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Abstract

In this paper, we show the existence and non-existence of minimizers of the following minimization 
problems which include an open problem mentioned by Horiuchi and Kumlin [20]:

Ga := inf
u∈W

1,N
0 (�)\{0}

´
� |∇u|N dx(´

� |u|qfa,β(x)dx
)N

q

, where fa,β(x) := |x|−N

(
log

aR

|x|
)−β

.

First, we give an answer to the open problem when � = BR(0). Next, we investigate the minimization 
problems on general bounded domains. In this case, the results depend on the shape of the domain �. 
Finally, symmetry breaking property of the minimizers is proved for sufficiently large β.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Let N ≥ 2, � be a bounded domain in RN , 0 ∈ �, and 1 < p < N . The classical Hardy 
inequality holds for all u ∈ W

1,p

0 (�) as follows:
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(

N − p

p

)p ˆ

�

|u|p
|x|p dx ≤

ˆ

�

|∇u|pdx, (1)

where W 1,p

0 (�) is a completion of C∞
c (�) with respect to the norm ‖∇(·)‖Lp(�). We refer 

the celebrated work by G.H. Hardy [17]. The inequality (1) has great applications to partial 
differential equations, for example stability, global existence, and instantaneous blow-up and so 
on. See e.g. [6], [3]. It is well-known that in (1) (

N−p
p

)p is the optimal constant and is not attained 

in W 1,p

0 (�).
On the other hand, in the critical case where p = N , the following inequality which is called 

the critical Hardy inequality holds for all u ∈ W
1,N
0 (�) and all a ≥ 1, where R = supx∈� |x|:

(
N − 1

N

)N ˆ

�

|u|N
|x|N(log aR

|x| )N
dx ≤

ˆ

�

|∇u|Ndx. (2)

See e.g. [25], [24], [4], [5], [15, Corollary 9.1.2], [28], [34]. It is known that in (2) (N−1
N

)N is the 
optimal constant and is not attained for any bounded domain � with 0 ∈ � (see [2], [1], [22], [7]
etc.).

In this paper, we consider optimal constants and its attainability of the following inequalities 
(3) which are generalizations of (2):

Ga

⎛
⎝ˆ

�

|u|q
|x|N(log aR

|x| )β
dx

⎞
⎠

N
q

≤
ˆ

�

|∇u|Ndx (3)

for u ∈ W
1,N
0 (�), q, β > 1, and a ≥ 1. We define Ga and Ga,rad as the optimal constants of the 

inequalities (3) as follows:

Ga := inf
u∈W

1,N
0 (�)\{0}

´
�

|∇u|N dx(´
�

|u|q
|x|N (log aR

|x| )β
dx

)N
q

, Ga,rad := inf
u∈W

1,N
0,rad(�)\{0}

´
�

|∇u|N dx(´
�

|u|q
|x|N (log aR

|x| )β
dx

)N
q

,

(4)

where W 1,N
0,rad(�) = { u ∈ W

1,N
0 (�) | u is radial }. When � = BR(0), β = N−1

N
q + 1, and q > N , 

the exact optimal constant and the attainability of Ga,rad are investigated by Horiuchi and Kumlin 
[20]. However we do not know the attainability of Ga even if � = BR(0). In fact, under Theo-
rem 2.8 in their article [20] they mention that the attainability of Ga is an open problem. See also 
[19]. Note that the continuous embedding W 1,N

0 (BR(0)) ↪→ Lq(BR(0); |x|−N(log aR
|x| )

−βdx)

is not compact when β = N−1
N

q + 1, q ≥ N , and a > 1. In addition, the rearrangement tech-
nique does not work due to the lack of monotone decreasing property of the potential function 

|x|−N(log aR
|x| )

−β when 1 ≤ a < e
β
N .

In this paper, we study the existence, non-existence, and symmetry breaking property of the 
minimizers of Ga . First, we give an answer to the open problem except for a = a∗ which is 
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a threshold number when � = BR(0). More precisely, we show that Ga,rad is the concentra-
tion level of minimizing sequence of Ga and Ga < Ga,rad for a ∈ (1, a∗). By concentration-
compactness alternative, this implies that there exists a minimizer of Ga for a ∈ (1, a∗). We 
also show that there is no minimizer of Ga for a > a∗. Next, we extend the results to general 
bounded domains. Furthermore we investigate the positivity and the attainability of G1 in gen-
eral bounded domains. When a = 1, the positivity and the attainability of G1 depend on geometry 
of the boundary of the domain since the potential function has singularities on the boundary. Fi-
nally, we show that when � = BR(0), any minimizers of Ga are non-radial for large β and fixed 
q > N , and any minimizers are radial for any β and any q ≤ N .

Our problem is regarded as the critical case of one of Caffarelli-Kohn-Nirenberg type inequal-
ities, see [20]. In the weighted subcritical Sobolev spaces W 1,p

0 (|x|αdx) where p < N + α, the 
existence, nonexistence, and symmetry breaking property of the minimizers of Caffarelli-Kohn-
Nirenberg type inequalities are well-studied especially for p = 2, see [35], [26], [12], [18], [8], 
[9], [10], [33], [14], [16], [11] and references therein.

Our minimization problem (4) is related to the following nonlinear elliptic equation with the 
singular potential: ⎧⎨

⎩
−div ( |∇u|N−2∇u ) = b

|u|q−2u

|x|N (log aR
|x| )β

in �,

u = 0 on ∂�.
(5)

The minimizer for Ga is a ground state solution of the Euler-Lagrange equation (5) with a La-
grange multiplier b.

This paper is organized as follows: In section 2, necessary preliminary facts are presented. 
In section 3, we prove the (non-)attainability of Ga when � = BR(0) and a > 1. In section 4, 
we extend the results to several bounded domains, and we investigate the positivity and the 
attainability of G1 in several bounded domains. In section 5, we show that symmetry breaking 
phenomena of the minimizers of Ga occur for large β . As a corollary, we obtain a result of 
multiplicity of solution of the equation (5) for large β .

We fix several notations: BR(0) and BN
R (0) denote a N -dimensional ball centered 0 with 

radius R and ωN−1 denotes an area of the unit sphere SN−1 in RN . |A| denotes the Lebesgue 
measure of a set A ⊂RN . The Schwarz symmetrization u# : RN → [0, ∞] of u is given by

u#(x) = u#(|x|) = inf
{
τ > 0 : |{y ∈ RN : |u(y)| > τ } | ≤ |B|x|(0)|

}
.

