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1. Introduction

The accurate mathematical modeling of many important applications, e.g., composite materials, porous media and reser-
voir simulation, involves elliptic problems with heterogeneous coefficients. In order to adequately describe the intrinsic
complex properties in practical scenarios, the heterogeneous coefficients can have both multiple inseparable scales and
high-contrast. Due to this disparity of scales, the classical numerical treatment becomes prohibitively expensive and even
intractable for many multiscale applications. Nonetheless, motivated by the broad spectrum of practical applications, a large
number of multiscale model reduction techniques, e.g., multiscale finite element methods (MsFEMs), heterogeneous multi-
scale methods (HMMs), variational multiscale methods, flux norm approach, generalized multiscale finite element methods
(GMSFEMs) and localized orthogonal decomposition (LOD), have been proposed in the literature [11,5,12,2,6,17,15] over the
last few decades. They have achieved great success in the efficient and accurate simulation of heterogeneous problems.
Amongst these numerical methods, the GMSFEMs [6] have demonstrated extremely promising numerical results for a wide
variety of problems, and thus they are becoming increasingly popular.

However, the mathematical understanding of GMsFEMs remains largely missing, despite numerous successful empirical
evidences. Recently, the author in [14] provided a first mathematical justification without any restrictive assumptions or
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oversampling technique by representing the solution restricted on each local domain as a summation of three parts, and
then approximating rigorously each component by means of precalculated multiscale basis functions, namely, a specific
multiscale basis function, local multiscale basis functions over the local domain and over the coarse edges. One of the
critical challenges in [14] is to make every estimate independent of the heterogeneity in the coefficient, e.g., the multiple
scales and large deviation of values. As proved in [14], among the three types of multiscale basis functions to approximate
each component of the solution over each local region, the local multiscale basis functions over the coarse edges play a
critical role. Its energy error estimate poses a certain difficulty in the proof, which relies mainly on the regularity properties
[3,13] of the high-contrast problems and the transposition method [16]. In particular, the approximation property of the
solution over the coarse edges determines the approximation of the solution in energy norm.

Motivated by this result, we propose two types of Edge Multiscale Finite Element Methods in Section 4 to solve PDEs with
heterogeneous coefficients: Edge Spectral Multiscale Finite Element Method (ESMsSFEM) and Wavelet-based Edge Multiscale
Finite Element Method (WEMSFEM). The edge spectral multiscale basis functions and the wavelets (e.g., Haar wavelets and
hierarchical bases) [4,20] are utilized to approximate the trace of the solution over each coarse edge, correspondingly. On
the one hand, due to the large variations and discontinuities in the heterogeneous coefficients, this gives arise to singular
behavior and the solution owns very low regularity in certain regions of the computational domain. On the other hand, the
wavelets are capable of approximating functions with very low regularities and their approximation properties are reflected
or characterized by the size of the finest level. Moreover, the hierarchical structure intrinsically built in the wavelets makes
the wavelets excellent candidates to approximate functions with low regularities. For this reason, we apply the wavelets as
the basis functions on the edges. In addition, we derive the energy error estimates for each approach and present several
numerical tests in 2-dimension and 3-dimension to demonstrate the accuracy of our new proposed methods. We noticed
that there is another type of Edge Multiscale Finite Element Method proposed in [10] utilizing the eigenfunctions of some
oversampling operator to obtain the basis functions over the coarse edges, which is different from our approach.

This work is not the first one to apply ideas from wavelets to approximating multiscale partial differential equations.
The authors in [8] proposed a projection-based numerical homogenization scheme which utilizes different levels of wavelet
spaces as the coarse space and the fine space. In specific, this procedure involves global correction operators over the
computational domain, and the wavelets are utilized to approximate the solution directly. Recently, wavelets are applied to
derive an orthogonal decomposition of the solution [19], which again, approximate the solution on the global or localized
domain directly. To the best of our knowledge, this paper represents the first one, where the wavelets are introduced to
approximate the trace of the solution over each coarse edge. Because of this, there is no further localization technique
required in our methods.

The remainder of the paper is arranged as below. We formulate in Section 2 the heterogeneous elliptic problem and the
main idea of GMsSFEMSs. Then we present the basic notation and approximation properties of Haar wavelets and hierarchical
bases in Section 3. This is then followed by Section 4 dealing with two novel edge multiscale methods, which are the key
findings of this paper. Their theoretical and numerical performance are presented in Sections 5 and 6. Finally, we conclude
the paper with several remarks in Section 7.

2. Preliminaries

We first formulate the heterogeneous elliptic problem to present our new multiscale methods. Let D c R? (d =1, 2, 3)
be an open bounded Lipschitz domain with a boundary dD. We seek a function u € V := Hé(D) such that
Lu:=—-V.-k&Vu)=f inD,

21
u=0 onaD, 21)

where the force term f € L>(D) and the permeability coefficient k¥ € L>°(D) with @ < k' (x) < 8 almost everywhere for some
lower bound o > 0 and upper bound 8 > «. We denote by A := g the ratio of these bounds, which reflects the contrast
of the coefficient k. Note that the existence of multiple scales in the coefficient k¥ rends directly solving Problem (2.1)
challenging, since resolving the problem to the finest scale would incur huge computational cost.

Now we present basic facts related to Problem (2.1) and briefly describe the GMSFEM (and also to fix the notation). Let
the space V := H(l)(D) be equipped with the (weighted) inner product

(vi,v2)p =:a(vy, va) :=/KVV1 -Vvydx forallvy,vy eV,
D
and the associated energy norm

|v|i,}1((D) :=(v,v)p forallveV.

