| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:270 |
| Extremals for the singular Moser-Trudinger inequality via n-harmonic transplantation | |
| Article | |
| Csato, Gyula1,2  Van Hoang Nguyen3,4  Roy, Prosenjit5  | |
| [1] Univ Barcelona, Barcelona, Spain | |
| [2] BGSMath Barcelona, Barcelona, Spain | |
| [3] Vietnam Acad Sci & Technol, Inst Math, Hanoi, Vietnam | |
| [4] FPT Univ, Dept Math, Hanoi, Vietnam | |
| [5] Indian Inst Technol, Kanpur, Uttar Pradesh, India | |
| 关键词: Moser Trudinger inequality; Extremal function; | |
| DOI : 10.1016/j.jde.2020.08.005 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
The Moser-Trudinger embedding has been generalized in Adimurthi and Sandeep (2007) [2] to the following weighted version: if Omega subset of R-n is bounded, omega(n-1) is the Hn-1 measure of the unit sphere, then for alpha > 0 and beta is an element of [0, n), sub (u is an element of B1) integral(Omega )e(alpha vertical bar u vertical bar n/(n-1))/vertical bar x vertical bar(beta) <= C double left right arrow alpha/alpha(n) + beta/n <= 1, where alpha(n) = n omega(1/(n-1))(n-1) and B-1 = { u is an element of W-0(1)'(n) (Omega) vertical bar integral(Omega) vertical bar vertical bar del u vertical bar(n) <= 1}. We prove that the supremum is attained on any domain Omega. The paper also fills in the gaps in the proof of Lin (1996) [21], which deals with the case beta = 0. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2020_08_005.pdf | 489KB |
PDF