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a b s t r a c t

In this paper we mainly study the number of limit cycles which can bifurcate from the
periodic orbits of the two centers

ẋ = −y, ẏ = x;
ẋ = −y(1 − (x2 + y2)2), ẏ = x(1 − (x2 + y2)2);

when they are perturbed inside the class of all polynomial differential systemswith quintic
homogeneous nonlinearities. We do this study using the averaging theory of first, second
and third orders.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of the results

In this paper we only consider differential equations in R2 of the form

dx
dt

= P(x, y),
dy
dt

= Q (x, y), (1)

where P and Q are polynomials of degree at most 5 with only homogeneous nonlinearities. We recall that a limit cycle of the
differential equation (1) is a periodic orbit of this equation isolated in the set of all periodic orbits of Eq. (1).

The definition of limit cycles appeared in the years 1891 and 1897 in the works of Poincaré [15]. Almost immediately, in
1990, they become themain object to be studied in the statement of the second part of the 16-thHilbert problem [9]. Later on
van der Pol [16] in 1926, Liénard [11] in 1928 and Andronov [1] in 1929 shown that the periodic solution of a self-sustained
oscillation of a circuit in a vacuum tube was a limit cycle in the sense defined by Poincaré. After this first observation of
the existence of limit cycles in the nature, the existence, non-existence, uniqueness and other properties of the limit cycles
have been intensively studied first by the mathematicians and the physicists, and more recently by the chemists, biologists,
economists, etc. Nowadays the study of the limit cycles of the planar differential systems has been one of themain problems
of the qualitative theory of the differential equations. See for instance the recent papers [18–20] and the references quoted
there.

A center is a singular point of a differential system (1) for which there exists a neighborhood such that all the orbits in
that neighborhood are periodic, with the exception of the singular point.

A good way of producing limit cycles is by perturbing the periodic orbits of a center. This technique has been studied
intensively perturbing the periodic orbits of the centers, mainly of centers of the quadratic polynomial differential systems;
see for instance the book of Christopher and Li [6], and the references therein.
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The techniques used for studying the limit cycles that can bifurcate from the periodic orbits of a center, are mainly three:
Abelian integrals (see [6]), Melnikov functions (see [10]), and averaging theory (see [3]). In the plane at same order all these
techniques are equivalent (see [8]), they produce the same results, but the computations can change with the different
technique.

In this note we shall consider polynomial differential systems of the form

ẋ = P1(x, y) + Pn(x, y), ẏ = Q1(x, y) + Qn(x, y), (2)

where Pk(x, y) and Qk(x, y) are homogeneous polynomials of degree k, i.e. we consider polynomial differential systems with
homogeneous nonlinearities. For n = 2 we have the class of all quadratic polynomial differential systems, whose centers
have been completely classified, and there are hundreds of papers studying how many limit cycles can bifurcate from the
periodic orbits of these centers; see again [6]. For the general cubic polynomial differential systems the centers are not com-
pletely classified, but for the particular class of systems (2) with n = 3 their centers have been classified; see [14,17]. The
study of the limit cycles which can bifurcate from the periodic orbits of some centers of this last class (n = 3) were made
in [12], and for n = 4, see [4]. In this work we will study the class n = 5.

The easiest center is the linear differential center ẋ = −y, ẏ = x. In fact, Iliev [10] proved that the perturbation of this
center inside the class of all polynomial differential systems of degree n, using the Melnikov function at order k, produces at
most [k(n − 1)/2] limit cycles, where [z] denotes the integer part function of z ∈ R. Another easy center is the degenerate
center ẋ = −y((x2 + y2)/2)m, ẏ = x((x2 + y2)/2)m with m ≥ 1. In [2] the authors improve the bound of Iliev perturbing
the mentioned degenerate center. Thus, for n = 5 the Iliev result is at most 2, 4 and 6 limit cycles at first, second and third
orders, respectively. While if we perturb the center ẋ = −y((x2 + y2)/2)2, ẏ = x((x2 + y2)/2)2 of degree 5 we get at most
2, 4 and 7 limit cycles at first, second and third orders, respectively (see Theorem 1.1 of [2]). We remark that these results
are not optimal for the following polynomial differential system