We denote by (-, -)p as the inner product in L%(D).
The weak formulation for problem (2.1) is to find u € V such that

au,v)=(f,v)p forallveV. (2.2)
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Fig. 1. Illustration of a coarse neighborhood and coarse element.

The Lax-Milgram theorem implies the well-posedness of problem (2.2).

To discretize problem (2.1), we first introduce fine and coarse grids. Let 7y be a regular partition of the domain D into
finite elements (triangles, quadrilaterals, tetrahedral, etc.) with a mesh size H. We refer to this partition as coarse grids, and
its elements as the coarse elements. Then each coarse element is further partitioned into a union of connected fine grid
blocks. The fine-grid partition is denoted by 7, with h being its mesh size. Let F (or Fy) be the collection of all edges in
Th (or Tg), and let F,(dw;) (or Fy(dw;i)) be the restriction of F;, on dw; (or Fy on dw;). Over the fine mesh 7y, let V}, be
the conforming piecewise linear finite element space:

Vy:={veV:V|rePi(T)foral T e T},

where P1(T) denotes the space of linear polynomials on the fine element T € 7. Then the fine-scale solution up € Vp,
satisfies

a(up, vp) = (f,vp)p forall vy e Vy. (2.3)

The fine-scale solution uy will serve as a reference solution in Section 6. Note that due to the presence of multiple scales
in the coefficient «, the fine-scale mesh size h should be commensurate with the smallest scale and thus it can be very
small in order to obtain an accurate solution. This necessarily involves huge computational complexity, and more efficient
methods are in great demand.

In this work, we are concerned with flow problems with high-contrast heterogeneous coefficients, which involve multi-
scale permeability fields, e.g., permeability fields with vugs and faults, and furthermore, can be parameter-dependent, e.g.,
viscosity. Under such scenario, the computation of the fine-scale solution uy is vulnerable to high computational complex-
ity, and one has to resort to multiscale methods. The GMsFEM has been extremely successful for solving multiscale flow
problems, which we briefly recap below.

The GMSFEM aims at solving Problem (2.1) on the coarse mesh 7y cheaply, which, meanwhile, maintains a certain
accuracy compared to the fine-scale solution ujy. To describe the GMSFEM, we need a few notations. The vertices of 7y are
denoted by {Oi}f\’: 1» with N being the total number of coarse nodes. The coarse neighborhood associated with the node O;
is denoted by

wi=JIKjeTu: 0iek;}. (2.4)

We refer to Fig. 1 for an illustration of neighborhoods and elements subordinated to the coarse discretization 7y . Through-
out, we use w; to denote a coarse neighborhood.

Next, we outline the GMSFEM with a conforming Galerkin (CG) formulation. Let 1 <i < N be a certain coarse node. Note
that w; is the support of the multiscale basis functions to be identified, and ¢; € N is the number of those multiscale
basis functions associated with w;. They are denoted as w,f)‘ for k=1, ---,¢;. Throughout, the subscript i denotes the i-th
coarse node or coarse neighborhood. Generally, the GMsFEM utilizes multiple basis functions per coarse neighborhood w;,

and the index k represents the numbering of these basis functions. In turn, the CG multiscale solution ums is sought as
N ¢ ' .

Ums = > > c,il//,f". Once the basis functions wlf” are identified, the CG global coupling is given through the variational
i=1k=1

form

a(ums, v) = (f,v)p, forall ve Vpys, (2.5)

where Vs denotes the multiscale space spanned by these multiscale basis functions.
We conclude the section with the following assumption on the computational domain D and the heterogeneous coeffi-
cient k.
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Assumption 2.1 (Structure of D and k). Let D be a domain with a C1* (0 <« < 1) boundary 8D, and {Di}{; C D be m

pairwise disjoint strictly convex open subsets, each with a C* boundary I'; := 8D;, and denote Dy = D\UL, D;. Let the
permeability coefficient x be piecewise regular function defined by

i(x) inDj,
=1 o (2.6)
1 in Dg.

Here n; € C*(D;) with ;€ (0,1) fori=1,---,m. Denote Nmyin := mjn{m})n{m(x)}} > 1 and Nmax := max{|Inillcyy}-
i xeD; i

3. Hierarchical subspace splitting over I =: [0, 1]

In this section, we introduce two types of wavelets on the unit interval [ := [0, 1]: Haar wavelets and hierarchical bases.
They facilitate hierarchically splitting the space L%(I).

3.1. Haar wavelets
Let the level parameter and the mesh size be ¢ and h, := 2~¢ with ¢ € N, respectively. Then the grid points on level ¢ are

Xgj =] x hy, 0<j=<2"

Let the scaling function ¢ (x) and the mother wavelet v (x) be given by

) 1, ifo<x<1/2,
1, ifo<x=<1,
P = . y=1{ -1, ifl/2<x<1,
0, otherwise, )
0, otherwise.

By means of dilation and translation, the mother wavelet 1 (x) can result in orthogonal decomposition of the space L*(I).
To this end, we can define the basis functions on level ¢ by

Yl =27 g x—j) forall 0<j<2"-1.
The subspace of level ¢ is
| [ span{¢} fort =0
w

= span{y, j: 0<j=<2'—1} fore>1.

