期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:407
Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities
Article
Benterki, Rebiha1  Llibre, Jaume2 
[1] Univ Bordj Bou Arreridj, Dept Matemat, El Anasser 34265, Algeria
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词: Limit cycle;    Periodic orbit;    Center;    Reversible center;    Averaging method;   
DOI  :  10.1016/j.jmaa.2013.04.076
来源: Elsevier
PDF
【 摘 要 】

In this paper we mainly study the number of limit cycles which can bifurcate from the periodic orbits of the two centers (x) over dot = -y, (y) over dot = x; (x) over dot = -y(1 - (x(2) + y(2))(2)), (y) over dot = x(1 - (x(2) + y(2))(2)); when they are perturbed inside the class of all polynomial differential systems with quintic homogeneous nonlinearities. We do this study using the averaging theory of first, second and third orders. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_04_076.pdf 375KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次