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Abstract: The wide use of machining processes has imposed a large pressure on environment due to 

energy consumption and related carbon emissions. The total power required in machining include 

power consumed by the machine before it starts cutting and power consumed to remove material 

from workpiece. Accurate prediction of energy consumption in machining is the basis for energy 

reduction. This paper investigates the prediction accuracy of the material removal power in turning 

processes, which could vary a lot due to different methods used for prediction. Three methods, 

namely the specific energy based method, cutting force based method and exponential function based 

method are considered together with model coefficients obtained from literatures and experiments. 

The methods have been applied to a cylindrical turning of three types of workpiece materials (carbon 

steel, aluminum and ductile iron). Methods with model coefficients obtained from experiments could 

achieve a higher prediction accuracy than those from literatures, which can be explained by the 

inability of the coefficients from literatures to match the specific machining conditions. When the 

coefficients are obtained from literatures, the prediction accuracy is largely dependent on the sources 

of coefficients and there is no definitive dominance of one approach over another. With model 

coefficients from experiments, the cutting force based model achieves the best accuracy, followed by 
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the exponential function based method and specific energy based method. Furthermore, the power 

prediction methods can be used in process design stage to support energy consumption reduction of a 

machining process.

Keywords: Material removal; Energy consumption; Cutting force; Uncertainty; Cutting parameter 

selection

1. Introduction

Machining is widely applied in manufacturing industry and contributes to a significant portion 

of employment and economic growth. Unfortunately, machining also imposes large environmental 

burden due to energy consumption and related carbon emissions (Liu et al., 2016; Zhang et al., 

2017). Many approaches are developed to save energy consumed during machining, such as energy 

efficient process planning and scheduling. However, the lack of accurate energy data has impeded 

the implementation of the aforementioned approaches (Hu et al., 2015; Wang et al., 2015). 

Therefore, accurate prediction of energy consumption in machining is of great importance. 

Turning is the one of the most important machining processes and can produce a wide variety of 

parts. Considering large number of lathes used in manufacturing and the low energy efficiency, there 

have been significant potential in improving the energy efficiency of turning process. Consequently, 

it is important to forecast the energy use in turning, which will assist the process designers and 

machine operators to achieve energy efficient process design and operating.

The total energy during machining can be subdivided into three parts: the standby energy use, 

run-time operational energy and actual energy involved when removing material (Dahmus and 

Gutowski, 2004). The detailed energy flow in machining process in shown in Fig. 1. It is vital to 

investigate the material removal energy, since it is responsible for the new surface generation and 

determines the quality of a machined part (Sealy et al., 2016). There are three representative methods 

to predict the material removal power in existing research: specific energy based method (SEM), 

cutting force based method (CFM) and exponential function based method (EFM). The SEM 

considers the material removal power to be the product of the specific cutting energy and material 

removal rate (MRR). The CFM calculates the material removal power by multiplying the cutting 
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force by cutting speed. The EFM predicts the material removal power using an exponential function 

of cutting parameters. 

Total 
energy

Material removal energy

Operational energy Spindle rotation energy

Feed energy

Coolant spray energy

Standby energy

Fig. 1. Detailed energy flow in machining process.

The above three methods are widely used due to their easy application in engineering. In the 

three methods, many assumptions and simplifications have been made. The SEM and CFM consider 

that the material removal power is equal to cutting power, which is the power consumed through the 

tool tip to remove workpiece material. Actually, the material removal power also includes another 

part of the power called the loading loss which could reach up to 26% of the cutting power (Xie et 

al., 2016a). For the SEM, the material removal power is considered to be proportional to MRR, 

which means that material removal power is proportional to cutting speed, feed and depth of cut. 

However, this may not be true because the effects of each parameter on material removal power are 

not linearly proportional. Moreover, research showed that the specific energy is not a fixed value, but 

affected by the hardness and microstructure of the work material, feed rate, rake angle of the cutting 

tool (Boothroyd and Knight, 1989). In the CFM and EFM, cutting force and material removal power 

are assumed to be exponential models of cutting parameters. The assumptions may lead to inaccurate 

power prediction and costly errors in judgement which parameters are selected to reduce energy 

consumption for machining operations. There is an urgent need to evaluate the prediction accuracy 

of these methods.

This study was oriented to evaluate the material removal power prediction accuracy of existing 

methods based on experimental data. Although the focus is on the turning processes, the proposed 

studies can be used by any other machining processes, such as milling, drilling and grinding. The 

remainder of this paper is organized as follows. Section 2 reviews related work, and Section 3 

introduces the three methods for predicting material removal power, concept of uncertainty and 

prediction accuracy. The methodology to acquire the model coefficients from literatures and 
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experiments is described in Section 4. An evaluation of the three models is discussed in Section 5. 

The selection of cutting parameters for energy reduction based on the accurate power prediction is 

illustrated in Section 6. Finally in Section 7, the conclusions are drawn and future work is discussed.

2. Literature review

Energy consumption modelling and optimization has become a hot topic in recent years, 

especially in energy-intensive industries (such as steel production) (Sun et al., 2017; Sun and Zhang, 

2016). In the machinery industries, a large number of research studies have been conducted to model 

the energy consumption of machining processes (Jia et al., 2017). One of the first studies addressed 

the energy consumption issues in machining processes was carried out by Gutowski et al. (2006). In 

this study, the energy consumption is calculated as the sum of idle power and material removal 

power. However, the detailed description of idle power and model validation is lacked. Diaz et al. 

(2011) adopted this model to estimate the power demand of matching and model the specific energy 

to be an inverse function of MRR. He et al. (2012) further broke the machining power into power 

consumed by servos system, fan motors, spindle motor, feed motor, tool changer motor and coolant 

pump motor. Similar work was carried out by Balogun and Mativenga (2013) and Priarone et al. 

(2016), in which the total power was divided into basic power, ready state power, coolant pumping 

power, air cutting power and cutting power. In the above researches, each part of power is usually 

obtained from power measurements of the machine tools. This detailed decomposition of power 

consumption could help to achieve a high energy prediction accuracy (over 90%). 

