期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:396
Edge multiscale methods for elliptic problems with heterogeneous coefficients
Article
Fu, Shubin1  Chung, Eric1  Li, Guanglian2 
[1] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词: Multiscale;    Heterogeneous;    Edge;    High-contrast;    Steklov eigenvalue;    Wavelets;   
DOI  :  10.1016/j.jcp.2019.06.006
来源: Elsevier
PDF
【 摘 要 】

In this paper, we proposed two new types of edge multiscale methods motivated by [14] to solve Partial Differential Equations (PDEs) with high-contrast heterogeneous coefficients: Edge Spectral Multiscale Finite Element Method (ESMsFEM) and Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM). Their convergence rates for elliptic problems with high-contrast heterogeneous coefficients are demonstrated in terms of the coarse mesh size H, the number of spectral basis functions and the level of the wavelet space l, which are verified by extensive numerical tests. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2019_06_006.pdf 1292KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次