Note that the subspace W} is orthogonal to W}, in L?(I) for any two different levels € # ¢'. We denote by V| as the
subspace in L2(I) up to level ¢, which is defined by

V0= @®m< W,

Due to the orthogonality of the subspaces W, on different levels, there holds

I I I

Vi1 =Ve®rgy Wy

Consequently, it yields the hierarchical structure of the subspace V,, namely,
VoCViC - CVyC Vi

Furthermore, the following orthogonal decomposition of the space L2(I) holds
L*(h=ew,.

3.2. Hierarchical bases

Let the level parameter and the mesh size be ¢ and h, :=2~¢ with £ € N, respectively. Then the grid points on level ¢
are

Xej=Jjxh, 0<j=<2".
We can define the basis functions on level ¢ by
1—Ix/hy — jl, ifxe[(j— Dhe, (j+ Dhel N[O, 1],

0, otherwise.

Yy (%) =
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Define the set on each level ¢ by
j=1,---,2—1,jisodd, ife>0

By = jEN . .
j=0,1, ife=0

The subspace of level ¢ is
Wy :=span{yy ;: je B

We denote V, as the subspace in LZ(I) up to level ¢, which is defined by the direct sum of subspaces
VIli=@on Wl

Consequently, this yields the hierarchical structure of the subspace V., namely,
vicvic.cvicvi, -

Furthermore, the following hierarchical decomposition of the space L?(I) holds
L2 = lim @p<Wh.
{—00 -

Note that one can derive the hierarchical decomposition of the space L2(I%) for d > 1 by means of tensor product. Note
further that we will use the subspace V}Z and V? to approximate the restriction of the exact solution u on each coarse edge.

In this paper, we will only focus on the convergence analysis of multiscale algorithms, cf. Algorithm 2, based upon the
Haar wavelets V,'z. The convergence analysis of multiscale algorithms based upon the hierarchical bases V}' can be derived
similarly.

Throughout this paper, (-,-)7 denotes the inner product in the Hilbert space L2(T) for some domain T C D or some
edges T C dw;. We use A < B if A <CB for some benign constant that is independent of the multiple scales and high
contrast in the coefficient ¥ and the coarse scale mesh size H.

Proposition 3.1 (Approximation properties of the hierarchical space V} ). Let P, be L(I)-orthogonal projection onto V,'z for each level
£ > 0and let s > 0. Then there holds

261
Peyiv="Pev+ Y (V. ¥y Vi forallv e L*(I)
j=0
v —Peviizgy S 275 VInsay forall v e H(I).

Proof. The first assertion can be found in [4]. To prove the second assertion, define the operator

T:H(I)— L*>(I) byTv:=v—Pyv.
Let s := 0. Then the L?(I)-orthogonality of P, implies
ITVI2gy = v = Peviigy < IVlzq, forallveL*().
Furthermore, let s := 1. Since the residual v — P,v is orthogonal to V}. Therefore, we obtain
(+Dx27*
(v—Pyv)dx=0forall j=0,---2¢ — 1.
jx2-¢
Consequently, for all v € H!(I), the Poincaré inequality leads to
gt_q G+Dx27"
ITVIZg =1V = Peviha gy = v — Pyv[?dx
j=0 jx2-
S22,
Taking the square root on both sides gives
ITvI2gy S27 vl forallv e H'(D).

Finally, the preceding two estimates, together with the interpolation theory, prove the second assertion. O
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4. Edge multiscale methods

We propose in this section two new multiscale methods based on GMsFEMs. In specific, their multiscale basis functions
are defined locally on each coarse neighborhood independently, and thereby they can be calculated in parallel. The first
multiscale method utilizes the dominant eigenvectors from the local Stechlov eigenvalue problem as the local multiscale
basis functions. The second one uses wavelets to approximate the solution restricted on each coarse edge. To obtain con-
forming global basis functions, we utilize the Partition of Unity finite element method [18,7]. Its main idea is to seek local
multiscale basis functions in each coarse neighborhood which own certain approximation properties to the exact solution
restricted on each coarse neighborhood, and to use the fact that the global multiscale basis functions obtained from those
local multiscale basis functions by the partition of unity functions inherit these approximation properties.

To this end, we begin with an initial coarse space Vé““ = span{xi}f’zl. The functions x; are the standard multiscale basis
functions on each coarse element K € T defined by

—V.-(k®Vx)=0 in K, (41)
Xi=8i ondk,

N

where g; is affine over 0K with g;(0j) =¢;; for all i, j=1,---, N. Recall that {Oj}j=1

Next we define the weighted coefficient:

are the set of coarse nodes on 7j.

N
R =H* Y |Vl (4.2)
i=1
Furthermore, let ¥~! be defined by
k1, whenk(x) #0

K 1x) = { (4.3)

1, otherwise .

The weighted L2(D) space is

L%—I(D) ::{W: ||W||%2 ] ::/E‘lwzdx<oo}.
#1(D)
D

Note that there are many other alternatives for the partition of unity functions besides using the multiscale basis func-
tions (4.1), e.g., one can utilize the flat top type of partition of unity functions proposed in [9].

4.1. Edge Spectral Multiscale Finite Element Method

The first new multiscale method, coined as the edge spectral multiscale method (ESMSFEM), is inspired by the recent
results derived in [14]. To obtain a good approximation space for the solution u in (2.1), one only needs to derive a good
local approximation space on each coarse neighborhood w; to u|y, according to the main theory of Partition of Unity Finite
Element Method [18]. In that paper, the restriction u|,; is split into three components, each of which is approximated by
local multiscale basis functions with proved convergence rate. Since one of the components is of O(H), this part is negligible
and is removed from Algorithm 1.

