observe that for v € D(Ag)

(BY (™), v) =b% N, vV, v)
= Fx (o IDp° ™, v, v)
=<l IvV vl

<NV Aol 2. (4.29)

This implies that

T
EIBY (") 2 7. poasty S CE | sup vV ()L / N (s)11%ds
0

5€[0,T]
1
N
3 r ’
<c (E sup |UN(s)|‘£2> E / o™ (s)11%ds . (4.30)
5€[0,T]
0
This along with (4.3) and (4.4) conclude that
2.2 . .
E|J; |W1’2(0,T;D(A5])) is bounded independently of N. 4.31)
For J;, we observe that for v € D(Ag)
(R°(A19N, "), v) = by (v, 6", A1p")
<clAigV (216" Ao 2. (4.32)
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This implies that
T
0 N Ny2 < Noyp2 N oy 2
EIRY 410", 8") a0 payty = B | sup_ 197 )] f 419" (5)[2,ds
0
1
N
v :
<c (E sup ||¢N<s>||4> E / 416N () 2ds
5€[0,T]
0
(4.33)
This along with (4.3) and (4.4) conclude that
402 . .
E|J; |W1‘2(0’T;D(A5])) is bounded independently of N. (4.34)
For 126 , using the estimate (4.1), we have
Elstla,l’z(O’T;u,) is bounded independently of N. (4.35)
The other terms J23 , J25 and J26 are estimates similarly. More precisely, we can check that
312 512 62 ;
E|J; |W1’2(O,T;D(Al_'))’ E|J; |W1~2(O,T;Al_l) and E|J; |W1’2(0‘T;u/) are also bounded independently
of N.

For the term J3, Lemma 13 implies that, Vy < %

6
t
o
560720 =E D / o1 (u™ (5))d Wi (s)

k=19 WY6(0,T;H)

T o0
<COIE [ Y It o)lfds
0 k=1

T
SC(J/)]E/(I + [u™1§))ds.
0

This together with (4.17) imply that

1
E|J3|%/VV~6(O,T;H) is bounded independently of N, Vy < 7 (4.36)

Indeed by Holder’s inequality, we have

1

2 6
E|J3|WV~6(O,T;H) S c <E|J3|WV~6(O,T;H)> < Q.

Hence we obtain (4.24).
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Collecting the estimates (4.28)—(4.36), we obtain

E|"‘N|W%2(0,T;D(A—l)) is bounded independently of N. 4.37)

By (4.2), we deduce

]EIuN|Lz(0’T;u) is bounded independently of N. (4.38)
From (4.37) and (4.38), we obtain (4.22).
We observe from (4.25) that u™ (t) — [, o u™)dW (s) = J1 + J> combined with the estimates
(4.28)—(4.35), we obtain (4.23) as desired. O

4.3. Compactness arguments for {u™, W)}y

With the estimates independent of N, we can establish the compactness of the family (u”, W).
For this purpose, we consider the following phase spaces:

X, =L*0,T; H)NC(O, T; D(A™Y), Xw=C(0,T;Up), X=X, x Xy. (4.39)
We then define the probability laws of " and W respectively in the corresponding phase spaces:
uN O =Pu e, (4.40)

and
uw () =P(We.). (4.41)

This defines a family of probability measures 1" = ' x ww on the phase space X'. We now
prove that this family is tight in N. More precisely:

Lemma 9. Consider the measures u on X defined according to (4.40) and (4.41). Then the
family {uN}y is tight and therefore weakly compact over the phase space X.