2. Preliminaries

In this section, we give a necessary and sufficient condition of the positivity of Ga for a ∈
[1, ∞). Furthermore we give the explicit value of Ga, and the minimizers when β = N−1

N
q + 1

and q > N . First, we give a necessary and sufficient condition (6) of the positivity of Ga when 
a > 1.

Proposition 1. Let a > 1, � ⊂RN be a bounded domain with 0 ∈ �, R = supx∈� |x|, N ≥ 2 and 
q, β > 1. Then Ga > 0 if and only if β and q satisfy

either β >
N − 1

N
q + 1 or β = N − 1

N
q + 1, q ≥ N. (6)
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Essentially, Proposition 1 is proved by the following theorem in [27]. The authors in [27]
show a necessary and sufficient condition of the positivity for more general inequalities in the 
critical Sobolev-Lorentz spaces Hs

p,q(R
N). Note that the norm of H 1

N,N(RN) is equivalent to it 
of W 1,N (RN). We can obtain Proposition 1 from Theorem A and simple calculations. We omit 
the proof here.

Theorem A. ([27], Theorem 1.1.) Let N ∈ N, 1 < p < ∞, 1 < r ≤ ∞ and 1 < α, β < ∞. Then 

there exists a constant C > 0 such that for all u ∈ H
N
p

p,r (RN), the inequality

⎛
⎜⎜⎝

ˆ

B 1
2
(0)

|u|α
|x|N(log 1

|x| )β
dx

⎞
⎟⎟⎠

1
α

≤ C‖u‖
H

N
p

p,r (RN)

(7)

holds true if and only if one of the following conditions (i)–(iii) is fulfilled

⎧⎪⎨
⎪⎩

(i) 1 + α − β < 0,

(ii) 1 + α − β ≥ 0 and r < α
1+α−β

,

(iii) 1 + α − β > 0, r = α
1+α−β

, and α ≥ β.

(8)

Next, we give a necessary and sufficient condition of the positivity of Ga when a = 1 and 
� = BR(0). Essentially, the following proposition follows from results in [20].

Proposition 2. Let � = BR(0). Then G1 > 0 if and only if β = q = N .

In §4, we extend Proposition 2 to general bounded domains. Proposition 2 follows from 
Proposition 4 in §4. Thus we omit the proof of Proposition 2 here.

Finally, we give the explicit value of the optimal constant Ga,rad and the minimizers when 
β = N−1

N
q + 1 and q > N .

Logarithmic transformations related to Ga,rad are founded by [20], [21], [36], [30]. Especially, 
in the radial setting, the authors in [30] show an unexpected relation (9) that the critical Hardy 
inequality in dimension N ≥ 2 is equivalent to the one of the subcritical Hardy inequalities in 
higher dimension m > N by using a transformation (10) as follows:

ˆ

Rm

|∇u|N dx −
(

m − N

N

)N ˆ

Rm

|u|N
|x|N dx

= ωm−1

ωN−1

(
m − N

N − 1

)N−1

⎛
⎜⎜⎝

ˆ

BN
R (0)

|∇w|N dy −
(

N − 1

N

)N ˆ

BN
R (0)

|w|N

|y|N
(

log R
|y|

)N
dy

⎞
⎟⎟⎠ , (9)

where u(|x|) = w(|y|) and

(
log

R

|y|
)N−1

N = |x|− m−N
N . (10)
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By using the transformation (10) and direct calculations, we can observe not only an equivalence 
between two Hardy inequalities but also the equivalence between Hardy-Sobolev type inequali-
ties and generalized critical Hardy inequalities in the radial setting as follows:

G1,rad = inf
w∈W

1,N
0,rad(B

N
R (0))\{0}

´
BN

R (0)
|∇w|N dy(´

BN
R (0)

|w|q
|y|N (log R

|y| )β
dy

)N
q

=
(

ωN−1

ωm−1

)1− N
q

(
N − 1

m − N

)N−1+ N
q

inf
u∈W

1,N
0,rad(R

m)\{0}

´
Rm |∇u|N dx(´

Rm |x|α|u|qdx
)N

q

, (11)

where α = m−N
N−1 (β − 1) − m. The authors in [30] also give a transformation which is a mod-

ification of (10) when a > 1. Since the minimization problems on the right hand side of (11)
are well-known (see e.g. [35], [26]), we can obtain the following proposition by using these 
transformations.

Proposition 3. Let β = N−1
N

q + 1, q > N , and � = BR(0). Then the followings hold.

(i) Ga,rad is independent of a ≥ 1. Furthermore, the exact value of the optimal constant is as 
follows:

Ga,rad = Grad

:= ω
1− N

q

N−1 (N − 1)

(
N

q

)1− 2N
q

(
1 − N

q

)−2+ 2N
q

⎛
⎝	

(
q(N−1)
q−N

)
	

(
N

q−N

)
	

(
qN

q−N

)
⎞
⎠

1− N
q

,

where 	(·) is the gamma function.
(ii) Ga,rad is not attained for any a > 1.

(iii) G1,rad is attained by the family of the following functions Uλ:

Uλ(y) = Cλ− N−1
N

⎛
⎝1 +

(
λ log

R

|y|
)− q−N

N

⎞
⎠

− N
q−N

, where C ∈R \ {0} and λ > 0.

Here, we give a simple proof of Proposition 3 (ii) by using a scaling argument.