Algorithm 1 Edge Spectral Multiscale Finite Element Method (ESMSFEM).

Input: Coarse neighborhood w; and its total number N; the number of multiscale basis functions ¢; € N ; the partition of unity function y;;
Output: Multiscale solution us,.
1 Solve for the Steklov eigenvalue problem and reorder the eigenvalues non-decreasingly.

Seek (A}‘} vI‘) € R x H}(w) such that
—V-(KVV}-"):O in o,

9 Ti 3 Tie T .
mVj _kjkvj on dwj.
2. Solve one local problem.
i K
V- (kVV)= ——— in w;,
( ) fw, Tdx i
vl
—k— = [dwi| ! on dw;.
an
3. Build global multiscale space.

VE :=span{x;v, xivy : 1<i<N, 1<k<¢t—1).

ES in uEs
% to obtain u

4. Solve for (2.5) by conforming Galerkin method in V| s




234 S. Fu et al. / Journal of Computational Physics 396 (2019) 228-242

Algorithm 1 proceeds as follows. Recall that N denotes the total number of coarse nodes in the coarse mesh 7y and
w; is the coarse neighborhood for the ith coarse node. y; is the partition of unity function defined on w;, cf. (4.1). Let
1 < ¢; € N, be the number of local multiscale basis functions on this coarse neighborhood w;. Among them, the first
£; — 1 are the dominant modes from the local Steklov eigenvalue problem, cf. Step 1. The last one arises from one specific

local solver defined in Step 2. In Step 3, the global multiscale space VEfS is defined with the help of the partition of unity

functions {x;}"_ .. Then the multiscale solution uE. is obtained by solving (2.5) in the global multiscale space VES.
XiJi=1 ms ms

4.2. Wavelet-based Edge Multiscale Finite Element Method

Motivated by [14], the local multiscale basis functions restricted on dw;, which can approximate uls., plays a vital role in
approximating the solution u € V in (2.1) efficiently. In view that uly«, € H*(dw;) for some positive constant s > 1/2 and the
approximation properties of the Haar wavelets, cf. Proposition 3.1, the x-harmonic functions with the Haar wavelets as the
local boundary conditions lend themselves to excellent candidates for the local multiscale basis functions. Combining with
the Partition of Unity Finite Element Methods and the conforming Galerkin approximation, this results in a new multiscale
method, which is named as the Wavelet-based Edge Multiscale Finite Element Method (WEMSFEM), cf. Algorithm 2.

Remark 4.1 (Local solvers in Algorithm 2). The boundary conditions in Step 2 are imposed weakly and the global multiscale
basis functions belongs to H'(D). Recall that 7y, is the fine scale partition of the computational domain D with mesh size
h « H, Fy is the collection of all edges in 7, and Fj,(dw;) denotes the restriction of Fj, on dw;. The finite element space
over dwj is

Vi(@wi) = {v e H/?(dw;) : Vg € P1(E) for all E € Fr(dwp)}.
In practice, one can solve for an approximation of v, namely, vy € H!(w)), s.t.,
Livh:=—V-(kVvy) =0 inw;,
Vp = Iﬁ’i(vk) on dw;.
Here, Ig’i denotes the L%(dw;)-projection onto Vj(dw;). Note that

o N2
IV =valzgay S2772(5) T IVI2a0-

Since we are interested in a multiscale algorithm with energy error of O(H) and since h <« H, the error between v and vy,
can be ignored.

Algorithm 2 Wavelet-based Edge Multiscale Finite Element Method (WEMSFEM).

Input: The level parameter ¢ € N; coarse neighborhood w; and its four coarse edges I';; with k=1,2,3,4, ie, U;‘:ll",-_k = dw;; the subspace
Vi, CL2(Tiy) up to level ¢ on each coarse edge T ;

Output: Multiscale solution ufW,.

1. Denote Vi :=@p_, V/i,k' Then the number of basis functions in V; g is 4 x 2¢ = 2¢+2,
Denote these basis functions as vy for k=1, ,2(+2,

2. Calculate local multiscale basis £;!(vy) for all k=1,-- , 262,

Here, Li’l(vk) := v satisfies:
Liv:=—V-&Vv)=0 in wj,

V=V on dwj.
3. Build global multiscale space.
VEW, i=span{x; ;7 (vi), xivi: 1<i<N, 1<k<22).
4. Solve for (2.5) by conforming Galerkin method in VEY, to obtain uf) .

Algorithm 2 proceeds as follows. As in Algorithm 1, we first construct the local multiscale basis functions on each coarse
neighborhood w;. Given a level parameter ¢ € N, and the four coarse edges I'; y with k=1,2,3,4, ie, UL]F“{ = dw;, let
Vé « be either the hierarchical bases or Haar wavelets up to level £ on the coarse edge I'; ;. Note that we will drop the
superscript for the subspaces V!, and V. Let V;,:=&}_, V!, be the edge basis functions on dw;. Then V;, becomes a
good approximation space of dimension 2¢+2 to the trace of the solution over dwj, i.e., Ulw;-

Subsequently, we calculate the x-harmonic functions on each coarse neighborhood w; with all possible Dirichlet bound-
ary conditions in V;y, and denote the resulting local multiscale space as Li’l (Vi) in Step 2. Analogous to Algorithm 1, we
can then define the global multiscale space as V5, and obtain the multiscale solution uf¥, in Steps 3 and 4.
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Remark 4.2 (WEMSFEM is an extension of MSFEM proposed in [11]). Let £ := 0, then the local multiscale basis functions
c;l(v,-,o) generated in Step 2 of Algorithm 2 contain the constant basis function. Since the multiscale basis functions
proposed in [11] serve as the partition of unity functions, cf. (4.1), Step 3 of Algorithm 2 implies that { )(,-}f\’= 1 C VIE]‘Q{O'
Consequently, our proposed WEMSFEM is one enrichment of the classical multiscale method (MsFEM).