Proof. We can use the same technic as in the proof of Lemma 4.1 in [11]. The main idea is to
apply Lemma 12 (of the Appendix) and Chebychev’s inequality to (4.22)—(4.24). O

Strong convergence as N — oo. Since the family of measures {1} associated with the family
u™, W) is weakly compact on X, we deduce that 1"V converges weakly to a probability 1 on
X up to a subsequence. We can apply the Skorokhod embedding theorem (see Theorem 2.4 in
[28]) to deduce the strong convergence of a further subsequence, that is:

Proposition 1. There exists a probability space (Q, F,P), and a subsequence Ny of random
vectors (ﬂNk, W Nk with values in X such that

() @M, Wk have the same probability distributions as (u™Ne, W),
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(i) (@M, W) converges almost surely as Ny — 0o, in the topology of X, to an element

@, W)yeX, ie.

ik — @i strongly in L*(0, T; H)NC([0,T]; D(A™Y)) a.s., (4.42)

WNe — W strongly in C([0, T1; Up) a.s., (4.43)
where (u, W) has distribution . :
(iii) W™ is a cylindrical Wiener process, relative to the filtration ]—',Nk, given by the completion
of the o -algebra generated by {(iN (s), WNk(s)); s <t}
(iv) All the statistical estimates on u™* are valid for i™x, in particular, the estimates (4.1)—(4.4)

hold.
(v) Each pair (@Nx, WNk) satisfies (2.45) as an equation in ‘H, that is

o
di (1) = G@aNydr + Y oy @M (0)d W (1), @M (0) = iy (4.44)
=1
The following lemma proves that ii™V*, ii is weakly continuous with value in
Lemma 10. The stochastic processes Nk and i € C([0, T1; Hu) P-a.s.

Proof. The proof follows from the fact that ANk e L0, T; H)NC([0, T], D(A™! )) a.s., hence
Nk is weakly continuous with values in H a.s. O

4.4. Passage to the limit

With the strong convergence in (4.42), we can pass to the limit in (4.44). Thanks to (4.3) and
(4.2), we deduce the existence of an element

i € LY(Q2; L®(0, T; 1)) N L3(Q; L*(0, T; U)),
and a subsequence still denoted as Ny such that
M i weak star in L*(Q; L%°(0, T; H)), (4.45)
and
ik —~ i weakly in L2(2; L%(0, T; U)). (4.46)

Combining the strong convergence (4.42), the estimate (4.3) and the Vitali convergence theorem,
we get

ik — i strongly in L*(2; L*(0, T; 1)), (4.47)

and, thus possibly extracting a new subsequence denoted in the same way to save notation, one
has also
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N — i for almost all w, t with respect to the measure dP @ dt. (4.48)

Fix ¢ € D(A). Using the weak convergence (4.46), we can pass to the limit in the linear term.
We are going to prove that

Jo Ene (™ ()Ml b @™ (s), @™ (s), 9)ds — [y bii(s), ii(s), 9)ds in L'(€2 x (0, T)),
Jo (RGN (s), i (s)), 9)ds — [y (R(@(s), ii(s)), #)ds in L1(Q x (0, T)),

Jo (E@Ne(5)), 9)ds — [, (E(i(s)), 9)ds in L' (€2 x (0, T)).

(4.49)
The following lemma will be crucial for the proof of (4.49).
Lemma 11. We have
Fy (1™ ()llz) = 1in LP(Q; LP(0,T;R)) as N — coand p > 1. (4.50)

Proof. From the estimate (4.2), we have

T
Ef &N () l7,ds < k.
0

Let

On={s€(0,T), " (s)llyy =N a.s.}

and |Oy| the Lebesgue measure of Oy . Then

T
N2E|Oy| sE/ﬁWs)nadsskl,
0
and so
- k
E|Oy]| < m—>OaSN — 00.
Observing that

T —|Oy| = / Ex (™ )l ds.
[0, T]-On

we deduce that
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T
;- - ~N
T - El0w < £ [ P o) hods <T.
0

These inequalities show that

T T

E/FN(||ﬁN(s)||u)ds—>/1ds as N — oo.
0 0

Butas 0 < Fy (" (s)[lzy) < 1, we get
T T
E/ 11— Fn(lu™ ($)llg)lds = Ef(l — Fy(lu™ () [le))ds — 0as N — oo.
0 0
Finally since |1 — Fy ([|liZ™ (s)]lz)| < 1, we arrive at

T T
Efn — Fx([u™ ()l ds =E/|1 — Fy(lu™ &) leol — Fy (™ ) 101, ds
0 0

T
5E/|1—FN(||uN(s)||u)|ds—>0asN — 0.
0

This ends the proof of the lemma. 0O

For the proof of (4.49), we introduce the abbreviations as in [6],

Fr (s) = Fn, (18 () 120,
bNe(s) = b@Nk (s), ik (s), w),

b(s) =bu(s), u(s), w).