The material removal power is an important part of machining power. It can be predicted by 

theoretical formulas or empirical models. Munoz and Sheng (1995) analysed the mechanics of 

machining processes and provided theoretical formulas for cutting power of orthogonal turning and 

oblique milling processes. However, it is difficult to obtain the coefficients and set-up parameters, 

such as tool rake angle and tool oblique angle, involved in the theoretical formulas. Thus this 

theoretical formula is rarely used in industry. In comparison, empirical models are often used to 

predict the material removal power in engineering, which are summarized in Error! Reference 

source not found..
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The specific energy model is most widely used because of its simplicity to apply to a range of 

machining processes, such as turning, milling and drilling. The specific energy is the only coefficient 

and the key for model prediction accuracy. Kellens et al. (2012) estimated the machining power of 

drilling grey cast iron, of which the specific cutting energy is 1.3 J/mm3 from literatures. 

Aramcharoen and Mativenga (2014) indicated that the specific cutting energy depends on types of 

workpiece material and sharpness of cutting tool. Dull tools cause higher cutting power. The specific 

cutting energy of stainless steel was evaluated as 4.72 J/mm3 using regression analysis of measured 

total power required for machining and MRR. Priarone et al. (2016) calculated the specific energy by 

dividing the measured material removal power by MRR. They observed that increased tool wear lead 

to higher values of specific energies due to higher increased force. This is especially true for milling 

case, as the specific energy increased significantly when tool wear increased (Liu et al., 2016). 
Table 1 A summary of empirical models for material removal power prediction in machining.

Model Machining processes Author(s) Model coefficients obtained by
Drilling of grey cast iron Kellens et al. (2012) Averaging specific energies from different literatures 
Milling of stainless steel Aramcharoen and 

Mativenga (2014)
Regression analysis of measured power and MRR

Turning of Ti-6Al-4V alloy Priarone et al. (2016) Dividing measured material removal power by MRR

Specific energy 
model

Milling of AISI H13 tool steel Liu et al. (2016) Dividing measured material removal power by MRR
Milling of aluminum 7022 Avram and Xirouchakis 

(2011)
Referencing theoretical cutting force formulas

Milling of aluminum 6061 Zhou et al. (2015) Referencing machining technology handbook

Cutting force 
based model

Turning of aluminium alloy 
and S45C carbon steel

Xie et al. (2016b) Referencing mechanical engineering manual

Milling of steel Xie et al. (2016a) Regression analysis of material removal powerExponential 
model Turning and milling of AISI 

1045 steel
Lv et al. (2016) Regression analysis of material removal power

Second-order
regression model

Milling of S45C steel Yoon et al. (2014) Regression analysis of material removal power

The cutting force based model are also used to predict the material removal power by many 

researchers. Avram and Xirouchakis (2011) modelled the cutting force through the estimation of 

instantaneous values of the feed and feed perpendicular forces. Zhou et al. (2015) used empirical 

formulas to calculate the cutting forces for the milling of aluminium 6061 (Yang et al., 2011):

(1)𝐹𝑍 = 𝐶𝐹𝐾𝐹𝑎0.86
𝑤 𝑎0.72

𝑓 𝑑 ‒ 0.86
0 Z𝑎𝑝

where  is cutting force, ,  are coefficients obtained from machining manual, , , , Z and 𝐹𝑍 𝐶𝐹 𝐾𝐹 𝑎𝑤 𝑎𝑓 𝑑0

 are the width of cut, feed per tooth, cutting tool diameter, number of cutting tooth and depth of 𝑎𝑝

cut, respectively. Xie et al. (2016b) also employed empirical exponential function from mechanical 

engineering manual to calculate the cutting force for the turning processes.



ACCEPTED MANUSCRIPT

6

The exponential model and second-order regression model are empirical models. Xie et al. 

(2016a) measured the material removal power for milling of steel plate and fitted the material 

removal power model as an exponential function of spindle speed, depth of cut, feed and width of 

cut. Errors of the fitted model were within 8%. Lv et al. (2016) took a similar approach and modelled 

the material removal power of turning process as an exponential function of cutting speed, feed and 

depth of cut. Yoon et al. (2014) employed an empirical model to predict both material removal 

power and power increase due to tool wear for milling process. The model is a second order 

regression function of rotational speed, feed and depth of cut.

While the material removal power has been modelled using various types of models, the 

accuracy for predicting the material removal power has not been well investigated. In fact, the 

material removal power may vary a lot if it is predicted by different models and using different 

sources of model coefficients. This could affect the prediction accuracy of energy consumption for 

whole machining processes. Therefore, the aim of this work is to evaluate the accuracy of different 

methods (including model and sources of model coefficients) for material removal power prediction.   

3. Background

This section introduces three power prediction methods used in this study, SEM, CFM and 

EFM. Then the performance metrics for prediction accuracy evaluation is described.

3.1.  Specific energy based method

The SEM predicts the material removal power based on the specific energy model which is 

expressed in Equation (2) (Gutowski et al., 2006):

(2)𝑃m = 𝑘𝑣

where  is the power used for material removal operation [W],  is the specific energy requirement 𝑃m 𝑘

in cutting operations [ ],  is material removal rate (MRR) [mm3/s] and can be calculated W·s/mm3 𝑣

from machining parameters, for turning processes,  can be expresses as (Kalpakjian and Schmid, 𝑣

2006):

𝑣 = 1000 × 𝑣 × 𝑓 × 𝑎p (3) 
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where  is cutting speed [m/s],  is feed [mm/r] and  is the depth of cut [mm]. 𝑣 𝑓 𝑎p

The specific energy  is the key coefficient for the application of this method. It can be obtained 𝑘

from literatures or by regression analysis of experimental data. When obtaining the coefficients 

experimentally, experiments are conducted and the material removal power is measured at various 

MRR. Then linear regression analysis is employed to obtain the value of specific energy. Here, the 

dependent variable is material removal power and independent variable is the MRR. With the 

machining parameters and the values of specific energy, the material removal power can be predicted 

using this specific energy based method.