Remark 4.3. Let n be the number of fine elements in each coarse element, respectively. For the sake of simplicity, we can
take n := 2™ for some positive constant m € N. However, this is not mandatory since we can always use interpolation
operator to connect the fine grids 7, with the mesh grids h, for Haar wavelets or hierarchical bases of level £.

Remark 4.4 (Flexibility of the Wavelet-based edge multiscale basis functions). The Wavelet-based edge multiscale basis functions
can be potentially extended to more general PDEs with heterogeneous coefficients since the only modification is to replace
the local operator £; in Algorithm 2 with the localized PDEs.

5. Error estimate

This section is concerned with deriving the convergence rates of Algorithm 1 and Algorithm 2 for elliptic problems with
heterogeneous coefficients, cf. Problem (2.1).
We will first recap several results from [14]. The solution u satisfies the following equation

—V-(kVu)=f in wj,
ou ou
—K— = —K— on dw;,
on on

which can be split into three parts, namely

Uy = ut' 4 ut (5.1)

Here, the three components u®!, u! and u"!! are respectively given by

-V (KVu“) =f- f,- in w;

Py (5.2)
—K =0 on dwj,

on

where f; = Jo, £dx x fwiEde’
-V &vurhy=0 in w

aubll ou ][ du

—K—— =—K— — 4 K— on dwj,
on on on
3&),’

and

ul,llI — vl / de

Wi

with vi being defined in Algorithm 1. Clearly, u"' involves only one local solver.

The convergence of the edge spectral basis functions is a direct consequence of the results in [14]. One main observation
in [14] is that the edge spectral basis functions play the critical role in the convergence analysis should the convergence rate
of O(H) be after. Note that Algorithm 1 discards the first component u’! compared with [14], we only need to establish an
a priori estimate for this term, which is presented in the following:

Lemma 5.1. Let f € L2(D), then there holds

il
Ju o S S 2oy
« (5.3)
il 2 =11/2
Hu Lg(w) /S H HK HLOQ(LUI') ”f”Lz(wi) .
x @i

Proof. Testing (5.2) with u’!, and noting that ¥ > 1 and fwi f — fidx=0, yields the first estimate.
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Next, we prove the second estimate. Indeed, since | o Ku''dx =0, we arrive at

’112 /~il i _ iy gy < (7 i -ial?
u- = [ ku (U —u)dx <||Kllroc e Hu’—u* .
(@) @) 12(ep)
i
Here, " := |w;|~! [, u®!dx is the average of u'! over the coarse neighborhood w;.
1

Finally, an application of the Poincaré’s inequality together with the first estimate in (5.3) reveals the second assertion.
This completes the proof. O

Proposition 5.1 (Error estimate for Algorithm 1 to Problems (2.1)). Let Assumption 2.1 hold. Assume that f € L%_l (D) N L2(D) and
let¢; e Ny foralli=1,2,---,N.Let u € V be the solutions to Problems (2.1). There holds

ES — mi
lu — sl p) = min [u—wly1p)
€Vms
54
SHIRNE o) If] + HAO) 3} f .
~ il oy 11112 () i=r]n§-XN{( D2 ll2 o)

Proof. This result follows from Proposition 4.1 and Remark 4.2 in [14]. O

As mentioned earlier, we will focus only on the Haar wavelets in Algorithm 2 since the convergence of Algorithm 2 using
Hierarchical bases can be obtained in a similar manner. In the following, we define the L2(3dw;)-orthogonal projection Pie
onto the local multiscale space up to level £: L2(dw;) — Vie by

2t+2

Pie(V) =Y (V. ¥aw i () forallv e > (o). (5.5)
j=1

Here, we denote v for j=1,--- 242 a5 the Haar wavelets defined on the four edges of w; of level ¢ and the local operator
L; is defined as in Algorithm 2.

To prove the convergence of the wavelet-based edge multiscale basis functions in Subsection 4.2, we will first approx-
imate the second component u®!l by the wavelet-based edge multiscale basis functions. On the one hand, notice that
u e H/2(3w;), then we can obtain by Proposition 3.1 combining with a scaling argument, that

i1 i1l [go—12/2),;,i.1
||ul - ,Pi’[ul ”LZ(aa)') 5 HZ / |Lll |H1/2(3(1)i)'

Here, | - |1/2(yq,) denotes the Gargliardo (semi) norm for the fractional Sobolev space H'/2(dw;).
On the other hand, since ¥ > 1, then an application of the Trace inequality leads to

il i1l il
U 1200 S 1 T @) S U 1 @)
Plugging this estimate into the previous one results in
i1 i1 —£/2),,i,11
u™ =Py a2 g0y S VH2TP UM 1, - (5.6)

Now we are ready to present the estimate for the second algorithm:

Proposition 5.2 (Error estimate for Algorithm 2 to Problems (2.1)). Let Assumption 2.1 hold. Assume that f € L%_l (D) N L?(D) and
let £ € N. Let u € V be the solutions to Problems (2.1). There holds