To prove (4.49), we write

t t

T T
E/ /(FNk(s)ka(s)—b(s))ds d::Ef f(FNk(s)—l)ka(s)ds dt
0 0 0 0

T t

+E/ /(ka(s)—b(s))ds dt. (4.51)
0 0

Reasoning as in the proof of the convergence of the 3D globally modified Navier—Stokes equa-
tions studied in [12], the second term of this equality tends to O, that is
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t

t
/ by, (s)ds — / b(s)ds in L' (Q x (0, T)). (4.52)
0 0

For the first term, we get

t

T
E/ /(FNk(s)—l)ka(s)ds dt
0 0

T 7 T i 3
E//|FNk(s)— 112dsdt E//|ka(s)|2dsdt
00 0 0
T

1

1 1
2 2

T
<T E/|FNk<s)—1|2ds E/|ka<s>|2ds :
0 0

and

t

/(FNk (s) — Dby, (s)ds — 0in L' (Q x (0, T)),
0

since

T T
E / by, (9)12ds < 2| Aw2, E / ™ () 3 1™ () 117, ds
0 0

% . N
<olAwl?, (E sup |ﬁN’<(s)|;‘{> E / 1 ()17, ds
s€[0,T]
0

< 00,

and Lemma 11 shows that

T

E/ |Fy, (s) — 1]%ds — 0.
0

This proves (4.49);. The proofs of (4.49), and (4.49)5 are similar.
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The convergence

t t
/ G @ (s), wyds — / (G(u), w)ds in L'($ x (0, T)) (4.53)
0 0

follows from estimate (4.3), the Lipschitz condition on G and the Vitali convergence theorem.
For the stochastic term, by (4.48), we obtain

@™ — i3, — 0, forae. (0,1) €2 x (0, 7).

Thus, along with Lipschitz condition on o, we deduce

o (@) — o (@), 2.2 — O for ace. (w,1) € 2 x (0, 7).

On the other hand

T
supE [|a(ﬁNk)|‘zz(lz 7_Da?s
N 5 ’

T

<supE f (1 + @™k (s)[3,)ds
Nk
0

We therefore infer from (4.3) that |o (VN¥| L,q2,3) 1s uniformly integrable for Ny in L4 (Q x
(0,T)) for any g € [1,4).
With the Vitali convergence theorem, we deduce that for all such g € [1, 4),

o (@) = o (i) in LY(Q2, L1(0, T; Lo(I%, H))). (4.54)

In particular, we get the convergence in probability of o (@) in L%(0,T; Ly(Ir, H)).
Thus along with the convergence (4.43), we apply Lemma 14 (of the Appendix) and deduce
that

t

t
/ o (@V)dWNe — f o ()dW in probability in L>(0, T; ). (4.55)
0 0

By (4.55) and Vitali convergence theorem, we infer a stronger convergence result:

t

t
/a(ﬁNk)dWNk — /a(ﬁ)dW in L2($: L*(0, T: H)). (4.56)
0 0
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Collecting all the convergence results, we obtain

t

t

(ft(t),ﬁ)Jr/(Q(ﬁ(S)),ﬂ)dS =(ﬁ(O),z?)+/(o(ﬁ(s),19)dﬁ/(s), (4.57)
0 0

for all 9 € D(A) and for a.e. w € Q,t € (0, T). The equality (4.57) is also valid for ¢ € U by

density argument.

We have then proved the following result.

Proposition 2. The pair (S’, i) where S = (Q, f, {.7:-,}, I@’, W) is a martingale solution of the
stochastic 3D GMCHNSE.

We now summarize the result obtained in the following theorem which says that, up to a
subsequence the solution u” of the stochastic 3D GMCHNSE converges in law to a martingale
solution of the original 3D stochastic CH-NSE when N tends to infinity.

