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Abstract

In this paper, we show the existence and non-existence of minimizers of the following minimization
problems which include an open problem mentioned by Horiuchi and Kumlin [20]:

fQ|Vu|Ndx

Gy = inf

A _N aR -
i 7 where fy g(x) 1= x| log — .
ueWo " (OO ([q, |uld fo, p(x)dx)a

|x]

First, we give an answer to the open problem when 2 = By (0). Next, we investigate the minimization
problems on general bounded domains. In this case, the results depend on the shape of the domain €.
Finally, symmetry breaking property of the minimizers is proved for sufficiently large S.
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1. Introduction

Let N > 2, Q be a bounded domain in RY, 0 , and 1 < p < N. The classical Hardy
inequality holds for all u € Wé’p () as follows:
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where W(}’p(Q) is a completion of CZ°(€2) with respect to the norm ||V (-)|zr(). We refer
the celebrated work by G.H. Hardy [17]. The inequality (1) has great applications to partial
differential equations, for example stability, global existence, and instantaneous blow-up and so
on. See e.g. [6], [3]. It is well-known that in (1) (%)p is the optimal constant and is not attained
in W, (Q).

On the other hand, in the critical case where p = N, the following inequality which is called
the critical Hardy inequality holds for all u € Wé’N(Q) and all ¢ > 1, where R =sup,.q |x|:

() togmmee= [
[Vu|Vdx. 2)
N |x|N(10g |x|

Q

See e.g. [25], [24], [4], [5], [15, Corollary 9.1.2], [28], [34]. It is known that in (2) (NT*I)N is the
optimal constant and is not attained for any bounded domain €2 with 0 € Q (see [2], [1], [22], [7]
etc.).

In this paper, we consider optimal constants and its attainability of the following inequalities
(3) which are generalizations of (2):

q
G| [— " |Vu|Ndx 3)
|X|N(10g

foru € Wé’N(Q), q,B >1,and a > 1. We define G, and G raq as the optimal constants of the
inequalities (3) as follows:

. [Vu|N dx |VulN dx
G, .= Ll[\r]lf fQ R Gyrad i= 1nf fQ 7
ueWy ™ ()\(0} I R dx q ueWy ' (\{0} I uja )’
2 1x|¥ (log ) 2 1x|¥ (log {)P
“)
where Woly’gd(Q) ={uce W (Q) |u is radial }. When Q@ = Br(0), B=2=Lg+1,and ¢ > N,

the exact optimal constant and the attainability of G raq are investigated by Hor1uch1 and Kumlin
[20]. However we do not know the attainability of G, even if Q2 = Bg(0). In fact, under Theo-
rem 2.8 in their article [20] they mention that the attainability of G, is an open problem. See also
[19]. Note that the continuous embedding Wy (B (0)) < LI(Bg(0); x|~ (log 4&)~Fdx)
is not compact when 8 = %q + 1,9 > N, and a > 1. In addition, the rearrangement tech-
nique does not work due to the lack of monotone decreasing property of the potential function
Ix|~N (log ‘IITIT)’ﬂ when 1 <a < N

In this paper, we study the existence, non-existence, and symmetry breaking property of the
minimizers of G,. First, we give an answer to the open problem except for a = a, which is
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a threshold number when €2 = Br(0). More precisely, we show that G, raq is the concentra-
tion level of minimizing sequence of G, and G, < Gy rad for a € (1, ay). By concentration-
compactness alternative, this implies that there exists a minimizer of G, for a € (1, a.). We
also show that there is no minimizer of G, for a > a,. Next, we extend the results to general
bounded domains. Furthermore we investigate the positivity and the attainability of G in gen-
eral bounded domains. When a = 1, the positivity and the attainability of G| depend on geometry
of the boundary of the domain since the potential function has singularities on the boundary. Fi-
nally, we show that when 2 = Bg(0), any minimizers of G, are non-radial for large 8 and fixed
g > N, and any minimizers are radial for any 8 and any g < N.

Our problem is regarded as the critical case of one of Caffarelli-Kohn-Nirenberg type inequal-
ities, see [20]. In the weighted subcritical Sobolev spaces Wol’p (|x|*dx) where p < N + «, the
existence, nonexistence, and symmetry breaking property of the minimizers of Caffarelli-Kohn-
Nirenberg type inequalities are well-studied especially for p = 2, see [35], [26], [12], [18], [8],
[9], [10], [33], [14], [16], [11] and references therein.

Our minimization problem (4) is related to the following nonlinear elliptic equation with the
singular potential:

s N-2 _ |u1"%u :
div (|Vu| vu)_blx\N(log%)ﬁ in €, )

u=0 on 0%2.

The minimizer for G, is a ground state solution of the Euler-Lagrange equation (5) with a La-
grange multiplier b.