3.2.  Cutting force based method

For the CFM, the cutting force is used to calculate the material removal power, which is 

expressed as follows:

(4)𝑃m = 𝐹C𝑣

where  is the primary cutting force [N],  is cutting speed [m/s]. The cutting force is strongly 𝐹C 𝑣

related to the cutting parameters. However, the metal cutting mechanics is quite complicated and it is 

very difficult to develop a precise model to describe the relationship between the cutting force and its 

related parameters. As a result, a generic exponential model is used to describe the cutting force 

(Wang, 2008):

 (5)𝐹C = 𝐶F𝑣
𝑛F𝑓

𝑦F𝑎p
𝑥F𝑘MF𝑘γM

where  is the coefficient of cutting force,  is feed [mm/r],  is the depth of cut [mm], ,  and  𝐶F 𝑓 𝑎p 𝑛F 𝑦F

 are exponential coefficients of cutting speed, feed and the depth of cut, respectively,  is the 𝑥F 𝑘MF

correction coefficient for yield and tensile strength of the workpiece material,  is the correction 𝑘γM

coefficient for tool angles.

The coefficients in the CFM can be obtained from literatures or experimentally. One way is to 

obtain the coefficients by referring to the handbook of manufacturing engineers, mechanical 

processing or principles of machining. Another way is to obtain the coefficients experimentally. The 

cutting experiments are conducted and the cutting forces are measured with different combinations 
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of cutting parameters. Before conducting regression analysis, the exponential model of cutting force 

in Equation (5) is converted into linear form by logarithmic transformation:

 (6)log 𝐹C = log (𝐶F𝑘MF𝑘γM) + 𝑛Flog 𝑣 + 𝑦Flog 𝑓 + 𝑥Flog 𝑎p

Based on the above linear equation, the unknown coefficients , ,  and  are log (𝐶F𝑘MF𝑘γM) 𝑥F 𝑦F 𝑛F

acquired by multiple linear regressions of the experimental data. 

3.3.  Exponential function based method

The EFM is based on the postulated exponential model. The exponential model assumes the 

material removal power as an exponential function:

(7)𝑃m = 𝐶P𝑣
𝑛P𝑓

𝑦P
𝑎p

𝑥P

where , ,  and  are coefficients of material removal power, cutting speed, feed and the depth  𝐶P 𝑛P 𝑦P 𝑥P

of cut, respectively. The nonlinear Equation (7) can be converted into linear form by logarithmic 

transformation:

 (8)log 𝑃m = log 𝐶P + 𝑛Plog 𝑣 + 𝑦Plog 𝑓 + 𝑥Plog 𝑎p

In order to obtain the unknown coefficients , ,  and  in the postulated exponential 𝐶P 𝑛P 𝑦P 𝑥P

model, cutting experiments are conducted with different combinations of cutting parameters and the 

cutting power is measured. The coefficients are acquired by multiple linear regressions of the 

experimental data based on the measured data and Equation (8). 

3.4.  Uncertainty and prediction accuracy

The measurement data contains both average values and uncertainty. The uncertainty can be 

characterized by repeated measurements. If the measurements are repeated N times, the average 

value is estimated to be:

𝑥avg =
𝑥1 + 𝑥2 + … + 𝑥𝑁

𝑁
(9)

where (i=1, 2, …, N) is the value obtained in ith measurement. The uncertainty in the mean value of 𝑥𝑖

measurements is:
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∆𝑥avg =
𝑥max ‒ 𝑥min

2 𝑁
(10)

When z is a linear equation by addition or subtraction, such as:

𝑧 = 𝑥 ± 𝑦 (11)

The uncertainty  can be calculated through the propagation of uncertainty as:∆𝑧

∆𝑧 = (∆𝑥)2 + (∆y)2 (12)

where  and  are the uncertainty of  and , respectively. In this study, we use linear regression ∆𝑥 ∆y 𝑥 y

analysis to obtain the empirical equations. For a multiple linear regression model 𝑦 = b1𝑥1 + b2𝑥2

, the uncertainty of model coefficient  is written as follows (Jeter, 2003):+ … + b𝑚𝑥𝑚 + c 𝑏𝑖

𝑢𝑏𝑖 =
𝑆𝐸𝐸

𝑛

∑
𝑗 = 1

𝑥 2
𝑖,𝑗 ‒ 𝑛𝑥 2

𝑖, 𝑎𝑣𝑒
(13)

where SEE is the standard error of estimate, n is the number of observations,  is the j-th data of 𝑥𝑖,𝑗

independent variable xi,  is the average value of variable xi. The standard uncertainty of the 𝑥𝑖,ave

model is then determined by combining the uncertainty of each independent variables (Jeter, 2003):

𝑢model =
SEE2

𝑛 + (𝑥1 ‒ 𝑥1,ave)2𝑢 2
𝑏1 + … + (𝑥𝑚 ‒ 𝑥𝑚,ave)2𝑢 2

𝑏𝑚  (14)

To construct a (1-α)×100% confidence interval, the expanded uncertainty of the model is 

calculated as:

𝑈model = 𝑡𝑛 ‒ 𝑝, 1 ‒ 𝛼/2𝑢model (15)

where  is the value obtained from the t-distribution table, and p is the number of model 𝑡𝑛 ‒ 𝑝, 1 ‒ 𝛼/2

parameters. The prediction accuracy is taken as performance metric, which is calculated by the 

predicted and measured power:

𝐴𝑐𝑐 = (1 ‒
|𝑃pred ‒ 𝑃mes|

𝑃mes
) × 100% (16)

where  and  are the predicted and measured material removal power [W], respectively.𝑃pred 𝑃mes
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4. Methodology

This work uses three methods for material removal power forecasting: SEM, CFM and EFM. 

For application of each method, the coefficients in the models are key and can be acquired from 

literatures or experiments. This section first describes the acquisition of the coefficients from 

literatures. Next, experimental setup and design is introduced. Finally, this section describes the 

regression analysis of experimental data to obtain the coefficients experimentally and uncertainties of 

the model coefficients.