EW = mi _
lu ums.Z'H}((D)'_WmHSWw Wiyt

ms (5.7)
~n1/2 _
SHIRIE o) 1512 oy + 272l e ) L f 20y

Proof. On the one hand, [14, Lemma 4.1] shows

M 1w S Ul o + HIF 20 (58)

Then the trace approximation (5.6) and similar proof to [14, Lemma 4.4] lead to
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Fig. 2. Permeability fields «. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

™ = Pr oM 2 ) S VH2~ e/2||K||Lm(aw)(|”|H}(w,») + H||f||Li_1(wi))’ (59)
i i _ 172
[ttt =Py eut 2y S H2 P (1l o + HIF N2 ) (5.10)
% (o «
2 Lo 2 —epy—1 / 2y £ 112
/xi €IV =Pyt P dx S 27 H e e (117 ) + A1 () (5.11)
w;
Now we prove the energy error estimate. Let
U =Py +u (512)
Denote VEY, 5 wiY .= Z xilli and e :=u — w3 Then similar proof as in [14, Lemma 4.5] leads to
N . .
/K|Ve|2 dx < Z (H’2 /E|u'*l|2dx+ /l<|Vul’I|2 dx)
D i=1 ;i j
N . . . .
+> (H’2 //?|u’*H — P ut2 dx + / xHe |Vttt — Py utlhy 2 dx).
i=1 ;i j

This, together with the error estimates (5.9)-(5.11) and (5.3), and the Galerkin orthogonality property, proves the asser-
tion. O

Notice that the energy error estimate in Proposition 5.2 depends on ||?||¥02(D) and ||« || oc(F,)- This implies that if there
is no high-contrast inclusion crosses the coarse edges Fpy, then this estimate will be independent of the high-contrast
parameter «. Consequently, we only need to choose the level parameter £ := [—log, H]. In the general situation when some
high-contrast inclusions crosse the coarse edges Fp, it is not yet known the dependence of ||/?||1£3(D) on the high-contrast
parameter k. This requires further investigation.

Remark 5.1. Under the assumption that ||/?||1£3(D) is bounded, we can infer from Proposition 5.2 that the energy error can
be bounded above by O(H), should the number of level £ := [—log, H] + [log; ||« [|1<(F;)] become. Nevertheless, one can
observe from the numerical tests that this algorithm actually is much more accurate than we have proved. This is mainly
due to the fact that we employed the lowest regularity on each coarse edge and the worst scenario that high-contrast
regions cross the coarse grid 7y, namely, ulyq; € H'2(3wy), in the convergence analysis, cf. (5.6).

6. Numerical tests

In this section, we present several numerical tests to demonstrate the accuracy of our proposed methods. In specific, we
apply the multiscale algorithms ESMsSFEM and WEMSFEM to solve the heterogeneous elliptic problem (2.1).

In our experiments, we take the computational domain D := [0, 1]¢, for d =2 and 3 and the constant force is employed,
namely f :=1. Let 7y be a regular quasi-uniform rectangular mesh over D with maximal mesh size H and let 7, be a
regular quasi-uniform rectangular mesh over each coarse element T € 7;; with maximal mesh size h. Let h := /2 x 272 for
d=2,and h:=+/2x275 ford=3.

We test our methods for the heterogeneous elliptic problem with the permeability fields « as depicted in Fig. 2. Note
that the fine scale h can resolve these permeability fields. In specific, the second permeability field is the projection of the
85th layer of the tenth SPE comparative solution project (SPE 10), cf. [1], onto the fine mesh 7. In this manner, the fine
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Table 1
Convergence history of WEMSFEM based on Haar wavelets for Problem (2.1) with Model 1.
H =0 =1 =2
€2 eyt €2 eyt €2 eyt
ﬁ/S 13.81 % 28.37% 352 % 14.18% 031 % 411%
ﬁ/lG 6.44% 19.07% 0.26 % 4.74% 0.05% 2.43%
ﬁ/32 2.31% 13.15% 0.17% 3.80% 0.03% 1.79%
ﬁ/64 0.86% 8.16% 0.08% 2.61% 0.01% 0.95%
Table 2
Convergence history of WEMSFEM based on hierarchical bases for Problem (2.1) with Model 1.
H =0 =1 =2
€2 eyt er2 eyt €2 eyt
«/E/S 7.84% 22.96% 2.58% 11.94% 0.20% 3.59%
«/i/l 6 6.39% 19.72% 0.73% 6.62% 0.03% 1.82%
ﬁ/32 5.03% 17.02% 0.22% 4.05% 0.01% 0.85%
ﬁ/64 1.50% 10.40% 0.05% 1.89% 0.0024% 0.42%
1
0.04 0.04 0.04
- ’ 0.8 :
0.6 0.03 0.6 0.03 0.03
04 0.02 0.4 0.02 0.02
0.2 0.01 0.2 0.01 0.01
0 0 0 0

0 02 04 06 08 1 02 04 06 0.8 02 04 06 0.8
(a) Reference solution (b) WEMSFEM solution, £ = 0 (c) WEMSFEM solution, £ = 1

Fig. 3. The reference solution and the multiscale solutions with H = +/2/16, obtained from WEMSFEM based on Haar wavelets with levels £ =0 and 1 for
Problem (2.1) with Model 1.

mesh 7y can fit the microscale features in Model 2. In Model 3, we take « :=1 in the background « := 10* in the red
region.