Theorem 2 (Convergence of the stochastic 3D GMCHNSE). There exists a martingale weak
solution (2, F,{F:}, IP:, W, i) of the stochastic 3D CH-NSE and a sequence @y of random

processes defined on Q, with the same law as u®, so that up to a subsequence, the following
convergence holds:

iV =@V, ¢N) > i =@,¢) in LX< [0, T] x M) x L2 x [0, T] x M).
5. Appendix

In section 5.1 we recall some results of deterministic nature. In Section 5.2 we present a result
of probabilistic nature.

5.1. Compact embedding theorems
We recall the theorems from [14] (see also [11] for Lemma 12)

Definition 5.1 (The fractional derivative space). We assume that H is a separable Hilbert space.
Given p >2,y € (0,1), WP(0, T; H) denotes the Sobolev space of all h € L”(0, T; H) such

that
T T N N
t —
|h(t) — h(s)|}; @) = hS)ly o
T
0 0
which is endowed with the Banach norm
1
T T r

Ih(l) —h(s)I},
\hlwr-r.1:H) = /|h(t)|l;{dt +/ ?Md tds < 00.
0 00
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Lemma 12.

(1) Let & C € C &1 be Banach spaces, &y and &1 reflexive, with continuous injections and a
compact embedding of £y in E. Let 1 < p < oo and y € (0, 1) be given. Let Y be the space

Y=LP0,T;E)NW"P(,T; &,

endowed with the natural norm. Then the embedding of J in L (0, T; £) is compact.
(ii) If € C € are two Banach spaces with £ compactly in €,1 < p < 0o and y € (0, 1) satisfy

yp>1,
then the space WY'P(0, T; &) is compactly embedded into C([0, T, E).

The following lemma is based on the Burkholder—Davis—Gundy inequality and the notion of
fractional derivatives (see [14] for the proof).

Lemma 13. Let g > 2, y < % be given. Then, for any progressively measurable process h €
L1(2 x (0,T); LU, H)), we have

t
fh(s)dW(s) e L1Y(Q, W"9(0,T; H)),
0

and there exists a constant ¢’ = ¢/(q, y) > 0 independent of h such that

t q

t
E /h(s)dW(s) 56/(q,y)IE/ I g yds- (5.1)
0

0 Wr-4(0,T; H)

5.2. Convergence theorem for the noise term

The following convergence theorem for the stochastic integral is used to facilitate the passage
to the limit. The statements and proofs can be found in [1], [11].

Lemma 14. Let (2, F,P) be a fixed probability space, and X a separable Hilbert space. Con-
sider a sequence of stochastic bases S, := (2, F,{F}'}i=0, P, W"), such that each W" is a
cylindrical Brownian motion (over U) with respect to {F]'};=0. We suppose that the {G"},>1
are a sequence of X-valued F|' predictable processes so that G" € L2((0,T); Ly(U, X) a.s.
Finally consider S := (2, F, {Ft}1>0, P, W) and a function G € L2((0,T); Ly(U, X)), which is
F: predictable. If

W" — W in probability in C ([0, T1; Up), (5.2)
G" — G in probability in Lz((O, T), LU, X)), (5.3)
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then
t t
/ G"dwW" — / GdW in probability in L>((0, T); X). (5.4)
0 0

5.3. A stochastic Gronwall lemma

The following Gronwall lemma for stochastic processes is useful to prove the existence of
strong solution for the stochastic 3D globally modified Navier—Stokes equations. See [18] for
the proof.

Lemma 15. Fix T > 0. Assume that X, Y, Z, K : [0, T] x 2 — R are real-valued, non-negative
stochastic processes. Let T < T be a stopping time so that

T

Ef(KX+Z)ds<oo.
0

Assume, moreover that for some fixed constant k,

T
/de <k,a.s.
0

Suppose that for all stopping times 0 <1, <17, <T

Th

L)
E sup X—i—/Yds <coE X(ra)—l—/(KX—i—Z)ds ,
t€[tq,1p]
Ta Ta

where cq is a constant independent of the choice of T4, Tp. Then
T

T
E| sup X+/Yds <cE X(O)+/st ,
tel0,7] o

where ¢ = c(co, T, k).
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