This paper is organized as follows: In section 2, necessary preliminary facts are presented.
In section 3, we prove the (non-)attainability of G, when 2 = Br(0) and a > 1. In section 4,
we extend the results to several bounded domains, and we investigate the positivity and the
attainability of G in several bounded domains. In section 5, we show that symmetry breaking
phenomena of the minimizers of G, occur for large 8. As a corollary, we obtain a result of
multiplicity of solution of the equation (5) for large 8.

We fix several notations: Bg(0) and Bg’ (0) denote a N-dimensional ball centered 0 with
radius R and wy_1 denotes an area of the unit sphere S¥~! in R¥. |A| denotes the Lebesgue
measure of a set A C RY. The Schwarz symmetrization u*: RY — [0, co] of u is given by

wto =uf(x) =inf{r > 0: [y eRY : u)| > 7} < 1B O}
2. Preliminaries
In this section, we give a necessary and sufficient condition of the positivity of G, for a €
[1, 00). Furthermore we give the explicit value of G,, and the minimizers when g = N A Lg+1

and ¢ > N. First, we give a necessary and sufficient condition (6) of the positivity of G, when
a>1.

Proposition 1. Let a > 1, @ C RY be a bounded domain with 0 € Q, R = sup, g, |x|, N > 2 and
q,B > 1.Then G, > 0 if and only if B and q satisfy

N —1
either > q+1 or,Bqu+1,qu. (6)
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Essentially, Proposition 1 is proved by the following theorem in [27]. The authors in [27]
show a necessary and sufficient condition of the positivity for more general inequalities in the
critical Sobolev-Lorentz spaces H [S, q(RN ). Note that the norm of H }{, N(]RN ) is equivalent to it

of WL¥(RN). We can obtain Proposition 1 from Theorem A and simple calculations. We omit
the proof here.

Theorem A. ([27], Theorem 1.1.) Let N e N, 1 < p<oo,l <r<ocand 1 <a, f <oo. Then
N

there exists a constant C > 0 such that for all u € H,Z, (RN), the inequality

1

[ue]®
——— dx| <Clu| »~ @)
/ x| (log 1)# | ”H”(RN)
B, (0) Il nr

2

holds true if and only if one of the following conditions (i)—(iii) is fulfilled

(i) l+4a—-p<0,
(ii) l—}—ot—13>0andr<1+ =5 ®)
@iy 1+a—pB>0,r= 1+a—ﬂ’ and a > f.

Next, we give a necessary and sufficient condition of the positivity of G, when a = 1 and
2 = Bg(0). Essentially, the following proposition follows from results in [20].

Proposition 2. Let Q@ = Br(0). Then G| > 0 ifand only if =g = N.

In §4, we extend Proposition 2 to general bounded domains. Proposition 2 follows from
Proposition 4 in §4. Thus we omit the proof of Proposition 2 here.

Finally, we give the explicit value of the optimal constant G, g and the minimizers when
B= q +1landg > N.

Loganthmlc transformations related to G r,q are founded by [20], [21], [36], [30]. Especially,
in the radial setting, the authors in [30] show an unexpected relation (9) that the critical Hardy
inequality in dimension N > 2 is equivalent to the one of the subcritical Hardy inequalities in
higher dimension m > N by using a transformation (10) as follows:

_ N\ N
/|Vu|Ndx—<m ) |M|N dx
N |x|
Rm Rm

_ N N-—1 N
_ Om ‘(";V ) / IVl dy—(—) / S LSS IS
@ON-1 BY N |Y|N (10g ﬂ)
0) By (0) [yl

N-1

where u(|x|) = w(|y|) and (log%)T =|x|_%. (10)
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By using the transformation (10) and direct calculations, we can observe not only an equivalence
between two Hardy inequalities but also the equivalence between Hardy-Sobolev type inequali-
ties and generalized critical Hardy inequalities in the radial setting as follows:

fBg(O) IVw|N dy

Glrad = 1 Ninf 5
weWy L (BR (0)\{0} e 4 q
J5© ¥ og T7 ¥
N N
o1\ "7 (N-1\""TT , S 1VulN dx
= inf > (11D
Om—1 m— N uEWs g R™NO} ( [ |x[® |ue]9dx) @
where a = ';'V%]Y(ﬂ — 1) — m. The authors in [30] also give a transformation which is a mod-

ification of (10) when a > 1. Since the minimization problems on the right hand side of (11)
are well-known (see e.g. [35], [26]), we can obtain the following proposition by using these
transformations.

Proposition 3. Let § = %q + 1,9 > N, and Q = Bgr(0). Then the followings hold.

(i) Gg raa is independent of a > 1. Furthermore, the exact value of the optimal constant is as

follows:
Ga,rad =Grad
1-N
ey () ()|
=oy f(N-D|— 1—-— ;
q -4~
()
where T'(-) is the gamma function.
(ii) Gg.rad is not attained for any a > 1.
(iii) G rad is attained by the family of the following functions U:
N
_4=N\ q¢N
_N-1 R N
Uy(y)=Cr™ '~ 1+<Alogﬁ) , where C e R\ {0} and \ > 0.
y

Here, we give a simple proof of Proposition 3 (ii) by using a scaling argument.