In addition, to quantify the accuracy of the multiscale solutions obtained from our proposed methods, namely, ESMSFEM
and WEMSFEM, we define relative weighted L? error and energy error as follows:

|1t '/2 (Ums — un)ll12p) A(tims — Up, Ums — Up)
) H! =
|11 2upll2(p) a(up, up)

€2 =

Recall that uy, is the fine-scale solution in the finite element space Vj, derived from conforming Galerkin scheme, cf. (2.3).
6.1. Numerical tests for WEMSFEM

Tables 1 and 2 show the numerical results of WEMSFEM with Haar and hierarchical bases for the test model 1. We range
the coarse mesh size H from +/2/8 to +/2/64, and the wavelet level ¢ from 0 to 2. One can observe that the accuracy
of the WEMSFEM solution can be improved as the coarse mesh size H is decreasing and wavelet level ¢ is enlarging.
When the wavelet level £ = 0, we observe that WEMSFEM based on the Haar wavelets outperforms that based on the
hierarchical bases, while the opposite scenario occurs in the case when ¢ =1, 2. Let Ngof be the total number of multiscale
basis functions, then one can compute the convergence rate of WEMSFEM with respect to the parameter Ngof. Tables 1 and
2 shows that the convergence rate exceeds O(Ndof) This result is much better than our expectation, i.e., O(Nd_olf/ 2) with
much smaller parameter ¢.

We depict in Fig. 3 the reference solution, the multiscale solutions solved by WEMSFEM based on Haar wavelets with
the level £ =0 and 1 for Problem (2.1) with Model 1. When ¢ = 0, the multiscale solution fails to capture the microscale
features introduced by the complicated heterogeneity in Model 1. Nevertheless, the multiscale solution with wavelet level
£ =1 is sufficient to generate a good approximation to the reference solution.

Furthermore, we present in Tables 3 and 4 the convergence history of WEMSFEM for Problem (2.1) with Model 2 based
on Haar wavelets and hierarchical bases, respectively. Similar convergence behavior as in Tables 1 and 2 for Model 1 can
be observed. One can obtain a slower convergence rate of O(Ndof ) compared to Model 1, which arises from the more
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Table 3
Convergence history of WEMSFEM based on Haar wavelets for Problem (2.1) with Model 2.
H =0 =1 =2
e eyt €2 eyt €2 eyt
V2/8 3.82% 41.98% 2.19% 34.46% 117% 25.17%
V2/16 2.70% 36.24% 1.01% 25.51% 0.41% 16.88%
V2/32 1.32% 2411% 0.33% 14.81% 0.13% 10.17%
V2/64 0.85% 16.95% 0.14% 8.81% 0.04% 5.75%
Table 4
Convergence history of WEMSFEM based on hierarchical bases for Problem (2.1) with Model 2.
H £=0 =1 =2
€2 eyl €2 eyt €2 eyt
V2/8 4.18% 48.78% 1.86 % 33.20% 111% 25.04%
V2/16 2.65% 41.20% 1.03% 26.44% 037 % 16.88%
V2/32 1.59% 30.50% 0.28% 19.50% 0.12% 10.09%
2/64 0.82% 20.54% 0.10% 9.29% 0.04 % 5.59%
Table 5
Convergence history of WEMSFEM based on hierarchical bases and
hierarchical bases with level of £ =0 for Problem (2.1) with Model 3.
H Haar wavelets hierarchical bases
€2 eyt €2 eyt
V2/8 6.85% 20.41% 9.52% 28.5%
V2/16 9.04% 21.50% 9.45% 22.4%
10.025
0.03 | 0.03
0.02
0.02 0.015 0.02
0.01
0.01 0.01
0.005
0 0 0

(a) Reference solution (b) ESMSFEM solution: NV, = 2. (c) ESMSFEM solution: N, = 8.

Fig. 4. The reference solution and the ESMSFEM solutions with N, =2 and 8 for Model 3 and H = v/2/8.

heterogeneous features in Model 2. Due to limited computational resources, we only test the WEMSFEM for Model 3 with
wavelets level of ¢ = 0. Its convergence history is depicted in Table 5. As expected, the resulted multiscale solutions are not
sufficiently accurate.

6.2. Numerical tests for ESMSFEM

In these numerical tests, we take the same number of local multiscale spectral basis functions N, € N for each coarse
neighborhood w;, where i € {1,---, N} denotes the coarse grid index. Recall that N € N is the total number of coarse
grids in the coarse mesh 7. Let A be the minimum of the eigenvalues corresponding to the first eigenfunction defined in
Algorithm 1, which are not included in the multiscale space V-

A= min fis 0}
We depict the reference solution and the multiscale solutions obtained from the ESMSFEM scheme with H = +/2/8 and
Np =2 and 8 for Model 3 in Fig. 4. One can conclude that the multiscale solution from ESMsFEM with N, = 8 is sufficient
to characterize the microscale features hidden in Model 3.
The convergence history of the edge spectral multiscale method (ESMsSFEM) for Problem (2.1) with Models 1, 2 and 3 are
presented in Tables 6-11. As proved in Proposition 5.1, the multiscale solution solved by ESMSFEM converges as A increases
and the coarse mesh size H decreases. We take Model 1 for an instance. Let H :=+/2/32, then the L2 relative error decays
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Table 6
Convergence history of ESMSFEM for Problem (2.1)
with Model 1 and H = +/2/32.

Np A e eyt
2 74.7 3.82% 16.36%
4 186.4 0.37% 5.95%
6 347.6 0.21% 4.53%
529.4 0.05% 2.25%
10 743.2 0.02% 1.43%
Table 7

Convergence history of ESMSFEM for Problem (2.1)
with Model 1 and H = +/2/64.