4.1.  Coefficients acquisition from literatures

For the SEM, the coefficients can be obtained from handbook of machining calculations (Wu, 

2012), machinery's handbook (Oberg et al., 2008) or thesis (Rajemi, 2011), as shown in Table 2. It 

can be seen that the specific energies vary significantly, and there is a lack of knowledge to get the 

exact specific energy value for given machining conditions. For instance, the specific energies range 

from 1.96 to 4.3 J/mm3 for steel, with the maximum value being more than twice the minimum one. 

This could be explained by that they were obtained under different machining conditions. 
Table 2 Specific energies for different workpiece materials.

Materials Specific energies [J/mm3]
Steel 1.96 (hot rolled) 2.59 (260-280 HBa) 4.3 2.7-9
Aluminum alloy 0.83 0.90 (rolled) 0.7 0.4-1
Cast iron

1.41 (ductile)
1.72 (175-200 
HBa） 1.2 1.1-5.4

Source Wu (2012) Oberg et al. (2008) Rajemi (2011) Kalpakjian (1984)
a Brinell Hardness

For the CFM, the values of coefficients can be obtained from manufacturing engineers 

handbook (Yang, 2012), mechanical processing handbook (Meng, 1991) or the text book of 

principles of machining (Kaczmarek, 1976) for the material properties and tool conditions in this 

study, as shown in Table 3. Similarly, the coefficients from different sources vary a lot even for the 

same material. As a result, the use of coefficients from literatures could result in large power 

prediction errors.
Table 3 Coefficients of primary cutting force models of turning processes

Coefficients
Workpiece material 𝐶𝐹 𝑘MF 𝑘γM 𝑛F 𝑦F 𝑥F

Steel 1434 1.02 0.89 -0.15 0.75 1.0
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Aluminum 390 1.00 1.00 0 0.75 1.0
Cast iron 790 1.02 0.89 0 0.75 1.0
Source Yang (2012)
Steel 1706 1.00 1.00 0 0.75 1.0
Aluminum 617 1.00 1.00 0 0.75 1.0
Cast iron 1046 1.00 1.00 0 0.75 1.0
Source Meng (1991)
Steel 1874 1.00 0.89 0 0.75 1.0
Aluminum - - - - - -
Cast iron 1422 1.00 1.00 0 0.82 0.92
Source Kaczmarek (1976)

4.2.  Experimental setup and design

In order to obtain the model coefficients experimentally, experiments were designed and 

conducted on a CK6153i computer numerical control (CNC) lathe. A flowchart of experimental 

procedure is shown in Fig. 2. The lathe, workpiece and cutting tools were first selected. This lathe 

was made by Jinan First Machine Tool Group Co., Ltd. of China. Three different types of workpiece 

materials including AISI 1045 steel, AISI 6061 aluminum and AISI 80-55-06 ductile iron were 

selected for experiments due to their wide use in manufacturing industry. The dimension of the 

workpiece is Φ80 mm×150 mm. The material properties and chemical composition of the workpiece 

materials are shown in Table 4. For cutting experiments, a TiCN coated carbide insert was used for 

the turning of steel and ductile iron, and an uncoated carbide insert was used for aluminum. The 

details of tool conditions are presented in Table 5. All cutting experiments were conducted under dry 

conditions.

Design experiments using Taguchi method

Measure the cutting forces and machine 
power

Report the average values and uncertainties 
of the measured cutting forces and power

Select the lathe, workpiece materials and 
cutting tools

Conduct cutting tests
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Fig. 2. A flowchart of experimental procedure.

Table 4 Material properties and chemical composition of the workpiece material.

Table 5 Tool conditions used in the experiments.
Workpiece material Steel and ductile iron Aluminum
Insert VNMG160408N-UX-AC820 CCGT09T304-AK-H01

AISI 1045 steel AISI 6061    
aluminum

AISI 80-55-06 
ductile iron

Yield strength (Mpa) 385 290 320
Tensile strength (Mpa) 665 325 500
Elongation (%) 24.5/25 13 7
Hardness (HB) 262 97 200
Chemical composition 
(wt %)

C(0.44); Si(0.23); 
Mn(0.61); P(0.012); 
S(0.024); Ni(0.02); 
Cr(0.03); Cu(0.05); 
Pb(0.0020); 
Fe(Remainder)

Fe(0.32); Si(0.55); 
Cu(0.27); Mg(1.02); 
Mn(0.03); Zn(0.03); 
C(0.15); Ti(0.01); 
Al(Remainder)

C(2.96~3.35); 
Si(2.34~2.86); 
Mn(0.50~0.68); 
S(0.015~0.019); 
P(0.038~0.053); 
Fe(Remainder)



ACCEPTED MANUSCRIPT

13

Tool holder MVJNR2525M16 SCLCR2525M09
Clearance angle 0º 7º
Cutting edge angle 93º 95º
Nose radius 0.8 mm 0.4 mm
Manufacturer Sumitomo Korloy

During cutting tests, the cutting forces were measured using a three-component force 

dynamometer (Kistler Type 9257A) mounted on the turret of the CNC lathe via a custom designed 

fixture. The charge generated at the dynamometer was amplified using three single channel charge 

amplifiers YE5850A made by Jiangsu Lianneng Electronic Technology Co., Ltd. of China. Power 

consumption of the machine tool was measured using voltage and current transducers, and the 

electrical signals were acquired by data acquisition cards and chassis. A laptop was connected to the 

chassis, and a LabVIEW programming interface was developed to record and process the electrical 

signals. The sampling rate was 5000Hz. Data was averaged and output every 0.1 s. The experimental 

setup is illustrated in Fig. 3.

 
Fig. 3. Experimental setup (a) Cutting force dynamometer mounting and (b) Power transducers and data acquisition 
device.