Proof of Proposition 3 (ii). Let β = N−1
N

q + 1, q > N , and a > 1. Assume that u ∈
W

1,N
0,rad(BR(0)) is a radial minimizer of Ga,rad. We can assume that u is nonnegative without 

loss of generality. We shall derive a contradiction. For λ ∈ (0, 1), we consider a scaled function 
uλ ∈ W

1,N
0,rad(BR(0)) which is given by

uλ(x) =
⎧⎨
⎩λ− N−1

N u

(( |x|
aR

)λ−1
x

)
if x ∈ B

a(1−λ−1)R
(0),

0 if x ∈ BR(0) \ B
a(1−λ−1)R

(0).
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Then we have

´
BR(0)

|∇u|N dx(´
BR(0)

|u|q
|x|N (log aR

|x| )β
dx

)N
q

=
´
BR(0)

|∇uλ|N dx(´
BR(0)

|uλ|q
|x|N (log aR

|x| )β
dx

)N
q

which yields that uλ is also a nonnegative minimizer of Ga,rad. On the other hand, we can show 
that uλ ∈ C1(BR(0) \ {0}) and uλ > 0 in BR(0) \ {0} by standard regularity argument and strong 
maximum principle to the Euler-Lagrange equation (5), see e.g. [13], [29]. However uλ ≡ 0 in 
BR(0) \ B

a(1−λ−1)R
(0). This is a contradiction. Therefore Ga,rad is not attained. �

3. Existence and non-existence of the minimizers

Let � = BR(0). In this section, we prove an existence and non-existence of the minimizers of 
Ga . First result is as follows.

Theorem 1. Let a > 1 and q, β > 1 satisfy (6). Then the followings hold.

(i) If β > N−1
N

q + 1, then Ga is attained.

(ii) If β = N−1
N

q + 1 and q > N , then there exists a∗ ∈ (1, e
β
N ] such that Ga < Ga,rad for 

a ∈ (1, a∗) and Ga is attained for a ∈ (1, a∗), on the other hand, Ga = Ga,rad for a > a∗
and Ga is not attained for a > a∗.

Remark 1. If a∗ = e
β
N , then we can show that Ga∗ is not attained. In fact, if we assume that Ga∗

is attained by u, then u# is a radial minimizer of Ga,rad which contradicts Proposition 3 (ii), see 
the proof of Theorem 1 (ii). However we do not know the value of a∗.

In order to show Theorem 1, we need three lemmas. First we show the (non-)compactness of 

the embedding W 1,N
0 (BR(0)) ↪→ Lq(BR(0); fa, β(x)dx), where fa, β(x) = |x|−N

(
log aR

|x|
)−β

.

Lemma 1. Let a > 1 and q, β > 1 satisfy (6). Then the continuous embedding W 1,N
0 (BR(0)) ↪→

Lq(BR(0); fa, β(x)dx) is

(i) compact if β > N−1
N

q + 1,

(ii) non-compact if β = N−1
N

q + 1 and q ≥ N .

Proof of Lemma 1. (i) It is proved in [31]. However we give a proof here for the convenience of 
readers. Let (um)∞m=1 ⊂ W

1,N
0 (BR(0)) be a bounded sequence. Then there exists a subsequence 

(umk
)∞k=1 such that

umk
⇀ u in W

1,N
0 (BR(0)),

umk
→ u in Lr(BR(0)) for any r ∈ [1,∞). (12)

Let α satisfy N−1q + 1 < α < β . For all ε > 0, there exists δ > 0 such that

N
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(
log

aR

|x|
)α−β

< ε for all x ∈ Bδ(0). (13)

From (12) and (13), we have

ˆ

BR(0)

|umk
− u|q

|x|N(log aR
|x| )β

dx ≤ ε

ˆ

Bδ(0)

|umk
− u|q

|x|N(log aR
|x| )α

dx + δ−N

(
log

aR

δ

)−β

‖umk
− u‖q

Lq(BR(0))

≤ εC‖∇(umk
− u)‖q

LN (BR(0))
+ C‖umk

− u‖q

Lq(BR(0))

≤ Cε + C‖umk
− u‖q

Lq(BR(0)) → 0 as ε → 0, k → ∞.

Thus the continuous embedding W 1,N
0 (BR(0)) ↪→ Lq(BR(0); fa, β(x)dx) is compact if β >

N−1
N

q + 1.

(ii) We can see a non-compact sequence (u 1
m
)∞m=1 in W 1,N

0 (BR(0)), where for λ ∈ (0, 1] uλ

is defined in the proof of Proposition 3 (ii). Hence the continuous embedding W 1,N
0 (BR(0)) ↪→

Lq(BR(0); fa, β(x)dx) is non-compact if β = N−1
N

q + 1 and q ≥ N . �
In [20], a continuity of Ga with respect to a is proved for a ∈ (1, ∞). However, in our argu-

ment, the continuity of Ga at a = 1 is needed.

Lemma 2. Ga is monotone increasing and continuous with respect to a ∈ [1, ∞).

Proof of Lemma 2. It is enough to show only the continuity of Ga at a = 1. From the defini-
tion of G1, we can take (um)∞m=1 ⊂ C∞

c (BR(0)) and Rm < R for any m such that supp um ⊂
BRm(0), Rm ↗ R, and

´
BRm(0)

|∇um|N dx(´
BRm(0)

|um|qf1, β(x) dx
)N

q

= G1 + o(1) as m → ∞.

Set v(y) = um(x), where y = R
Rm

x. Then

´
BRm(0)

|∇um|N dx(´
BRm(0)

|um|qf1, β(x) dx
)N

q

=
´
BR(0)

|∇v|N dx(´
BR(0)

|v|qfam, β(x) dx
)N

q

≥ Gam,

where am = R
Rm

↘ 1 as m → ∞. Therefore we have Gam ≤ G1 +o(1). Since fam,β(x) ≤ f1,β(x)

for any x ∈ BR(0), we have G1 ≤ Gam . Hence we see that lima↘1 Ga = G1. �
Third Lemma is concerned with the concentration level of minimizing sequences of Ga.

Lemma 3. Let β = N−1
N

q + 1, q > N , and a > 1. If Ga < Grad, then Ga is attained, where Grad
is given by Proposition 3 (i).
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It is easy to show Theorem 1 by these three lemmas. Therefore we give a proof of Theorem 1
before showing Lemma 3.

Proof of Theorem 1. (i) This is proved by Lemma 1 (i). We omit the proof here.

