期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:267
Extremal functions of generalized critical Hardy inequalities
Article
Sano, Megumi1 
[1] Hiroshima Univ, Grad Sch Engn, Math Lab, Higashihiroshima, Hiroshima 7390046, Japan
关键词: Critical Hardy inequality;    Optimal constant;    Extremal function;    Symmetry breaking;   
DOI  :  10.1016/j.jde.2019.03.024
来源: Elsevier
PDF
【 摘 要 】

In this paper, we show the existence and non-existence of minimizers of the following minimization problems which include an open problem mentioned by Horiuchi and Kumlin [20]: G(a ):= inf(u is an element of W01,N(Omega)/{0} )integral(Omega) vertical bar del u vertical bar(N)dx())/(integral(Omega)vertical bar u vertical bar(q) f(a,beta)(x)dx)(N)(/q), Where f(a,beta)(x) := vertical bar x vertical bar(-N)(log aR/vertical bar x vertical bar)(-)(beta). First, we give an answer to the open problem when Omega = B-R(0). Next, we investigate the minimization problems on general bounded domains. In this case, the results depend on the shape of the domain Omega. Finally, symmetry breaking property of the minimizers is proved for sufficiently large beta. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_03_024.pdf 867KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次