Proof of Proposition 3 (ii). Let 8 = %q 4+ 1,9 > N, and a > 1. Assume that u €
W&’gd(BR (0)) is a radial minimizer of G4 ag. We can assume that u is nonnegative without
loss of generality. We shall derive a contradiction. For A € (0, 1), we consider a scaled function
3, € Wy'my(Br(0)) which is given by

rad

- -
(x) A ((LLR) x) ifx €B -1 0),
uyx)=
0 if x € BR(O)\ B 1_5-1,,(0).
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Then we have

N N
fBR(0)|Vu| dx 3 fBR(())W”/\' dx

|l lues 9
<fBR(0) x|V (log aR)ﬂd ) <fBR(0) xI¥ (log 45)# dx)

which yields that u, is also a nonnegative minimizer of G, rag. On the other hand, we can show
that u, € C'(Bg(0) \ {0}) and u;, > 0 in Bg(0) \ {0} by standard regularity argument and strong
maximum principle to the Euler-Lagrange equation (5), see e.g. [13], [29]. However u; =0 in
Br(0) \ Ba(l,rl) R(O). This is a contradiction. Therefore G, raq is not attained. 0O

sz
sz

3. Existence and non-existence of the minimizers

Let Q2 = Br(0). In this section, we prove an existence and non-existence of the minimizers of
G, . First result is as follows.

Theorem 1. Let a > 1 and q, B > 1 satisfy (6). Then the followings hold.

(i) If B > q + 1, then G, is attained.

(ii) If B = q + 1 and q > N, then there exists a, € (1, eN] such that G, < Gy, raa for
a € (1, a*) and G, is attained for a € (1, a,), on the other hand, G, = G4, rqq for a > a
and G is not attained for a > as.

B . . .
Remark 1. If a,. = e~ , then we can show that G, is not attained. In fact, if we assume that G,
is attained by u, then u® is a radial minimizer of G 4.raq Which contradicts Proposition 3 (ii), see
the proof of Theorem 1 (ii). However we do not know the value of a,.

In order to show Theorem 1, we need three lemmas. First we show the (non-)compactness of

5
the embedding WY (Bg(0)) = LI (Br(0); fa. p(x)dx), where f, p(x) = |x|~V (1og |X|)

Lemma 1. Let a > 1 and q, B > 1 satisfy (6). Then the continuous embedding WOI’N(BR 0)) —
LY(Br(0); fa, p(x)dx) is

(i) compact if B > Mq—i—l
(ii) non-compact if g =~ q+1andq>N

Proof of Lemma 1. (i) It is proved in [31]. However we give a proof here for the convenience of
readers. Let (u;,),_; C Wy~ (Bg(0)) be a bounded sequence. Then there exists a subsequence

(Um) 72, such that

tmy, — u in Wy (BR(0)),
Um, — u in L"(Br(0)) forany r €[1, 00). (12)

Let o satisfy Y=Ly + 1 < < B. For all & > 0, there exists 8 > 0 such that

Please cite this article in press as: M. Sano, Extremal functions of generalized critical Hardy inequalities, J.
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aR\*
logﬁ < ¢ forall x € Bs(0). (13)
X

From (12) and (13), we have

[ty — u] / [t — ] N ( aR)ﬂ ’
N aRgdx¥ =S¢ — —r—dx+3 log — b, — ull
/ x|V (log \xl)ﬁ x| (log {5} )a &% s L4(BR(0)
© By (

Br
SSC”V("‘mk u)”LN(B (0))+C”umk _MH(IIJI(BR(O))

<Ce+Cllum, _u”L‘I(BR(O)) —0 ase—0,k— oo.

Thus the continuous embedding W(}‘N(BR (0)) < L9(Br(0); fa, g(x)dx) is compact if g >
NT”q + 1.

(ii) We can see a non-compact sequence (4 1)5> ; in WOl ’N(BR (0)), where for A € (0, 1] u,
is defined in the proof of Proposition 3 (ii). Hence the continuous embedding W&’N (Br(0)) —
L9(Br(0); fa, p(x)dx) is non-compact if § = %q +landg>N. O

In [20], a continuity of G, with respect to a is proved for a € (1, oo). However, in our argu-
ment, the continuity of G, at a = 1 is needed.

Lemma 2. G, is monotone increasing and continuous with respect to a € [1, 00).
Proof of Lemma 2. It is enough to show only the continuity of G, at a = 1. From the defini-

tion of Gy, we can take (u,);,_; C C°(Bg(0)) and R,, < R for any m such that supp u,, C
Bg,, (0), R, /' R, and

fBR,,, © (Vi |V dx

+=G1+o() asm— oo.

(fBRm(O) |um|qf1,/3(x) dx) !