(ii) Let β = N−1
N

q + 1 and q > N . When a ≥ e
β
N , the potential function fa, β is radially 

decreasing. Thus the Pólya-Szegö inequality and the Hardy-Littlewood inequality imply that

´
BR(0)

|∇u|N dx(´
BR(0)

|u|qfa, β(x) dx
)N

q

≥
´
BR(0)

|∇u#|N dx(´
BR(0)

|u#|qfa, β(x) dx
)N

q

≥ Ga,rad

for any u ∈ W
1,N
0 (BR(0)) and a ≥ e

β
N . Therefore Ga = Ga,rad = Grad for any a ≥ e

β
N . Moreover 

we see G1 = 0 by Proposition 2. Since Ga is continuous and monotone increasing with respect 

to a ∈ [1, ∞) by Lemma 2, there exists a∗ ∈ (1, e
β
N ] such that Ga < Grad for a ∈ [1, a∗) and 

Ga = Grad for a ∈ [a∗, ∞). Hence Ga is attained for a ∈ (1, a∗) by Lemma 3. On the other hand, 
if we assume that there exists a nonnegative minimizer u of Ga for a > a∗, then we can show 
that u ∈ C1(BR(0) \ {0}) and u > 0 in BR(0) \ {0} by standard regularity argument and strong 
maximum principle to the Euler-Lagrange equation (5), see e.g. [13], [29]. Therefore we see that

Grad = Ga =
´
BR(0)

|∇u|N dx(´
BR(0)

|u|qfa, β(x) dx
)N

q

>

´
BR(0)

|∇u|N dx(´
BR(0)

|u|qfa∗, β(x) dx
)N

q

≥ Grad.

This is a contradiction. Therefore Ga is not attained for a > a∗. �
Finally, we prove Lemma 3.

Proof of Lemma 3. Take a minimizing sequence (um)∞m=1 ⊂ W
1,N
0 (BR(0)) of Ga . Without loss 

of generality, we can assume that

ˆ

BR(0)

|um|qfa,β(x) dx = 1,

ˆ

BR(0)

|∇um|N dx = Ga + o(1) as m → ∞.

Since (um) is bounded in W 1,N
0 (BR(0)), passing to a subsequence if necessary, um ⇀ u in 

W
1,N
0 (BR(0)). Then by Brezis-Lieb lemma, we have

Ga =
ˆ

BR(0)

|∇um|N dx + o(1)

=
ˆ

|∇(um − u)|N dx +
ˆ

|∇u|N dx + o(1)
BR(0) BR(0)
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≥ Ga

⎛
⎜⎝ ˆ

BR(0)

|um − u|qfa, β(x) dx

⎞
⎟⎠

N
q

+ Ga

⎛
⎜⎝ ˆ

BR(0)

|u|qfa, β(x) dx

⎞
⎟⎠

N
q

+ o(1)

≥ Ga

⎛
⎜⎝ ˆ

BR(0)

(|um − u|q + |u|q)
fa, β(x) dx

⎞
⎟⎠

N
q

+ o(1)

= Ga

⎛
⎜⎝ ˆ

BR(0)

|um|qfa, β(x) dx

⎞
⎟⎠

N
q

+ o(1) = Ga

which implies that either u ≡ 0 or um → u �≡ 0 in Lq(BR(0); fa, β(x)dx) holds true from the 
equality condition of the last inequality. We shall show that u �≡ 0. Assume that u ≡ 0. Then we 
claim that

Grad ≤
ˆ

BR(0)

|∇um|N dx + o(1). (14)

If the claim (14) is true, then we see that Grad ≤ Ga which contradicts the assumption. Therefore 
u �≡ 0 which implies that um → u �≡ 0 in Lq(BR(0); fa, β(x)dx). Hence we have

1 =
ˆ

BR(0)

|u|qfa, β(x) dx,

ˆ

BR(0)

|∇u|N dx ≤ lim inf
m→∞

ˆ

BR(0)

|∇um|N dx = Ga.

Thus we can show that u is a minimizer of Ga . We shall show the claim (14). Since um → 0 in 
Lr(BR(0)) for any r ∈ [1, ∞) and the potential function fa, β is bounded away from the origin, 
for any small ε > 0 we have

1 =
ˆ

BR(0)

|um|qfa, β(x) dx =
ˆ

B εR
2

(0)

|um|qfa, β(x) dx + o(1).

Let φε be a smooth cut-off function which satisfies the followings:

0 ≤ φε ≤ 1, φε ≡ 1 on BεR
2

(0), suppφε ⊂ BεR(0), |∇φε| ≤ Cε−1.

Set ũm(y) = um(x) and φ̃ε(y) = φε(x), where y = x
ε

. Then we have

1 =

⎛
⎜⎜⎝

ˆ

B εR (0)

|um|qfa, β(x) dx

⎞
⎟⎟⎠

N
q

+ o(1)
2
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≤
⎛
⎜⎝ ˆ

BεR(0)

|umφε|qfa, β(x) dx

⎞
⎟⎠

N
q

+ o(1)

=
⎛
⎜⎝ ˆ

BR(0)

|ũmφ̃ε|qfaε−1, β(x) dx

⎞
⎟⎠

N
q

+ o(1) ≤ G−1
aε−1

ˆ

BR(0)

|∇(ũmφ̃ε)|N dx + o(1).

We see that aε−1 ≥ e
β
N for small ε. Since Gaε−1 = Ga, rad = Grad from the proof of Theorem 1

(ii) and Proposition 3 (i), we have

1 ≤ G−1
rad

ˆ

BR(0)

|∇(ũmφ̃ε)|N dx + o(1)

≤ G−1
rad

⎛
⎜⎝ ˆ

BεR(0)

|∇um|N dx + C

ˆ

BεR(0)

|∇um|N−1|∇φε||um|φN−1
ε + |um|N |∇φε|N dx

⎞
⎟⎠ + o(1)

≤ G−1
rad

⎛
⎜⎝ ˆ

BεR(0)

|∇um|N dx + NCε−1‖∇um‖N−1
LN ‖um‖LN + Cε−N‖um‖N

LN

⎞
⎟⎠ + o(1)

≤ G−1
rad

ˆ

BεR(0)

|∇um|N dx + o(1) ≤ G−1
rad

ˆ

BR(0)

|∇um|N dx + o(1).

Therefore we obtain the claim (14). The proof of Lemma 3 is now complete. �
4. In the case of general bounded domain

We extend Theorem 1 and Proposition 2 to bounded domains. Throughout this section, we 
assume that � ⊂RN is a bounded domain, 0 ∈ �, and β and q satisfy (6). Set R = supx∈� |x|.