ẋ = −y + x
3

s=1

εsλs +

3
s=1

εs
5

i=0

ai,sxiy5−i,

ẏ = x + y
3

s=1

εsλs +

3
s=1

εs
5

i=0

bi,sxiy5−i,

(3)

of degree 5, because systems (3) does not have terms of degree 2, 3 and 4, only have linear terms and homogeneous nonlin-
earities of degree 5.

The first objective of ourworkwill be to provide the optimal upper bounds for the number of limit cycleswhich can be ob-
tained perturbing the centers ẋ = −y, ẏ = xwith linear terms and homogeneous nonlinearities of degree 5 by using the av-
eraging theory of first, second and third orders; see formore details Section 3. In other words, what is themaximumnumber
of limit cycles of systems (3) for ε ≠ 0 sufficiently smallwhich bifurcate from the periodic orbits of the centers ẋ = −y, ẏ = x
using averaging theory of first, second and third orders, respectively? The answers to this question is given in Theorem 1.

Our second objective will be give the optimal upper bounds for the number of limit cycles which can be obtained per-
turbing the center ẋ = −y(1 − (x2 + y2)2), ẏ = x(1 − (x2 + y2)2) with linear terms and homogeneous nonlinearities of
degree 5 by using the averaging theory of first, second and third orders. More precisely, what is the maximum number of
limit cycles of the system

ẋ = −y(1 − (x2 + y2)2) + x
3

s=1

εsλs +

3
s=1

εs
5

i=0

ai,sxiy5−i,

ẏ = x(1 − (x2 + y2)2) + y
3

s=1

εsλs +

3
s=1

εs
5

i=0

bi,sxiy5−i,

(4)

which bifurcate from the periodic orbits of the center ẋ = −y(1− (x2 + y2)2), ẏ = x(1− (x2 + y2)2) using averaging theory
of first, second and third orders? The answer to this question is provided in Theorem 2.

We note that H = x2 + y2 is a first integral of the two differential systems (3) and (4) when ε = 0. Therefore, such
systems when ε = 0 have a center at the origin, and the periodic solutions surrounding them are circles.

Our main results are the following.

Theorem 1. For ε ≠ 0 sufficiently small and for k = 1, 2, 3 the maximum number of limit cycles of system (3) which bifurcate
from the periodic orbits of the center ẋ = −y, ẏ = x using averaging theory of k-th order is k.

Theorem 2. For k = 1, 2 and 3 the maximum number of limit cycles of system (4)which bifurcate from the periodic orbits of the
center ẋ = −y(1 − (x2 + y2)2), ẏ = x(1 − (x2 + y2)2) using averaging theory of k-th order is 1, 2 and 4, respectively.

Theorems 1 and 2 are proved in Section 4.
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On the other hand we should consider polynomial differential systems with homogeneous nonlinearities of degree 5 as
the ones of systems (3) and (4) such that when ε = 0 the system reduces to

ẋ = −
1
4
y(x2 + y2)2,

ẏ =
1
4
x(x2 + y2)2.

We shall see that those systems have at most 1 limit cycle. But this result is more general, because the mentioned poly-
nomial differential systems with homogeneous nonlinearities of degree 5 are a particular case of the following polynomial
differential systems

ẋ = −
1

n − 1
y(x2 + y2)(n−1)/2

+ λx + Pn(x, y),

ẏ =
1

n − 1
x(x2 + y2)(n−1)/2

+ λy + Qn(x, y),
(5)

when n is odd. The next result shows that systems (5) has at most one limit cycle.

Theorem 3. The polynomial differential systems (5)with linear terms and nonlinear terms of degree n odd at most have one limit
cycle, and when it exists is hyperbolic.