Then, experiments were designed using Taguchi method. Cutting speed, feed and depth of cut 

were defined as process variables. The ranges of the turning parameters of each material were 

selected as recommended from the tool manufacturers. The turning factors and their levels are shown 

in Table 6. For the machining experiments of each material, Taguchi’s orthogonal design L16 (34) 

was employed to study the factors influencing the material removal power, as shown in Table 7-

Table 9. Here, the three factors of cutting speed, feed and depth of cut are coded as A, B and C. Four 

levels of factors A, B and C were represented by “1”, “2”, “3” and “4” in the matrix. As shown in 
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each row of the matrix represents one trial, and 16 experiments were conducted for turning processes 

of each material. The length of cut for each test was 30 mm in axial direction. Each run was repeated 

three times during the cutting tests and the primary cutting forces FC [N] and machine power were 

measured. The material removal power Pm [W] was computed by subtracting the power measured 

during air-cutting from the power acquired during the normal cutting. The average values and 

uncertainty of the three measurements of cutting forces and power were obtained using Equations 

(9)-(12). The uncertainties of cutting force ∆FC are smaller (within 2.5%), while the uncertainties of 

material removal power ∆Pm are larger (up to 7.5%). This could be explained by that the former 

values are only related to workpiece material, cutting tool and parameters while the later values 

depend on both air-cutting and normal cutting power variations of the machine tool.

Table 6 Cutting parameters and their levels in turning experiments.
Material Coded factors Cutting parameters Level 1 Level 2 Level 3 Level 4

A Cutting speed [m/s] 0.83 1.67 2.50 3.33 
B Feed [mm/rev] 0.05 0.1 0.15 0.2

Steel

C Depth of cut [mm] 0.5 1.0 1.5 2.0
A Cutting speed [m/s] 1 2 3 4
B Feed [mm/rev] 0.1 0.2 0.3 0.4

Aluminum

C Depth of cut [mm] 0.6 1.2 1.8 2.4 
A Cutting speed [m/s] 0.67 1.33 2.00 2.67 
B Feed [mm/rev] 0.05 0.1 0.15 0.2

Ductile iron

C Depth of cut [mm] 0.5 1.0 1.5 2.0
Table 7 Design matrix and measurements of cutting force and material removal power of steel.

Factors and levels Cutting force Material removal powerExperimen
tal order A B C FC [N] ∆FC [N] Pm [W] ∆Pm [W]

1 1 1 1 116.5 2.1 103.0 7.7 
2 1 2 2 379.9 2.1 323.9 2.7 
3 1 3 3 739.5 1.7 668.7 7.2 
4 1 4 4 1277.0 9.1 1204.2 8.2 
5 2 1 2 270.2 5.0 462.7 9.3 
6 2 2 1 221.8 1.8 372.3 12.1 
7 2 3 4 874.7 0.8 1552.0 9.9 
8 2 4 3 812.9 0.2 1438.8 2.8 
9 3 1 3 340.8 1.3 870.9 6.8 
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10 3 2 4 646.6 1.5 1683.1 28.1 
11 3 3 1 253.8 0.9 659.1 11.3 
12 3 4 2 564.2 1.0 1453.4 9.5 
13 4 1 4 422.9 2.6 1478.1 32.9 
14 4 2 3 494.0 2.8 1686.1 31.6 
15 4 3 2 448.4 1.4 1506.1 10.0 
16 4 4 1 304.3 2.4 　 1027.1 16.0 

Table 8 Design matrix and measurements of cutting force and material removal power of aluminum. 
Factors and levels Cutting force Material removal powerExperimen

tal order A B C FC [N] ∆FC [N] Pm [W] ∆Pm [W]
1 1 1 1 66.3 0.5 67.5 3.3 
2 1 2 2 228.0 0.5 235.7 9.5 
3 1 3 3 443.9 1.6 483.8 5.9 
4 1 4 4 732.0 1.7 795.3 7.8 
5 2 1 2 118.5 2.7 267.3 7.6 
6 2 2 1 109.2 0.3 238.4 2.9 
7 2 3 4 515.8 1.2 1084.3 19.5 
8 2 4 3 521.1 2.0 1090.3 20.9 
9 3 1 3 169.0 1.3 571.3 38.7 
10 3 2 4 395.6 9.4 1194.2 31.1 
11 3 3 1 142.4 0.9 449.9 26.7 
12 3 4 2 353.7 1.1 1110.6 15.4 
13 4 1 4 200.2 1.4 837.1 35.0 
14 4 2 3 271.7 2.7 1127.8 60.8 
15 4 3 2 280.5 5.2 1173.7 40.7 
16 4 4 1 171.6 1.9 764.9 23.8 

Table 9 Design matrix and measurements of cutting force and material removal power of ductile iron. 
Factors and levels Cutting force Material removal powerExperime

ntal order A B C FC [N] ∆FC [N] Pm [W] ∆Pm [W]
1 1 1 1 72.9 0.2 52.1 1.9 
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2 1 2 2 228.2 0.7 167.0 0.6 
3 1 3 3 453.5 1.3 321.9 1.9 
4 1 4 4 780.7 1.3 542.9 1.6 
5 2 1 2 131.6 0.1 179.6 3.4 
6 2 2 1 133.1 0.2 187.0 12.2 
7 2 3 4 630.0 1.3 864.2 45.2 
8 2 4 3 603.5 0.7 829.1 31.2 
9 3 1 3 194.7 3.0 398.9 8.0 
10 3 2 4 464.2 1.0 957.5 5.1 
11 3 3 1 170.5 0.6 346.1 8.5 
12 3 4 2 417.4 0.7 849.7 4.1 
13 4 1 4 321.2 3.0 856.7 21.0 
14 4 2 3 390.6 1.2 1063.1 16.0 
15 4 3 2 361.2 0.4 976.2 16.7 
16 4 4 1 　 237.6 0.2 　 647.5 12.7 

4.3.  Regression analysis of the measured data

Based on experimental data in Table 7-Table 9, linear regression was used to acquire the model 

coefficients for the above three methods. There are five main assumptions which justify the use of 

linear regression models: linearity, homoscedasticity, normality, independence and no 

multicollinearity. Assumption of linearity and homoscedasticity were first checked using a plot of 

residuals versus predicted values. The residuals are randomly dispersed around the zero horizontal 

line, which indicates linear regression models are appropriate for the data. In addition, there is no 

clear pattern in the residual distribution, which indicates that the assumption of homoscedasticity is 

satisfied. Then the assumption of normality is verified using the normal probability plot of residuals. 