First we extend Proposition 2 to general bounded domains. If there exists 	 ⊂ ∂� ∩ ∂BR(0)

such that 	 is open in ∂BR(0), then we can obtain the same result as Proposition 2 as follows.

Proposition 4. Assume that there exists 	 ⊂ ∂� ∩ ∂BR(0) such that 	 is open in ∂BR(0). Then 
G1 > 0 if and only if β = q = N .

Proof of Proposition 4. First we show that G1 = 0 if β > N−1
N

q + 1. Set x = rω (r = |x|, ω ∈
SN−1) for x ∈ RN . From the assumption, we can take δ > 0 and 	̃ ⊂ 	 such that 	̃ is open in 
∂BR(0) and

{
(r,ω) ∈ [0,R) × SN−1

∣∣∣∣∣R − 2δ ≤ r ≤ R,ω ∈ 1

R
	̃

}
⊂ �.
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Let 0 �≡ ψ ∈ C∞
c ( 1

R
	̃) and φ ∈ C∞([0, ∞)) satisfy φ ≡ 1 on [R−δ, R] and φ ≡ 0 on [0, R−2δ]. 

Set us(x) = (
log R

r

)s
ψ(ω)φ(r). Then we have

ˆ

�

|∇us |Ndx =
ˆ

SN−1

R̂

0

∣∣∣∣∂us

∂r
ω + 1

r
∇SN−1us

∣∣∣∣
N

rN−1 drdSω

≤ 2N−1
ˆ

SN−1

R̂

0

∣∣∣∣∂us

∂r

∣∣∣∣
N

rN−1 + ∣∣∇SN−1us

∣∣N r−1 drdSω

≤ sNC

R̂

R−δ

(
log

R

r

)(s−1)N
dr

r
+ C

R̂

R−δ

(
log

R

r

)sN
dr

r
+ C

≤ sNC

log R
R−δˆ

0

t (s−1)N dt + C < ∞ if s >
N − 1

N
.

Thus us ∈ W
1,N
0 (�) for all s > N−1

N
. However, direct calculation shows that

ˆ

�

|us |q

|x|N
(

log R
|x|

)β
dx ≥ C

R̂

R−δ

(
log

R

r

)sq−β
dr

r
= C

log R
R−δˆ

0

t sq−β dt

which implies that

ˆ

�

|us |q

|x|N
(

log R
|x|

)β
dx = ∞

for s close to N−1
N

since β > N−1
N

q + 1. Therefore we see that

G1 = 0 if β >
N − 1

N
q + 1. (15)

Next we show that G1 = 0 if β > N . Set xε = (R − 2ε)
y
R

for y ∈ ∂BR(0). Note that Bε(xε) ⊂
� for small ε > 0 and some y ∈ 	. Then we define uε as follows:

uε(x) =
{

v
( |x−xε |

ε

)
if x ∈ Bε(xε),

0 if x ∈ � \ Bε(xε),
where v(t) =

{
1 if 0 ≤ t ≤ 1

2 ,

2(1 − t) if 1
2 < t ≤ 1.

Since log t ≤ t − 1 for t ≥ 1, we obtain
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ˆ

�

|∇uε(x)|N dx =
ˆ

B1(0)

|∇v(|z|)|N dz < ∞,

ˆ

�

|uε(x)|q

|x|N
(

log R
|x|

)β
dx ≥ C

ˆ

Bε(xε)

|uε(x)|q
(R − |x|)β dx ≥ C

(3ε)β

ˆ

B ε
2
(xε)

dx = C εN−β → ∞

as ε → 0 when β > N . Hence we see that

G1 = 0 if β > N. (16)

From (15), (16), and (6), we see that G1 > 0 if and only if q = β = N . �
If there does not exist 	 in Proposition 4, then we can expect that the relation between q, β

and the positivity of G1 depends on geometry of the boundary ∂�. In order to see it, we consider 
special cuspidal domains which satisfy the following conditions:

(�1): ∂� ∩ ∂BR(0) = {(0, · · · , 0, −R)}.
(�2): ∂� is represented by a graph φ :RN−1 → [−R, ∞) near the point (0, · · · , 0, −R).

Namely, for small δ > 0 the following holds true:

Qδ := � ∩ (RN−1 × [−R,−R + δ]) = {(x′, xN) ∈RN−1 × [−R,−R + δ] |xN > φ(x′)}.

(�3): There exist C1, C2 > 0 and α ∈ (0, 1] such that

C1|x′|α ≤ φ(x′) + R ≤ C2|x′|α for any x′ ∈RN−1.

α in (�3) expresses the sharpness of the cusp at the point (0, · · · , 0, −R). Then we can obtain 
the following theorem concerned with the positivity and the attainability of G1.

Theorem 2. Assume that � satisfies the assumptions (�1)–(�3). Then there exists β∗ =
β∗(α, q) ∈ [N−1

α
+ 1, N

α
] such that G1 = 0 for β > β∗ and G1 > 0 for β < β∗. Furthermore 

G1 is attained for β ∈ (N−1
N

q + 1, β∗).

Remark 2. When β = q = N and 0 ∈ �, G1 is not attained for any bounded domain. However, 
when 0 /∈ �, the attainability of G1 depends on a geometry of the boundary ∂�. Very recently, 
Byeon and Takahashi investigate the attainability of G1 on cuspidal domains in their article [7]
when β = q = N .

Proof of Theorem 2. First we shall show that G1 = 0 if β > N
α

. From (�3), we can observe 
that B

Aε
1
α
(xε) ⊂ � for small ε > 0 and small A > 0, where xε = (0, · · · , 0, −R + 2ε). Then we 

define wε as follows:

wε(x) =

⎧⎪⎨
⎪⎩

v

(
|x−xε |
Aε

1
α

)
if x ∈ B

Aε
1
α
(xε),

0 if x ∈ � \ B
Aε

1
α
(xε),
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where v is the same function in the proof of Proposition 4. In the same way as the proof of 
Proposition 4, we have

ˆ

�

|∇xwε(x)|N dx < ∞,

ˆ

�

|wε(x)|q

|x|N
(

log R
|x|

)β
dx ≥ C ε

N
α

−β → ∞

as ε → 0 if β > N
α

. Therefore we have

G1 = 0 at least for β >
N

α
. (17)