Set v(y) =u, (x), where y = R%x. Then

fBRm(O) |V |N dx J8r0) |VolN dx
N = N Z Gama
(S 0l 115GV AX) " ([0 1019 fan, p @) )
where a,, = & \_ 1 as m — oo. Therefore we have G, < Gi1+o(1).Since f,, g(x) < f1,8(x)

for any x € BR(O) we have G| < G, . Hence we see that lim,\ 1 G, = G1. O
Third Lemma is concerned with the concentration level of minimizing sequences of G,.

Lemma 3. Let 8 = %q +1,g> N,and a > 1. If G4 < Graq, then G, is attained, where Gaq
is given by Proposition 3 (i).

Please cite this article in press as: M. Sano, Extremal functions of generalized critical Hardy inequalities, J.
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It is easy to show Theorem | by these three lemmas. Therefore we give a proof of Theorem 1
before showing Lemma 3.

Proof of Theorem 1. (i) This is proved by Lemma 1 (i). We omit the proof here.

.. _ B . . . .
(ii) Let B = Nqu + 1 and g > N. When a > e¥, the potential function f, g is radially
decreasing. Thus the Pdlya-Szegt inequality and the Hardy-Littlewood inequality imply that

N #|N
fBR(0)|Vu| dx fBR(O)W”' dx

=
(T 1 e p004) ™ (Jgo W1 ) )

= Ga,rad

<z

N
q

forany u € W(}’N(BR (0)) and a > e% . Therefore G, = G4 rad = Graq for any a > e% . Moreover
we see G1 = 0 by Proposition 2. Since G, is continuous and monotone increasing with respect
to a € [1,00) by Lemma 2, there exists a, € (1, e%] such that G, < Gyyq for a € [1, a,) and
G4 = Gy for a € [ay, 00). Hence G, is attained for a € (1, a,) by Lemma 3. On the other hand,
if we assume that there exists a nonnegative minimizer u of G, for a > a,, then we can show
that u € C'(Bg(0) \ {0}) and u > 0 in Bg(0) \ {0} by standard regularity argument and strong
maximum principle to the Euler-Lagrange equation (5), see e.g. [13], [29]. Therefore we see that

N N
fBR(O)W”' dx . fBR(O)|V”| dx

Grad = Ga = N
(Jipio 119 s )" ([ 1 a0 )

N > Grad~
q

This is a contradiction. Therefore G, is not attained for a > a,. O
Finally, we prove Lemma 3.

Proof of Lemma 3. Take a minimizing sequence (u,),,_; C Wé ’N(B r(0)) of G,. Without loss
of generality, we can assume that

ltm|? fap(x)dx =1, /|Vum|Ndx=Gu+0(l)asm—>oo.
Bgr(0) Br(0)

Since (u,,) is bounded in Wé’N(BR (0)), passing to a subsequence if necessary, u,, — u in
WOI’N(B r(0)). Then by Brezis-Lieb lemma, we have

G, = / IV |N dx 4+ o(1)
Bgr(0)

= / IVt — u)|N dx + / IVu|N dx + o(1)

Bg(0) Bg(0)
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Q=

> Gy /|Mm_“|qfa,,3(x)dx + G, /|u|qfa,,3(x)dx +o(1)

Br(0) Br(0)

<[z

> Gq /(|um—u|‘1+|u|4)fa,,s(x)dx +o(1)
Br(0)

q

=Gq / lum|? fa, p(x)dx | +0(1) =G,
Br(0)

which implies that either u = 0 or u,, — u %% 0 in LY(Br(0); fa4, g(x)dx) holds true from the
equality condition of the last inequality. We shall show that u = 0. Assume that # = 0. Then we
claim that

Gua= [ (V¥ dr +o(1). (14)
Br(0)
If the claim (14) is true, then we see that Gaq < G, which contradicts the assumption. Therefore
u # 0 which implies that u,,, — u # 0 in LY (B (0); f,, g(x)dx). Hence we have
1= / ul? £, p(x)dx, / [Vu|N dx <liminf / Vi |Y dx = G,.
m—0Q0
Br(0) Br(0) Br(0)

Thus we can show that u is a minimizer of G,. We shall show the claim (14). Since u,, — 0 in
L"(Bg(0)) for any r € [1, c0) and the potential function f, g is bounded away from the origin,
for any small ¢ > 0 we have

l= / |tum|? fa, p(x) dx = / |tum|? fa, p(x) dx + o(1).
Br(0) B% ©0)
Let ¢, be a smooth cut-off function which satisfies the followings:

0<¢e =1, ¢ =10nBer(0). suppee C Ber(0). |Voe| < Ce™ .