Theorem 3 is also proved in Section 4. In fact this theorem implicitly could be obtained from the computations of the
paper [7].

2. Polar coordinates and Cherkas transformation

We shall use the following result due to Cherkas [5].

Lemma 4. The differential equation

dr
dθ

=
λr + a(θ)rn

1 + b(θ)rn−1
,

doing the change of variables r → ρ given by ρ = rn−1/(1 + b(θ)rn−1), becomes the Abel differential equation

dρ
dθ

= (n − 1)b(θ)(λb(θ) − a(θ))ρ3
+


(n − 1)(a(θ) − 2λb(θ)) − b′(θ)


ρ2

+ (n − 1)λρ.

Combining Lemma 4 with the polar change of coordinates (x, y) → (r, θ) where x = r cos θ and y = r sin θ we shall
obtain the following result.

Corollary 5. Let P(x, y) and Q (x, y) be homogeneous polynomials of degree n. Then the differential system

ẋ = λx − y + Pn(x, y), ẏ = x + λy + Qn(x, y), (6)

can be transformed into the Abel equation

dρ
dθ

= (n − 1)B(θ)(λB(θ) − A(θ))ρ3
+


(n − 1)(A(θ) − 2λB(θ)) − B′(θ)


ρ2

+ (n − 1)λρ (7)

where

A(θ) = cos θPn(cos θ, sin θ) + sin θQn(sin θ, cos θ),

B(θ) = cos θQn(cos θ, sin θ) − sin θPn(sin θ, cos θ).

Proof. System (6) expressed in polar coordinates becomes

ṙ = λr + A(θ)rn, θ̇ = 1 + B(θ)rn.

Dividing ṙ by θ̇ and using Lemma 4 the corollary follows. �

3. Averaging theory

In this section we present the basic results from the averaging theory that we shall need for proving the main results
of this paper. The averaging theory up to third order for studying specifically periodic orbits was developed in [3]. It is
summarized as follows.
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Consider the differential system

ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε), (8)

where F1, F2, F3 : R × D → R, R : R × D × (−εf , εf ) → R are continuous functions, T -periodic in the first variable, and D
is an open subset of R. Assume that the following hypotheses (i) and (ii) hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1, DxF2 are locally Lipschitz with respect to x, and R is twice

differentiable with respect to ε.
We define Fk0 : D → R for k = 1, 2, 3 as

F10(x) =
1
T

 T

0
F1(s, x)ds,

F20(x) =
1
T

 T

0


∂F1
∂x

(s, x) · y1(s, x) + F2(s, x)

ds,

F30(x) =
1
T

 T

0


1
2

∂2F1
∂x2

(s, x)y1(s, x)2 +
1
2

∂F1
∂x

(s, x)y2(s, x) +
∂F2
∂x

(s, x)y1(s, x) + F3(s, x)


ds,

where

y1(s, x) =

 s

0
F1(t, x)dt,

y2(s, x) = 2
 s

0


∂F1
∂x

(t, x)y1(t, x) + F2(t, x)

dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0}, there exists a ∈ V such that (F10+εF20+ε2F30)(a) =

0 and
d(F10 + εF20 + ε2F30)

dx
(a) ≠ 0.

Then for |ε| > 0 sufficiently small there exists a T -periodic solution x(t, ε) of the system such that x(0, ε) → a as ε → 0.
If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the zeros of F10 for ε sufficiently small. In this

case the previous result provides the averaging theory of first order.
If F10 is identically zero and F20 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the zeros of F20 for

ε sufficiently small. In this case the previous result provides the averaging theory of second order.
If F10 and F20 are identically zero and F30 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are the zeros of F30

for ε sufficiently small. In this case the previous result provides the averaging theory of third order.