Next we shall show that G1 > 0 if β < N−1
α

+ 1. For u ∈ W
1,N
0 (�), we divide the domain �

into three parts as follows:

ˆ

�

|u(x)|q

|x|N
(

log R
|x|

)β
dx =

ˆ

�∩B R
2

(0)

+
ˆ

�\
(

B R
2

(0)∪Qδ

) +
ˆ

Qδ

=: I1 + I2 + I3. (18)

From Theorem A, we obtain

I1 ≤ C

⎛
⎝ˆ

�

|∇u|Ndx

⎞
⎠

q
N

. (19)

Since the potential function |x|−N(log R
|x| )

−β does not have any singularity in � \ (
B(R

2 ) ∪ Qδ

)
, 

the Sobolev inequality yields that

I2 ≤ C

ˆ

�

|u|qdx ≤ C

⎛
⎝ˆ

�

|∇u|Ndx

⎞
⎠

q
N

. (20)

Finally, we shall derive an estimate of I3 from above. Since log t ≥ 1
2 (t − 1) (1 ≤ t ≤ 2), we 

obtain

I3 ≤ C

ˆ

Qδ

|u(x)|q
(R − |x|)β dx ≤ C

zN=δˆ

zN=0

ˆ

zN≥C1|z′|α

|ũ(z′, zN )|q
|z|β dz, (21)

where u(x) = ũ(z) (z = x + (0, · · · , 0, R)). If β < N−1
α

+1, then there exists ε > 0 and p > N
N−ε

such that (β − ε)p < N−1
α

+ 1. By using the Hölder inequality and the Sobolev inequality, we 
have
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zN=δˆ

zN=0

ˆ

zN≥C1|z′|α

|ũ(z′, zN)|q
|z|β dz

=
¨ |ũ|ε

|z|ε |ũ|q−ε|z|β−εdz

≤
(¨ |ũ|N

|z|N dz

) ε
N

(¨
|ũ|(q−ε)

Np
Np−N−pε dz

)Np−N−pε
Np

(¨
|z|−(β−ε)pdz

) 1
p

≤ C

(¨ |ũ|N
|zN |N dz

) ε
N

⎛
⎝ˆ

�

|∇ũ|Ndz

⎞
⎠

q−ε
N

⎛
⎜⎜⎜⎜⎝

¨

|z′|≤
(

zN
C1

) 1
α

z
−(β−ε)p
N dz

⎞
⎟⎟⎟⎟⎠

1
p

≤ C

(¨ |ũ|N
|zN |N dz

) ε
N

⎛
⎝ˆ

�

|∇ũ|Ndz

⎞
⎠

q−ε
N

⎛
⎜⎝

zN=δˆ

zN=0

z
N−1

α
−(β−ε)p

N dzN

⎞
⎟⎠

1
p

.

Since N−1
α

− (β − ε)p > −1, 
´ δ

0 z
N−1

α
−(β−ε)p

N dzN < ∞. Furthermore, applying the Hardy in-
equality on the half space RN+ := { (x′, xN) ∈ RN−1 ×R | xN > 0 }:

(
r − 1

r

)r ˆ

RN+

|u|r
|xN |r dx ≤

ˆ

RN+

|∇u|rdx (1 ≤ r < ∞)

yields that

zN=δˆ

zN=0

ˆ

zN≥C1|z′|α

|ũ(z′, zN)|q
|z|β dz ≤ C

⎛
⎜⎝ ˆ

�+(0,··· ,0,R)

|∇ũ|Ndz

⎞
⎟⎠

q
N

. (22)

By (21) and (22), we have

I3 ≤ C

⎛
⎝ˆ

�

|∇u|Ndx

⎞
⎠

q
N

. (23)

Therefore, from (18), (19), (20), and (23), for all u ∈ W
1,N
0 (�),

C

⎛
⎜⎝ˆ

�

|u(x)|q

|x|N
(

log R
|x|

)β
dx

⎞
⎟⎠

N
q

≤
ˆ

�

|∇u|Ndx.
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Hence

G1 > 0 at least for β <
N − 1

α
+ 1. (24)

From (17) and (24), there exists β∗ ∈ [N−1
α

+ 1, N
α

] such that G1 > 0 for β < β∗ and G1 = 0 for 
β > β∗.

Lastly we shall show that G1 is attained for β ∈ (N−1
N

q + 1, β∗). In order to show it, we show 

that the continuous embedding W 1,N
0 (�) ↪→ Lq(�; f1,β(x)dx) is compact if N−1

N
q + 1 < β <

β∗. Let (um)∞m=1 ⊂ W
1,N
0 (�) be a bounded sequence. Then there exists a subsequence (umk

)∞k=1
such that

umk
⇀ u in W

1,N
0 (�),

umk
→ u in Lr(�) for all 1 ≤ r < ∞. (25)

We divide the domain into two parts as follows:

ˆ

�

|umk
− u|q

|x|N
(

log R
|x|

)β
dx =

ˆ

�\Qδ

+
ˆ

Qδ

=: J1(umk
− u) + J2(umk

− u). (26)

Since log R
|x| ≥ C log aR

|x| for any x ∈ � \ Qδ for some a > 1 and C > 0, it holds that

J1(umk
− u) ≤ C

ˆ

�\Qδ

|umk
− u|q

|x|N
(

log aR
|x|

)β
dx ≤ C

ˆ

�

|umk
− u|q

|x|N
(

log aR
|x|

)β
dx.

Note that the continuous embedding W 1,p
0 (�) ↪→ Lq(�; fa,β(x)dx) is compact for β > N−1

N
q +

1 from Lemma 1, we obtain

J1(umk
− u) → 0 as k → ∞. (27)

On the other hand, for any ε > 0, we take γ > 0 which satisfies β < γ < β∗ and (log R
|x| )

γ−β < ε

for x ∈ Qδ . (If necessary, we take small δ > 0 again.) Then we have

J2(umk
− u) ≤ ε

ˆ

Qδ

|umk
− u|q

|x|N
(

log R
|x|

)γ dx ≤ Cε

⎛
⎝ˆ

�

|∇(umk
− u)|N dx

⎞
⎠

q
N

≤ Cε. (28)

From (26), (27), and (28), we have

ˆ

�

|umk
− u|q

|x|N
(

log R
|x|

)β
dx → 0 as k → ∞.
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Therefore the continuous embedding W 1,N
0 (�) ↪→ Lq(�; f1,β(x)dx) is compact if N−1

N
q + 1 <

β < β∗. In conclusion, we have showed that G1 is attained if N−1
N

q + 1 < β < β∗. �
Next we extend Theorem 1 to general bounded domains.