Set up, (y) = upy (x) and d;s (y) = ¢ (x), where y = § Then we have

q

I= / lum|? fa, p(x)dx |+ o(1)

Ber (0)
2
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N
q
< / lum@el? fa, p(x)dx | +o(1)
B:r(0)
N
q
= / el fue—t () dx | +o(1) <G, / IV @) dx + o(1).
Br(0) Br(0)
We see that as—! > e% for small €. Since G,,—1 = Gg4, rad = Grad from the proof of Theorem 1

(i) and Proposition 3 (i), we have

1<G:! / IV i)Y dx + o(1)
Br(0)

<G} /|va|Ndx+c / Vit |V Vel tm 6N "+ 1 |V Ve [N dx | +o(1)
Ber(0) B:r(0)

<G /|Vum|Ndx+NCs—1||wm||QN—l||um||LN+CE—N||um||fLVN +o(1)
Ber(0)

SGr_acll / |Vum|Nd)c—l—0(1)fGr_acll / Vi |N dx + o(1).
BER(O) BR(O)

Therefore we obtain the claim (14). The proof of Lemma 3 is now complete. O

4. In the case of general bounded domain

We extend Theorem | and Proposition 2 to bounded domains. Throughout this section, we
assume that Q@ C R¥ is a bounded domain, 0 € , and 8 and ¢ satisfy (6). Set R = Sup,cq x|

First we extend Proposition 2 to general bounded domains. If there exists I' C 92 N d Br(0)
such that I" is open in d B (0), then we can obtain the same result as Proposition 2 as follows.

Proposition 4. Assume that there exists I' C 92 N d Br(0) such that T is open in d Bg(0). Then
G1>0ifandonlyif B=q = N.

Proof of Proposition 4. First we show that G| =0 if 8 > NT’lq + L. Setx=ro(r=|x|,we

SN=1y for x € RN, From the assumption, we can take § > 0 and I" C I such that I is open in
dBg(0) and

1.
(r,w) €0, R) x SN~! R—28§r§R,a)eEF cQ.

Please cite this article in press as: M. Sano, Extremal functions of generalized critical Hardy inequalities, J.
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Let0 % ¢ € C2(% D) and ¢ € C*([0, 00)) satisfy ¢ = 1 on [R—§, R] and ¢ = 0 on [0, R —25].
Set us (x) = (log X)” ¥ (w)¢ (). Then we have

/|VuA Ndx— / /
SN]

N

3
o PNldras,

1
—a)+ VSN U

R
0
<2N-l / / aus T4 ’VSNquX}Nr_l drdS,
r
SN-1 0
R
v R (s—1)N dr sN r
<s"C log — —+C log — —+C
r
R-§ R—s§
log &5 |
<s / (NG 4 C <00 ifs > ——.
0
Thus u; € W0 (Q) for all s > =—. However, direct calculation shows that
q K sq=B 4 loe 755
S Ul / (log ) T _c / 197P 4y
r
o IV (log Tl R-5 0
which implies that
q
/ e oo
o x|V (log ITRI)
for s close to Tl since B > Y=L + 1. Therefore we see that
) N -1
G =0 if B> q+1. (15)

Next we show that Gy =0if 8 > N. Set x, = (R — 28)% for y € 9 Bg(0). Note that B, (x¢) C
2 for small ¢ > 0 and some y € I'. Then we define u, as follows:

u—xa> :

v\ if x € Be(xe), 1 ifo<r<i,
ug(x) = ( ¢ where v(t) = 2
) {0 if x € Q\ Be(xe), 21—1) if L<r<l.

Since logt <t — 1 for ¢t > 1, we obtain
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/|Vu£(x)|Ndx: / IVu(zD|N dz < o0,
Q B1(0)

q q
eV oo [ e €[ eV P
(R—|xDF"" = (3e)P

o lxIv (log |7R\> B (xe) Be (xe)
as ¢ —> 0 when 8 > N. Hence we see that
G=0 if B>N. (16)
From (15), (16), and (6), we see that G| > O ifandonlyifg=8=N. O

If there does not exist I" in Proposition 4, then we can expect that the relation between ¢, 8
and the positivity of G| depends on geometry of the boundary d€2. In order to see it, we consider
special cuspidal domains which satisfy the following conditions:

(€21): 92N 3dBR(0) ={(0,---,0,—R)}.
(22): 0%2is represented by a graph ¢ : RN & [—R, oo) near the point (0, ---,0, —R).
Namely, for small § > 0 the following holds true:

05 =QNRY ' x[-R,—R+8]) ={(x",xy) e RN I x [-R, =R+ 8] |xn > ¢ (x)}.
(23): There exist C1, Co > 0 and « € (0, 1] such that
Ci1xX'|* <¢p(x") + R < Co|x|% forany x’ e RN~ 1.

« in (23) expresses the sharpness of the cusp at the point (0, - - - , 0, —R). Then we can obtain
the following theorem concerned with the positivity and the attainability of G.

Theorem 2. Assume that Q satisfies the assumptions (21)—(23). Then there exists B* =
B*(a, q) € [% +1, %] such that G| =0 for B > B4« and G| > 0 for B < B*. Furthermore
G is attained for € (%q + 1, 8%).