The residuals lie reasonably close to a straight line, giving support that the normal distributed of 

residuals is satisfied. Next, assumption of independence is verified by the Durbin-Watson statistic. 

The values of Durbin-Watson are greater than the upper critical values in most cases, which means 

that the assumption of independence is satisfied. Finally, the variance inflation factor (VIF) values 

are used to test the no multicollinearity assumption. All the values of VIF equal to 1, which indicates 

that the there is no correlation among the predictor variables. The analysis of variance (ANOVA) 

was applied to test the significance of the regression. The values and uncertainties of coefficients and 

the results of ANOVA for the fitted models are summarized in Table 10. On average, the values of 

uncertainties are much smaller than the values of the model coefficients. This analysis was carried 
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out at the 95% confidence level, as shown in Table 11. The R-square values of all the models exceed 

0.982, which indicates that regression is capable of providing good fits to obtain the model 

coefficients, and more than 98.2% of the variance of the observed data can be explained within the 

empirical models. The large F-values (exceed 326.0) imply a strong correlation between the 

responses and the variable chosen in the model under various cutting parameters. The fact that the P-

values are less than 0.0001 means the obtained models are statistically significant. 

Table 10 Values and uncertainties of coefficients for the fitted models.
 [J/mm3]𝑘

Model Materials
Value Uncertainty

Steel 3.269 0.228

Aluminum 0.803 0.029
Specific 

energy 

model
Ductile 

iron
2.358 0.150

log (𝐶F𝑘MF𝑘γM) 𝑛F 𝑦F 𝑥F
Model Materials

Value Uncertainty Value Uncertainty Value Uncertainty Value Uncertainty

Steel 3.243 0.036 -0.0724 0.035 0.655 0.035 0.902 0.035

Aluminum 2.835 0.013 -0.104 0.016 0.803 0.016 0.924 0.016
Cutting 

force based 

model
Ductile 

iron

3.154 0.028 0.0856 0.028 0.779 0.028 0.935 0.028

log (𝐶P) 𝑛P 𝑦P 𝑥P
Model Materials

Value Uncertainty Value Uncertainty Value Uncertainty Value Uncertainty

Steel 3.282 0.038 0.893 0.037 0.668 0.037 0.929 0.037

Aluminum 2.860 0.018 0.896 0.023 0.799 0.023 0.915 0.023

Postulated 

exponential 

model Ductile 

iron
3.174 0.029 1.047 0.029 0.777 0.029 0.926 0.029

Table 11 The results of ANOVA for the fitted models.
Models Materials R2 R2 Adjusted F-value P-value

Steel 0.982 0.915 807.3 <0.0001

Aluminum 0.995 0.929 3099.5 <0.0001

Specific 

energy 

model Ductile iron 0.985 0.918 967.9 <0.0001

Steel 0.988 0.985 326.0 <0.0001Cutting 

force based Aluminum 0.998 0.997 1889.5 <0.0001
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model Ductile iron 0.994 0.992 631.6 <0.0001

Steel 0.992 0.990 506.9 <0.0001

Aluminum 0.997 0.997 1449.1 <0.0001

Postulated 

exponential 

model Ductile iron 0.996 0.995 1001.9 <0.0001

The methods, models and sources of coefficients for predicting the material removal power 

were summarized in Table 12.

Table 12. Summary of methods, models and sources of coefficients for predicting the material removal power in 
turning.

Models for different types of materials
Methods Steel Aluminum alloy Cast iron

Sources of 

coefficients

𝑃m = 1.96𝑣 𝑃m = 0.83𝑣 𝑃m = 1.41𝑣 Wu (2012)

𝑃m = 2.59𝑣 𝑃m = 0.90𝑣 𝑃m = 1.72𝑣 Oberg et al. (2008)

𝑃m = 4.3𝑣 𝑃m = 0.7𝑣 𝑃m = 1.2𝑣 Rajemi (2011)

Specific energy 

based method

𝑃m = 3.269𝑣 𝑃m = 0.803𝑣 𝑃m = 2.358𝑣 Experiments

𝑃m = 1302𝑣0.85𝑓
0.75

𝑎p
𝑃m = 390𝑣𝑓0.75𝑎p 𝑃m = 717𝑣𝑓0.75𝑎p

Yang (2012)

𝑃m = 1706𝑣𝑓0.75𝑎p 𝑃m = 617𝑣𝑓0.75𝑎p 𝑃m = 1046𝑣𝑓0.75𝑎p
Meng (1991)

𝑃m = 1668𝑣𝑓0.75𝑎p
- 𝑃m = 1422𝑣𝑓0.82𝑎p

0.92 Kaczmarek (1976)

Cutting force based 

method

𝑃m = 1750𝑣0.928𝑓0.655𝑎p
0.902 𝑃m = 684𝑣0.896𝑓0.803𝑎p

0.924 𝑃m = 1426𝑣1.086𝑓0.779𝑎p
0.935 Experiments

Exponential function 

based method
𝑃m = 1914𝑣0.893𝑓0.668𝑎p

0.929 𝑃m = 724𝑣0.896𝑓0.799𝑎p
0.915 𝑃m = 1493𝑣1.047𝑓0.777𝑎p

0.926 Experiments

5. Results and discussion

This section discusses the prediction accuracy of above three methods using unseen testing data. 

Twelve new combinations of cutting parameters were selected for confirmation experiments. The 

test parameters are within the range of the parameters defined previously (see Table 13). Fig. 4 

illustrates the measured and predicted material removal power. The measured power was obtained by 

conducting cutting tests on CK6153i under dry condition. The prediction uncertainties were 

calculated using Eqs. (14)-(15). The error bar represents the uncertainty with 95% confidence 

interval for the predicted power. When using coefficients form literatures, the power predicted by 
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SEM and CFM varies a lot. This could be attributed to the variations of coefficients obtained from 

literatures. When using coefficients obtained experimentally, the power predicted is very close to the 

measured value. In this case, most measured power values fall within the 95% confidence bound on 

the predicted power. The width of the confidence bound changes depending on how the machining 

parameters for a test experiment are distributed relative to the average values of machining 

parameters used in the training dataset. In general, the width of the confidence bound increases 

toward the end points of the range of machining parameters. Another observation is that there is no 

significant difference in power prediction accuracy for different materials.