Theorem 3. Let a > 1. Then the followings hold.

(i) If β > N−1
N

q + 1, then Ga is attained for any bounded domains �.

(ii) If β = N−1
N

q + 1, q > N , and a ≥ e
β
N , then Ga = Grad and Ga is not attained for any 

bounded domain �.
(iii) If β = N−1

N
q + 1, q > N , and � satisfies either (�4) or (�5), where

(�4): ∂� satisfies the Lipschitz condition at some point x0 ∈ � ∩ BR(0),
(�5): � satisfies (�1)–(�3) and α in (�3) is greater than N

β
,

then there exists a∗ ∈ (1, e
β
N ] such that Ga is attained for a ∈ (1, a∗) and Ga is not attained 

for a > a∗.

In order to show Theorem 3 (iii), we need the continuity of Ga with respect to a at a = 1. 
Under the assumptions (�4), (�5), we can show the continuity of Ga at a = 1 as follows.

Lemma 4. Let β > N . If � satisfies either (�4) or (�5), then G1 = lima↘1 Ga = 0.

Lemma 4 follows from the following proposition.

Proposition 5. Let a > 1. If � satisfies either (�4) or (�5), then there exists C > 0 such that for 

a close to 1, Ga ≤ C(a − 1)
N
q

(β− N
α

), where α is regarded as 1 if � satisfies (�4).

Proof of Proposition 5. Let xa = R(2 − a)
x0|x0| and φ ∈ C∞

c (B1(0)). Here x0 is regarded as 
(0, · · · , 0, −R) if � satisfies (�5). Then B

c(a−1)
1
α
(xa) ⊂ � for a close to 1 and for sufficiently 

small c > 0. Set φa(x) = φ

(
x−xa

c(a−1)
1
α

)
. Since log 1

t
≤ 1−t

2 for t close to 1, we have the followings 

for a close to 1.

ˆ

�

|∇φa|N dx =
ˆ

B1(0)

|∇φ|N dz < ∞,

ˆ

�

|φa |q

|x|N
(

log aR
|x|

)β
dx ≥ cN(a − 1)

N
α ‖φ‖q

Lq

(
log

aR

R(2 − a) − c(a − 1)
1
α

)−β

≥ C(a − 1)
N
α

−β. �
Proof of Theorem 3. (i) We can check that Lemma 1 holds true for any bounded domains �. 
Therefore (i) follows from the compactness of the embedding W 1,N

0 (�) ↪→ Lq(�; fa, β(x)dx). 
We omit the proof.



JID:YJDEQ AID:9773 /FLA [m1+; v1.298; Prn:1/04/2019; 10:56] P.17 (1-22)

M. Sano / J. Differential Equations ••• (••••) •••–••• 17
(ii) Note that W 1,N
0,rad(Bε(0)) ⊂ W

1,N
0 (�) ⊂ W

1,N
0 (BR(0)) for small ε by zero extension. Then 

we have

inf
u∈W

1,N
0,rad(Bε(0))\{0}

´
�

|∇u|N dx(´
�

|u|q
|x|N (log aR

|x| )β
dx

)N
q

≥ Ga ≥ inf
u∈W

1,N
0 (BR(0))\{0}

´
�

|∇u|N dx(´
�

|u|q
|x|N (log aR

|x| )β
dx

)N
q

= inf
u∈W

1,N
0,rad(BR(0))\{0}

´
�

|∇u|N dx(´
�

|u|q
|x|N (log aR

|x| )β
dx

)N
q

,

(29)

where the last equality comes from a ≥ e
β
N . From the proof of Proposition 3 (ii), we can observe 

that Grad does not vary even if we replace W 1,N
0,rad(BR(0)) to W 1,N

0,rad(Bε(0)) for any small ε > 0. 
Thus the right hand side and the left hand side of (29) take same value, that is Grad. Therefore 
we have Ga = Grad. Furthermore if we assume that Ga is attained by u ∈ W

1,N
0 (�), then u ∈

W
1,N
0 (BR(0)) is also a minimizer on a ball. This contradicts Theorem 1 (ii) in §2. Hence Ga is 

not attained for any bounded domains �.
(iii) Note that Ga is continuous with respect to a ∈ (1, ∞), and is monotone increasing with 

respect to a ∈ [1, ∞) for any bounded domains. From Lemma 4 and Theorem 3 (ii), we can show 

that there exists a∗ ∈ (1, e
β
N ] such that Ga < Grad for a ∈ (1, a∗) and Ga = Grad for a > a∗ in 

the same way as the proof of Theorem 1 (ii). The remaining parts of the proof are similar to the 
proof of Theorem 1 (ii). �
5. Symmetry breaking

In this section, we consider radially symmetry of the minimizers of Ga when � = BR(0). We 
can show that any minimizer of Ga has axial symmetry by using spherical symmetric rearrange-
ment, see [23]. Namely, for any minimizer uβ of Ga there exists some ξ ∈ SN−1 such that the 
restriction of uβ to any sphere ∂Br(0) is symmetric decreasing with respect to the distance to 
r ξ . See also [32]. The last result is as follows.

Theorem 4. Let β > N−1
N

q + 1, a > 1, and uβ be a minimizer of Ga in Theorem 1 (i). Then the 
followings hold true.

(i) For fixed q > N , there exists β∗ such that uβ is non-radial for β > β∗.
(ii) uβ is radial for any β and q ≤ N .

From the compactness of the embedding: W
1,N
0,rad(B1) ↪→ Lq(B1; fa,βdx), we can easily show 

that Ga,rad is attained which implies that there is a radial solution of (5) when β > N−1
N

q + 1
and a > 1. Furthermore, if q > N and β is large, then we also find a non-radial solution of (5)
by Theorem 4 (i). Therefore we obtain a result of multiplicity of solution of (5).