Remark 2. When =g = N and 0 € 2, G is not attained for any bounded domain. However,
when 0 ¢ 2, the attainability of G| depends on a geometry of the boundary 9<2. Very recently,
Byeon and Takahashi investigate the attainability of G| on cuspidal domains in their article [7]
when B=¢g = N.

Proof of Theorem 2. First we shall show that G; =0 if 8 > % From (£23), we can observe
that BA 1 (xg) C Q for small € > 0 and small A > 0, where x, = (0,---,0, —R + 2¢). Then we
eu

define w, as follows:

|x —xe| :
v| —& if xeB Xg),
we (x) = ( red ) ack )
0 ifer\BAl(xg),
ea
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where v is the same function in the proof of Proposition 4. In the same way as the proof of
Proposition 4, we have

q
/|vxwg(x)|Ndx<oo, /L)'ﬂdszs%_ﬁeoo
Q o IxIV (log%)

ase —~> 0if 8 > % Therefore we have

N
=0 atleastfor 8 > —. a7
o

Next we shall show that G1 > 0if B < Y=L 4+ 1. For u € W™ (), we divide the domain £
into three parts as follows:

q
[OE e [ /—zl+12+13 (8)
o IxIV (log &)

QNBg (0
nBrO g \(B (O)UQ5>

From Theorem A, we obtain

4q
N

I <C /|Vu|Ndx . (19)

Since the potential function x|~V (log %)_ﬁ does not have any singularity in €2\ (B(%) U Qg),
the Sobolev inequality yields that

q

N

12§C/|u|qu§C /|Vu|Ndx ) (20)
Q Q

Finally, we shall derive an estimate of /3 from above. Since log? > %(t — DA <t<2), we
obtain

lu(x)[? lii(z', zn)|
I 21
=0 =™ / [ e b

Os aN=0zy>C1|Z'|¥

where u(x) =u(z) z=x+(,---,0, R)).
such that (8 —¢)p < NT*I + 1. By using the Holder inequality and the Sobolev inequality, we
have
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ZN=6

iz, zn)14
/ / S

N=0zy>C|Z/|¥

Iul‘9

£ Np—
~IN N
u o (g—g) NP N
S(/ %M) (/ Iul(q E)N"—N—Pfdz)
Z

—pe 1
</ |Z|—(/3—S)sz) P

1
P

q—¢
£ N
|M|N )N / y -
|Vii|Vdz Z dz
N N
z
lzn] J -
(@)’
q—¢ 1
£ N ZN=0 p
IMIN N N Mol (ge)p
Q znv=0

—(B—¢

Since NT*I —(B—-¢e)p>-—1, fo zN )pdzN < oo. Furthermore, applying the Hardy in-

equality on the half space RY :={(x’, xy) e RV "I xR |xy > 0}:

—1\" r
(r ) ] _dx </|Vu| dx (1 <r<o0)

r [xn]
RY RY

yields that

s

/ / '”(Z|Z|Z/3N)|qdz§c / wviVdz | . (22)

iN=0zy>C1|Z/|* £+, ,0,R)

By (21) and (22), we have

q

N

L<C /|Vu|Ndx ) (23)

Therefore, from (18), (19), (20), and (23), for all u € WOI’N(Q),

c / [u(x)|4 /|Vu|Ndx

x|V (log T
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Hence

-1
G1 >0 atleastfor B <

+ 1. (24)

From (17) and (24), there exists 8* € [% +1, %] such that G| > 0 for 8 < 8* and G| =0 for
B> B*.

Lastly we shall show that G is attained for 8 € (%q + 1, B*). In order to show it, we show
that the continuous embedding WOI‘N(Q) — L9(; f1,8(x)dx) is compact if NT’lq +1<B<
B*. Let (um),,.
such that

o C N (£2) be a bounded sequence. Then there exists a subsequence (umk),?o: "

Uy, — u in Wy (),

Um, — uin L"(Q) foralll <r < oo. (25)

mi
We divide the domain into two parts as follows:

_ q
/ - / / L1 (g, — 1)+ T2 iy, — ). (26)

Q |x|N(1°g|x| Qs 05

Since log o 2 Clog il for any x € Q\ Qs for some a > 1 and C > 0, it holds that

_yla _yl4
Ji @y, —u) <C deic de,
N aR p N B
aig, ¥V (log %) o IxIV (log4£)

Note that the continuous embedding WO1 P(Q) — LI(Q; Ja,p(x)dx) is compact for 8 > %q +
1 from Lemma 1, we obtain

Ji(pm, —u) -0 ask— oo. 27

On the other hand, for any ¢ > 0, we take y > 0 which satisfies 8 < y < * and (log %)V’ﬂ <e
for x € Qs. (If necessary, we take small § > 0 again.) Then we have

9
N

iy
Jz(umk—u)fe/ e = < ce /|V(umk—u)|Ndx <Ce. (28

R\
NG

From (26), (27), and (28), we have

—yld

/de—w as k — oo.
N (1 R p

o X1 (log 17
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Therefore the continuous embedding W0 (Q) — L9(Q; f1,5(x)dx) is compact if N1 q +1<
B < B*. In conclusion, we have showed that G is attained if NN lq +1<B8<p* D

Next we extend Theorem 1 to general bounded domains.
Theorem 3. Let a > 1. Then the followings hold.