Table 13 Cutting parameters and the measured material removal power for evaluation of the methods.
Cutting parameters

Workpiece 

material

Test 

No.
Cutting speed 

[m/s]

Feed 

[mm/rev]

Depth of 

cut [mm]

Power  𝑃m

[W]

1 1.33 0.08 0.8 402.7

2 2.00 0.08 1.2 782.3

3 2.00 0.18 1.8 1770.6

Steel

4 1.33 0.18 1.2 883.1

1 2.17 0.15 1.2 362.8

2 3.67 0.26 1.2 933.7

3 3.67 0.2 0.8 484.6

Aluminum

4 2.17 0.2 1.6 576.3

1 1.67 0.12 0.6 272

2 1.67 0.18 1 642.6

3 2.50 0.12 1.2 873.9

Ductile iron

4 2.00 0.12 1 577.3
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Fig. 4. Comparison of measured and predicted power. Power predicted by SEM for (a) steel, (b) aluminum and (c) 
iron. Power predicted by CFM for (d) steel, (e) aluminum and (f) iron. Power predicted by EFM for (g) steel, (h) 
aluminum and (i) iron.

Table 14 shows the average prediction accuracy of the material removal power for the three 

methods. When coefficients are obtained from literatures, no single method, SEM or CFM, is better 

than another. For SEM, the average prediction accuracy is low, ranging from 52.1% to 74.6% for 

steel and ductile iron. This low accuracy could be explained by the large difference between the 

values of specific energy k given in literatures and the real k values. The values of prediction 

accuracy were over 82.5% for aluminum. This implies that for some material, like aluminum, the k 

values from literatures could provide an effective prediction of material removal power. For CFM, 

all values of the average prediction accuracy are below 68.8% using coefficients from Yang (2012). 

This low accuracy may be due to the inaccurate coefficients from literatures, which were obtained by 

experiments conducted decades ago. The machining conditions such as workpiece material 

properties, tool coating material have changed a lot over the past years, which may result in large 

changes of power value. When using coefficients from Meng (1991) and Kaczmarek (1976), a higher 

prediction accuracy which is ranging from 75.1% to 91.2% could be observed, and the CFM 

performs better than the SEM. It can be seen that sources of coefficients could have a great influence 

on the prediction accuracy of the method. Therefore, proper selection of literatures is very important 

to increase the prediction accuracy. 
Table 14 Average prediction accuracy of material removal power for the three methods.

Prediction accuracy [%]Methods Sources of coefficients

Steel Aluminum Ductile iron

1- Wu (2012) 56.3 96.7 61.2

2- Oberg et al. (2008) 74.4 92.3 74.6

3- Rajemi (2011) 72.0 82.5 52.1

SEM

4- Experiments 80.8 94.6 95.3

1- Yang (2012) 58.0 68.8 51.5CFM

2- Meng (1991) 82.0 91.2 75.1
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3- Kaczmarek (1976) 80.1 - 89.3

4- Experiments 95.0 97.4 97.0

EFM 1- Experiments 94.0 95.5 94.9

When coefficients are obtained from experiments, the prediction accuracy has been improved a 

lot. Overall, the highest prediction accuracy, ranging from 95.0% to 97.4%, was achieved with the 

CFM. In the case of EFM, the average prediction accuracy varies from 94.0% to 95.5%, which is 

slightly lower than that predicted by the CFM. The prediction accuracy was lowest with SEM. Thus 

the material removal power could be expressed as an exponential function of cutting parameters 

rather than the product of the cutting parameters.

Another important aspect in evaluating a prediction method is the implementation difficulty. It 

is easy to implement the methods using coefficients from literatures. In this case, only the handbooks 

or text books are needed to review to get the coefficients. For the case of coefficients obtained 

experimentally, experiments are specially designed and conducted and the cutting forces or power of 

the machines are measured. The measurement of cutting force is limited by high cost and layout 

constraints. For instance, the Kistler Type 9257B dynamometer costs more than 30,000 USD. To fix 

the dynamometer on the turret of machine tool, special fixture is needed to be designed and 

manufactured. The measurement of machine power could be cheaper and easier. The current and 

voltage sensors (such as LEM sensors) used to for the power measurement are cheaper (less than 30 

USD for each sensor). The sensors can be easily connected to the three-phase electrical wires in the 

main electrical cabinet of the machine tools. 

In summary, the average prediction accuracy and implementation requirements of the three 

methods are summarized in Table 15. Overall, no method outperformed the others when using 

coefficients from literatures. When coefficients were obtained from experiments, the CFM and EFM 

provided more accurate prediction of material removal power, and the predictions gave quite 

consistent results where same levels of errors were obtained for all types of materials. 
Table 15 Average prediction accuracy and implementation requirements of different methods in this study.

Ranges of average prediction accuracy [%]
Methods

Coefficients 

from Steel Aluminum Ductile iron
Implementation requirements

Literatures 56.3-74.4 82.5-96.7 52.1-74.6 Review handbooks or theses.
SEM

Experiments 80.8 94.6 95.3 Conduct experiments and measure power data.

Literatures 58.0-82.0 68.8-91.2 51.5-89.3 Review handbooks or text books.
CFM

Experiments 95.0 97.4 97.0 Conduct experiments and measure force data.
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EFM Experiments 94.0 95.5 94.9 Conduct experiments and measure power data.

In industrial application, not only the prediction accuracy but also the implementation difficulty 

is considered in the process of method selection. If the required prediction accuracy is not high, for 

instance, to verify if spindle motor can provide enough machining power in process planning stage, 

the SEM or CFM are recommended to be used with coefficients from literatures. If higher prediction 

accuracy is required, for instance, to get accurate machining power data for energy optimization, 

methods with coefficients obtained experimentally should be adopted. Although the CFM can 

provide the most accurate prediction of material removal power, the force measurement is difficult to 

apply. Comparatively, the EFM might be a compromise solution, which could provide a relatively 

high prediction accuracy with moderate implementation difficulty, since the power measurement is 

less expensive and easier to be implemented than the measurement of cutting force.