Corollary 1. Let β > N−1
N

q + 1, q > N , and a > 1. Then the equation (5) has at least two weak 
solutions for large β .
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In order to show Theorem 4 (i), we need two lemmas concerning growth orders of Ga and 
Ga,rad with respect to β .

Lemma 5. For fixed q > N , there exists C > 0 such that for sufficiently large β the following 
estimate holds true.

Ga ≤ Cβ
N2
q (loga)

Nβ
q .

Proof of Lemma 5. Let u ∈ C∞
c (BR(0)). Following [33] we consider uβ(x) := u(β(x − xβ))

for x ∈ Bβ−1(xβ), where xβ := (R − β−1, 0, · · · , 0) ∈ BR(0). Then for sufficiently large β we 
obtain

ˆ

B
β−1 (xβ)

|∇uβ(x)|Ndx =
ˆ

BR(0)

|∇u(y)|Ndy, (30)

ˆ

B
β−1 (xβ)

|uβ(x)|q
|x|N(log aR

|x| )β
dx ≥

(
R − 2β−1

)−N
(

log
aR

R − 2β−1

)−β

β−N

ˆ

BR(0)

|u(y)|qdy.

(31)

We set f (β) := (R − 2β−1)−N(log aR
R−2β−1 )−β . Since log 1

1−x
≤ 2x for all x ∈ [0, 12 ], for large 

β we have

f (β) ≥ 1

2

(
loga + log

1

1 − 2β−1R−1

)−β

≥ 1

2

(
loga + 4β−1R−1

)−β

= 1

2
(loga)−β

(
1 + 4

βR loga

)−β

which yields that

f (β) ≥ C(loga)−β for large β. (32)

From (30), (31), and (32), we obtain

Ga ≤
´
BR(0)

|∇uβ |Ndx(´
BR(0)

|uβ |q
|x|N (log aR

|x| )β
dx

)N
q

≤ Cβ
N2
q (loga)

Nβ
q . �

Lemma 6. For fixed q > N , there exists C > 0 such that for sufficiently large β the following 
estimate holds true.

Ga,rad ≥ Cβ
N−1+ N

q (loga)
Nβ
q

−(N−1+ N
q

)
.
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Proof of Lemma 6. For u ∈ W
1,N
0,rad(BR(0)) we define v ∈ W

1,N
0,rad(BR(0)) as follows:

v(s) = u(r), where (loga)A−1 log
aR

s
=

(
log

aR

r

)A

andA = N(β − 1)

(N − 1)q
.

Direct calculation shows that

ˆ

BR(0)

|u|q
|x|N(log aR

|x| )β
dx = ωN−1

R̂

0

|u(r)|q
(

log
aR

r

)−β
dr

r

= ωN−1A
−1(loga)

A−1
A

(1−β)

R̂

0

|v(s)|q
s(log aR

s
)

A−1+β
A

ds

= A−1(loga)
A−1
A

(1−β)

ˆ

BR(0)

|v|q
|y|N(log aR

|y| )
N−1
N

q+1
dy.

In the same way as above, we have

ˆ

BR(0)

|∇u|Ndx = AN−1(loga)−
A−1
A

ˆ

BR(0)

|∇v|N
(

log
aR

|y|
)A−1

A

dy

≥ AN−1
ˆ

BR(0)

|∇v|Ndy.

Therefore we have

´
BR(0)

|∇u|N dx(´
BR(0)

|u|q
|x|N (log aR

|x| )β
dx

)N
q

≥ A
N−1+ N

q (loga)
N
q

(β−1) A−1
A

´
BR(0)

|∇v|N dy(´
BR(0)

|v|q
|y|N (log aR

|y| )
N−1
N

q+1
dy

)N
q

which yields that

Ga,rad ≥
(

N(β − 1)

(N − 1)q

)N−1+ N
q

(loga)
Nβ
q

−
(
N−1+ N

q

)
inf
v

´
BR(0)

|∇v|N dy(´
BR(0)

|v|q
|y|N (log aR

|y| )
N−1
N

q+1
dy

)N
q

.

Therefore, for sufficiently large β we have

Ga,rad ≥ Cβ
N−1+ N

q (loga)
Nβ
q

−(N−1+ N
q

)
. �

Finally we shall show Theorem 4.
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Proof of Theorem 4. (i) It is enough to show that Ga < Ga,rad. By Lemma 5 and Lemma 6, for 
fixed q > N there exists β∗ such that for β > β∗

Ga ≤ Cβ
N2
q (loga)

Nβ
q < Cβ

N−1+ N
q (loga)

Nβ
q

−(N−1+ N
q

) ≤ Ga,rad,

since N
2

q
< N − 1 + N

q
. Therefore we see that Ga < Ga,rad.

(ii) Let x = rω (r = |x|, ω ∈ SN−1) for x ∈ BR(0). For u ∈ W
1,N
0 (BR(0)) we consider the 

following radial function U :

U(r) =
⎛
⎜⎝ω−1

N−1

ˆ

SN−1

|u(rω)|NdSω

⎞
⎟⎠

1
N

.

Then we have

U ′(r) ≤
⎛
⎜⎝ω−1

N−1

ˆ

SN−1

∣∣∣∣ ∂

∂r
u(rω)

∣∣∣∣
N

dSω

⎞
⎟⎠

1
N

which yields that

ˆ

BR(0)

|∇U |Ndx ≤
ˆ

BR(0)

∣∣∣∣∇u · x

|x|
∣∣∣∣
N

dx ≤
ˆ

BR(0)

|∇u|Ndx. (33)

On the other hand, we have

ˆ

BR(0)

|U |q
|x|N(log aR

|x| )β
dx = ωN−1

R̂

0

⎛
⎜⎝ω−1

N−1

ˆ

SN−1

|u(rω)|NdSω

⎞
⎟⎠

q
N

dr

r(log aR
|x| )β

≥
R̂

0

ˆ

SN−1

|u(rω)|qdSω

dr

r(log aR
|x| )β

=
ˆ

BR(0)

|u|q
|x|N(log aR

|x| )β
dx (34)

where the inequality follows from Jensen’s inequality and q ≤ N . From (33) and (34), we ob-
tain Ga,rad ≤ Ga . Therefore Ga,rad = Ga for any q ≤ N and β . Moreover we observe that any 
minimizers of Ga must be radial from the equality condition of (33). �
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