(i) If B > NIQI q+1, then G, is attainedfor any bounded domains Q.

(ii) If B = q + 1,9 > N, and a > eN then G, = Graq and G, is not attained for any
bounded domam Q.
(iii) If B = q + 1,9 > N, and Q satisfies either (24) or (25), where

(R24): 89 satisfies the Lipschitz condition at some point xo € Q2 N Bg(0),
(25): Q satisfies (21)—(23) and « in (23) is greater than %

. B . . . .
then there exists a, € (1, eV ] such that G is attained for a € (1, a,) and G, is not attained
fora > ay.

In order to show Theorem 3 (iii), we need the continuity of G, with respect to a at a = 1.
Under the assumptions (£24), (€25), we can show the continuity of G, at a = 1 as follows.

Lemma 4. Let f > N. If Q satisfies either (24) or (R2s), then G| =limg\ 1 G, =0.
Lemma 4 follows from the following proposition.

Proposition 5. Let a > 1. If Q2 satisfies either (24) or (25), then there exists C > 0 such that for
N N
acloseto 1, G, < C(a— 1)?(’37?), where a is regarded as 1 if Q2 satisfies (24).

Proof of Proposition 5. Let x, = R(2 — a)l’)% and ¢ € C2°(B1(0)). Here x¢ is regarded as

0, ---,0, —R) if Q satisfies (25). Then B ~ al(.xa) C Q for a close to 1 and for sufficiently

small ¢ > 0. Set ¢, (x) = ¢ (M> Since log ;< ;’ for ¢ close to 1, we have the followings
cla—1)a
for a close to 1.

/IV% dx = / V[N dz < oo,

B1(0)

-B
|pal? N ar
—ﬁdx >cN@-1a|¢ll?, (log 1)

o lxIV (log \xl) RE-amea=Dbe

>Cla—-Nnaf. 0o

Proof of Theorem 3. (i) We can check that Lemma 1 holds true for any bounded domains €2.
Therefore (i) follows from the compactness of the embedding WOI’N () — L9(2; fa, p(x)dx).
We omit the proof.
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(i1) Note that W(} ’gd(Bg ) c W(}’N(Q) - W(}’N(BR (0)) for small ¢ by zero extension. Then
we have

, Jo IVulN dx ) Jo IVulN dx
inf v > Ga> inf 5
ueWy:N (B (0)\(0) I W 7 ueWy ™ (Br(0))\{0} [ a
2 1x|¥ (log )P @ x|V (log £5)#
Vu|N dx
= inf JoIVu] -,
ueWy 'y (Br(0)\{0} e a
Ja xIV (log TP
(29)

where the last equality comes from a > e% From the proof of Proposition 3 (ii), we can observe
that Graq does not vary even if we replace W0 rad(BR (0)) to Wo rad(B (0)) for any small ¢ > 0.
Thus the right hand side and the left hand side of (29) take same value, that i 1s Grad Therefore
we have G, = Gyq. Furthermore if we assume that G, is attained by u € W0 (Q), then u €
N(BR (0)) is also a minimizer on a ball. This contradicts Theorem 1 (ii) in §2. Hence G, is

not attained for any bounded domains €2.

(iii) Note that G, is continuous with respect to a € (1, o), and is monotone increasing with
respect to a € [1, 0o) for any bounded domains. From Lemma 4 and Theorem 3 (ii), we can show
that there exists a, € (1, e%] such that G, < Gyq for a € (1, a,) and G, = Gpaq for a > a, in
the same way as the proof of Theorem 1 (ii). The remaining parts of the proof are similar to the
proof of Theorem 1 (ii). O

5. Symmetry breaking

In this section, we consider radially symmetry of the minimizers of G, when Q2 = Br(0). We
can show that any minimizer of G, has axial symmetry by using spherical symmetric rearrange-
ment, see [23]. Namely, for any minimizer ug of G, there exists some & € SN=1 such that the
restriction of ug to any sphere 9B, (0) is symmetric decreasing with respect to the distance to
r&. See also [32]. The last result is as follows.

Theorem 4. Let > q +1,a > 1, and ug be a minimizer of G, in Theorem I (i). Then the
followings hold true.

(i) For fixed q > N, there exists By such that ug is non-radial for g > B.
(i) ug is radial for any B and g < N.

From the compactness of the embedding: W0 d(Bl) < L9(By; fa,pdx), we can eas1ly show

that G, raq is attained which implies that there is a radial solution of (5) when g > Tq +1
and a > 1. Furthermore, if ¢ > N and g is large, then we also find a non-radial solution of (5)
by Theorem 4 (i). Therefore we obtain a result of multiplicity of solution of (5).