6. Selection of cutting parameters for energy efficient machining

In the process design stage, there are often several feasible combinations of cutting parameters 

to machine a part. The material removal power of each combination of cutting parameters can be 

predicted with the above three methods. Then machining parameters that uses the least amount of 

energy to machine a part can be selected before actually machining the part. In the following section, 

a case study is employed to demonstrate the effect of accurate power prediction on energy savings.

In this case study, an AISI 1045 steel round bar with a diameter of 76 mm is machined on the 

CK6153i CNC lathe. Three feasible combinations of cutting parameters are selected as shown in 

Table 16. The energy consumption of machining is determined by the product of machining time 

and power. The machining time is approximately equal because the material removal rates are nearly 

the same for the three sets of parameters. Thus less energy is consumed with lower material removal 

power. The above three methods with coefficients from experiments are used to predict the material 

removal power. Then this prediction is compared to the measured power (see Fig. 5). It can be seen 

that the values of power predicted with the SEM are not accurate enough and nearly the same. This 

may mislead the selection of cutting parameters. When the power is predicted with CFM and EFM, 

the prediction accuracy has been improved a lot and the measured power values all fall within the 

95% confidence bound on the predicted power. In this case, the first set of parameters which 
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consumes the least amount of power will be selected. This selection could achieve energy savings of 

up to 19%. Therefore, accurate prediction of material removal power could support the selection of 

cutting parameters for energy saving, thereby reducing the environmental impact of machining.
Table 16 Cutting parameters used in the case study.

Levels Cutting speed 
[m/s]

Feed 
[mm/r]

Depth of cut 
[mm]

1 1.95 0.2 1.5
2 2.61 0.15 1.5
3 3.90 0.1 1.5

1 2 3
0
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3500

Po
w

er
 [W

]

Levels of cutting parameters

Measured Predicted - specific energy based method
Predicted - cutting force based method
Predicted - exponential function based method

95% confidence bound

Fig. 5. Material removal power comparison for different sets of cutting parameters.

7. Conclusions and future work

The material removal power is an essential part of energy consumed during machining, three 

types of methods: the SEM, CFM and EFM, are usually used to predict the material removal power. 

However, there is a lack of evaluation and comparison of the accuracy of these methods. 

Inappropriate use of the methods may lead to low prediction accuracy, which cannot support 

accurate energy evaluation and energy reduction of machining processes. In the current work, the 

accuracy of the three types of methods is analyzed and compared. According to analysis results, 

conclusions are drawn as follows:

1. The prediction accuracy of the methods is largely influenced by the sources of coefficients. 

When using coefficients from literatures, the prediction accuracy of the methods varies a lot, ranging 

from 51.5% to 96.7%. In this case, the material removal power prediction of aluminum demonstrated 

better performance than that of the steel and ductile iron.
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2. The prediction accuracy of the methods has been improved a lot when using coefficients 

obtained experimentally. Most measured power values fall within the uncertainty bound (95% 

confidence) on the predicted power. In this case, the CFM can provide the most accurate prediction 

of material removal power, followed by the EFM and then the SEM.

3. The SEM and CFM are easy to implement when using coefficients from literatures. When 

using coefficients from experiments, the implementation difficulty of the SEM and EFM is moderate 

and the CFM is the most difficult to implement. 

The accurate prediction of material removal power can be used to improve the energy efficiency 

of machining. Machining parameters that use the least amount of energy can be selected in the 

process design stage. One limitation of the study is that this study was only conducted for turning 

processes. Further studies should extend this research into other machining processes (such as 

milling and drilling) and development energy saving methods, such as cutting parameters 

optimization and tool path selection.
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Nomenclature
Acc prediction accuracy

𝐶𝐹
coefficient of cutting force

𝐶P
coefficient of material removal power

𝐹C
primary cutting force [N]



ACCEPTED MANUSCRIPT

25

𝐹𝑍
cutting force of milling process [N]

𝐾𝐹
coefficient of milling force

𝑃m
power used for material removal operation [W]

𝑃mes
measured material removal power [W]

𝑃pred predicted material removal power [W]
SEE standard error of estimate
𝑈model expanded uncertainty of the model
Z number of cutting tooth

𝑎𝑓
feed per tooth [mm/tooth]

𝑎𝑝
depth of cut [mm]

𝑎w
width of cut [mm]

𝑑0
cutting tool diameter [mm]

𝑓 feed [mm/r]
𝑘

specific energy requirement in cutting operations [ ]W·s/mm3

𝑘MF
correction coefficient for yield and tensile strength of the workpiece material

𝑘γM
correction coefficient for tool angles

n the number of observations

𝑛F
exponential coefficient of cutting speed

𝑛P
coefficient of cutting speed

p number of model parameters
𝑡𝑛 ‒ 𝑝, 1 ‒ 𝛼/2 value obtained from the t-distribution table

𝑢𝑏𝑖 uncertainty of model coefficient 𝑏𝑖

𝑢model standard uncertainty of the model
𝑣 cutting speed [m/min]
𝑣 material removal rate (MRR) [mm3/s]
𝑥avg average value measured for N times 

𝑥F
exponential coefficient for depth of cut
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𝑥P
coefficient of depth of cut

𝑥𝑖
value obtained in ith measurement

𝑥𝑖,ave average value of variable xi.
𝑥𝑖,𝑗 the j-th data of independent variable xi

𝑦F
exponential coefficient of feed

𝑦P
coefficient of feed

∆FC uncertainties of cutting force [N]
∆Pm uncertainties of material removal power [W]
∆𝑥 uncertainty of 𝑥
∆𝑥avg uncertainty in the mean value of N times measurements
∆𝑦 uncertainty of y
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Highlights

•Three methods can be used to predict material removal energy.

•The accuracy and implementation difficulty of three methods are investigated.

•The coefficients for the methods can be obtained experimentally.
•The cutting force based method can provide the most accurate power prediction.
•The methods should be selected according to the required accuracy in industry.