Np A e eyt
2 440783.8 1.13% 9.26%
4 640000.0 0.13% 3.36%
6 1496214.7 0.08% 2.74%
1537887.8 0.01% 0.95%
10 2556030.5 0.003% 0.50%
Table 8

Convergence history of ESMSFEM for Problem (2.1)
with Model 2 and H = +/2/32.

Ny A e et
2 1558.2 16.33% 35.72%
4 3760.2 10.29% 26.85%
6 5493.2 8.58% 24.16%
8195.6 7.33% 22.45%
10 9772.0 6.60% 21.23%
Table 9

Convergence history of ESMSFEM for Problem (2.1)
with Model 2 and H = +/2/64.

Np A e ey
2 47812.7 7.91% 26.97%
4 86609.2 4.02% 18.00%
6 116963.8 2.77% 14.58%
187984.5 2.08% 12.71%
10 212675.7 1.63% 11.46%
Table 10

Convergence history of ESMSFEM for Problem (2.1)
with Model 3 and H = v/2/8.

Np A e eyt

2 8.4 17.87% 38.92%

4 126 7.58% 23.5%

6 15.3 1.73% 10.6%
17.9 0.96% 7.83%

10 27.0 0.71% 6.20%

from 3.82% to 0.02% as the number of bases Nj increases from 2 to 10. As expected, ESMSFEM works better for model 1
compared with model 2 due to the high heterogeneity in model 2, see Tables 6, 7, 8 and 9.

We present the numerical tests for Model 3 in Tables 10 and 11 corresponding to different coarse mesh sizes of H =
V2/8 and H = +/2/16. Due to limited computational resources, the case for much finer coarse grid is not performed.
Compared with the numerical results for WEMSFEM, cf. Table 5, ESMSFEM performs much better in this case. Nevertheless,
ESMSFEM involves solving local eigenvalue problems and thus has much higher computational cost than WEMSFEM.

Finally, to emphasize the accuracy of the proposed methods, we provide the performance of the (oversampling) Mul-
tiscale Finite Element Methods (MsSFEMs) in Tables 12, 13 and 14 for the three tested permeability fields Models 1 to 3,
respectively. Here, we denote K+ as the oversampled region. In the case that K = K, there is no oversampling and the
local multiscale basis functions are solved on each coarse element K, cf. (4.1); when K+ =K + % the local multiscale func-
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Table 11
Convergence history of ESMSFEM for Problem (2.1)
with Model 3 and H = +/2/16.

Np A e eyt
2 281 13.9% 26.3%
4 40.6 1.95% 11.7%
6 56.7 0.33% 4.80%
60.8 0.12% 3.30%
10 76.7 0.06% 2.30%
Table 12
Convergence history of (oversampling) MsFEM for Problem (2.1) with Model 1.
H Kt=K Kt=K+15 K*=K+n
e eyt €2 eyt e eyt
V2/8 96.96% 98.29% 3.92% 3235.69% 3.81% 3373.30%
V2/16 35.97% 53.02% 19.70% 619.32% 0.74% 434.93%
V2/32 18.59% 36.64% 16.45% 90.00% 9.29% 82.95%
V2/64 6.24% 21.22% 5.09% 266.35% 3.69% 242.37%
Table 13
Convergence history of (oversampling) MsFEM for Problem (2.1) with Model 2.
H Kt =K Kt=K+1 Kt=K+n
€2 eyt €2 eyt €2 eyt
V2/8 41.12% 88.20% 13.59% 171.20% 12.62% 263.41%
V2/16 38.97% 72.05% 9.56% 523.75% 13.84% 718.14%
V2/32 29.54% 61.24% 7.87% 436.88% 7.24% 379.40%
V2/64 16.70% 50.51% 3.14% 234.27% 2.70% 179.93%
Table 14
Convergence history of (oversampling) MSFEM for Problem (2.1) with Model 3.
H Kt =K Kt=K+}% K*=K+n
€2 eyt e eyt e eyt
V2/8 95.21% 97.16% 58.94% 11.33% 12.62% 410.29%
V2/16 26.42% 42.76% 21.41% 306.23% 10.89% 162.74%

tions are solved in a larger domain with an extra half coarse element in each direction; when K+ = K + n, then the local
multiscale basis functions are solved in a much larger domain with one extra coarse element in each direction.

According to the numerical results, we notice that the numerical solutions solved by (oversampling) MsFEMs result in
a relatively decent approximation to the reference solution measured by weighted L? norm. However, they are far from
satisfactory should they be measured in the energy norm. One observes that the utilization of oversampling technique
is detrimental to the approximation in energy norm. One possible explanation lies in the nonconforming nature of the
multiscale basis functions when the oversampling technique is employed.

7. Conclusions

We proposed in this paper two new types of edge multiscale method in the framework of the Generalized Multiscale
Finite Element Methods (GMsFEMs), with their local multiscale basis functions being defined on each coarse edge. Their
theoretical convergence rates were elaborately justified in terms of the number of local multiscale basis functions, the level
of the wavelets and the coarse scale mesh size. Especially, the constants appearing in the estimates are independent of the
multiple scales and large deviation of values in the heterogeneous coefficients. To verify our theoretical results, extensive
numerical performance for elliptic problems with high-contrast heterogeneous coefficients are demonstrated. Our new pro-
posed algorithms opens up a new direction for multiscale methods both theoretically and numerically. Future applications
include convection dominated diffusion problems and Helmholtz equations with high frequencies.
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