Corollary 1. Let 8 > %q + 1,9 > N, and a > 1. Then the equation (5) has at least two weak
solutions for large B.
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In order to show Theorem 4 (i), we need two lemmas concerning growth orders of G, and
G 4 raq With respect to B.

Lemma 5. For fixed g > N, there exists C > 0 such that for sufficiently large B the following
estimate holds true.

N2 Np
G, <CB 7 (loga) ¢ .

Proof of Lemma 5. Let u € C2°(BR(0)). Following [33] we consider ug(x) := u(B(x — xg))
for x € Blg—l(.xlg), where xg := (R — ﬂ_l, 0,---,0) € Bg(0). Then for sufficiently large 8 we
obtain

/ Vg (0)[Ndx = / IVu(y)|Vdy, 30)
By-1(xp) Br(0)
LGP (VLI S O
/ x|V (log &8 )f’d Z<R 2ﬁ> (lOgR_ng—l) B lu()Idy.
e BR(0)
(€20)

We set f(B) := (R —28"")""(log 2/3 1)~P. Since log ;1 < 2x for all x € [0, 11, for large
B we have

1 1 P
fBz5 (loga +log ﬁ)

28~1R
1 a1\ 7P
> > (loga +487 'R )
: (loga) P 1+ 4 )7
= — (10 —_—
pogd BRloga
which yields that
f(B) > C(loga)_ﬁ for large 8. (32)
From (30), (31), and (32), we obtain
fBR(O) |V”ﬂ|NdX N2

NB
G, < <Cp < (loga) ¢ . O

- N
|up|? K
(fBR(m 1Y (log )P dx)

Lemma 6. For fixed q > N, there exists C > 0 such that for sufficiently large B the following
estimate holds true.

N—-1+Y —(N— 1+)

Ggaraa > CB q (loga) q
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Proof of Lemma 6. For u € W, (Bg(0)) we define v e W, (Br(0)) as follows:

A
v(s) =u(r), where (loga)fF1 log ﬂ = <log ﬁ) and A = w
§ r (N —1gq

Direct calculation shows that

q —+4
/ S L " F— 1/|u<r>|‘f <log—> a
|x|N(10g m)ﬂ r

Br(0)

R

R
_ q
= oy 1A (loga) T =P / Lusds
s(log <=

_ q
— 47 (loga) 1P / .
N aR (1
s Y Glog 48)

In the same way as above, we have

A-1

_ aR\ 7
/|W|Ndx=AN—1(1oga)—% / |Vv|N(logﬁ> dy
Br(0) Bgr(0)

> AN-! / [VolNdy.
Bg(0)

Therefore we have

[Vul™ dx i Vol dy
fBR(O) T > AN— 1+q (loga) 7 Np-nagt fBR(o) .
e )" e ;
(fBR(O) lx|N (log & [x \)ﬂ (fBR(O) I (log %)Nqu+ldy
which yields that
N
N@B =D\ (v Vol dy
Garad = (L) ! (loga) 1 (N I+3 ) inf fBR(O) .
(N —Dg N

v
[v]4 d
fB 0 N—T y
( ROy ¥ (1og a8y o+ )

Therefore, for sufficiently large 8 we have

N—1+X —(N— 1+)

Garad > CB 7 (loga) q

Finally we shall show Theorem 4.
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Proof of Theorem 4. (i) It is enough to show that G, < G rad- By Lemma 5 and Lemma 6, for
fixed g > N there exists S, such that for 8 > B,

N2

NZ NB 14N NB _N_1a N
G, <CB v (loga) s <CBN "4 (oga)ys "N < Gyraa,

. 2
since NT <N-1+ %. Therefore we see that G, < G rad.

(i) Let x = ro (r = |x|,w € SV~!) for x € Bg(0). For u € W,"" (Br(0)) we consider the
following radial function U:

2=

Ur)=|wy', / lu(ro)|Nds,
Then we have
1
N
9 N
U'(r)< w;,l_l / la—u(rw) das,
r
SN—I
which yields that
X N
/|VU|Ndx§ / ‘V”'ﬂ dx < / IVu|Ndx. (33)
X
Br(0) Br(0) Br(0)

On the other hand, we have

R
|U |9 / _1 / N dr

dx =wy_1 Wy |lu(row)|™dS, _—

/ [x[¥ (log 4B N “] riogakys
Br(0) Ix] 0 & 1]

SN

SN—I
lu(ro)|?dSy———
O/SN/I o r(log |x|)ﬁ
/ ? (34)
= —  dx
|X|N(10g )ﬁ
BR(0)

where the inequality follows from Jensen’s inequality and ¢ < N. From (33) and (34), we ob-
tain G4 raq < G4. Therefore G, rag = G, for any ¢ < N and B. Moreover we observe that any
minimizers of G, must be radial from the equality condition of (33). O
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