期刊论文详细信息
JOURNAL OF CLEANER PRODUCTION 卷:193
An investigation into methods for predicting material removal energy consumption in turning
Article
Lv, Jingxiang1  Tang, Renzhong2  Tang, Wangchujun3  Jia, Shun4  Liu, Ying5  Cao, Yanlong2 
[1] Northwestern Polytech Univ, Minist Educ, Key Lab Contemporary Design & Integrated Mfg Tech, Xian 710072, Shaanxi, Peoples R China
[2] Zhejiang Univ, Zhejiang Prov Key Lab Adv Mfg Technol, Dept Ind & Syst Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY 13244 USA
[4] Shandong Univ Sci & Technol, Qingdao 266590, Peoples R China
[5] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
关键词: Material removal;    Energy consumption;    Cutting force;    Uncertainty;    Cutting parameter selection;   
DOI  :  10.1016/j.jclepro.2018.05.035
来源: Elsevier
PDF
【 摘 要 】

The wide use of machining processes has imposed a large pressure on environment due to energy consumption and related carbon emissions. The total power required in machining include power consumed by the machine before it starts cutting and power consumed to remove material from workpiece. Accurate prediction of energy consumption in machining is the basis for energy reduction. This paper investigates the prediction accuracy of the material removal power in turning processes, which could vary a lot due to different methods used for prediction. Three methods, namely the specific energy based method, cutting force based method and exponential function based method are considered together with model coefficients obtained from literature and experiments. The methods have been applied to a cylindrical turning of three types of workpiece materials (carbon steel, aluminum and ductile iron). Methods with model coefficients obtained from experiments could achieve a higher prediction accuracy than those from literature, which can be explained by the inability of the coefficients from literature to match the specific machining conditions. When the coefficients are obtained from literature, the prediction accuracy is largely dependent on the sources of coefficients and there is no definitive dominance of one approach over another. With model coefficients from experiments, the cutting force based model achieves the best accuracy, followed by the exponential function based method and specific energy based method. Furthermore, the power prediction methods can be used in process design stage to support energy consumption reduction of a machining process. (C) 2018 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jclepro_2018_05_035.pdf 1184KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次