4. Proofs

Proof of Theorem 1. Using Corollary 5 we write the polynomial differential system (3) as the Abel differential equation (7)
with n = 5 and where

A(θ) = ε

(a51 + εa52 + ε2a53) cos6 θ + (a41 + b51 + ε(a42 + b52) + ε2(a43 + b53)) cos5 θ sin θ

+ (a31 + b41 + ε(a32 + b42) + ε2(a33 + b43)) cos4 θ sin2 θ

+ (a21 + b31 + ε(a22 + b32) + ε2(a23 + b33)) cos3 θ sin3 θ

+ (a11 + b21 + ε(a12 + b22) + ε2(a13 + b23)) cos2 θ sin4 θ

+ (a01 + b11 + ε(a02 + b12] + ε2(a03 + b13)) cos θ sin5 θ + (b01 + εb02 + ε2b03) sin6 θ

,

B(θ) = ε

(b51 + b52ε + b53ε2) cos6 θ − (a51 − b41 + ε(a52 − b42) + ε2(a53 − b43)) cos5 θ sin θ

− (a41 − b31 + ε(a42 − b32) + ε2(a43 − b33)) cos4 θ sin2 θ

− (a31 − b21 + ε(a32 − b22) + ε2(a33 − b23)) cos3 θ sin3 θ

− (a21 − b11 + ε(a22 − b12) + ε2(a23 − b13)) cos2 θ sin4 θ

− (a11 − b01 + ε(a12 − b02) + ε2(a13 − b03)) cos θ sin5 θ − (a01 + ε2a02 + ε3a03) sin6 θ

.

(9)

Now the Abel differential equation (7) is the normal form (8) for applying the averaging theory up to third order in ε,
where in (8) we have now x = ρ, t = θ and Fk(θ, ρ) is the coefficient of εk in dρ/dθ for k = 1, 2, 3, we do not write their
huge expressions, easy to compute and manipulate with an algebraic manipulator as mathematica or maple.
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We compute the function F10(ρ) defined in Section 3, and we get

F10(ρ) =
1
4
ρ

16λ1 + (5b01 + a11 + a31 + b21 + 5a51 + b41) ρ


.

Clearly the polynomial F10(ρ) can have at most one positive real root, and there are polynomial differential systems (4) for
which they have such a positive real root. So, from Section 3 the proof of the theorem follows for k = 1.

For applying the averaging theory of second order we need that F10(ρ) ≡ 0. So we take

λ1 = 0, b41 = −5b01 − a11 − a31 − b21 − 5a51. (10)

Computing the function F20(ρ) defined in Section 3, we obtain

F20(ρ) =
1
64

ρ

256λ2 + 16R1ρ + R2ρ

2 ,

where

R1 = 5b02 + a12 + a32 + b22 + 5a52 + b42,

R2 = 50a01b01 + 10a01a11 + 3a01a31 + 3a01b21 + 6b01a21 + 2b01b11 + 4a11a21 + 6a11b11 + 18b01a41 + 14b01b31
+ 6a11a41 + 4a11b31 + 3a21a31 + a21b21 + 3b11a31
− b11b21 + 50b01b51 + 10a11b51 + 6a21a51 + 12b11a51
+ 7a31a41 + 3a31b31 + 3b21a41 + b21b31 + 7a31b51 + 7b21b51 + 28a41a51 + 14b31a51. (11)

Clearly the coefficients λ2, R1 and R2 are independent, so the polynomial F20(ρ) can have at most two positive real roots,
and there are polynomial differential systems (3) for which they have such two positive real roots. Hence the theorem is
proved for k = 2.

In order to apply the averaging theory of third order we need that F20(ρ) ≡ 0. So we take

λ2 = 0,
b42 = −5b02 − a12 − a32 − b22 − 5a52,

b51 =
1

50b01 + 10a11 + 7a31 + 7b21
(−50a01b01 − 10a01a11 − 3a01a31

− 3a01b21 − 6b01a21 − 4a11a21 − 6a11b11 − 18b01a41 − 14b31a51
− 14b01b31 − 6a11a41 − 4a11b31 − 3a21a31 − a21b21 + b11b21
− 6a21a51 − 12b11a51 − 2b01b11 − 3b11a31 − 7a31a41 − 3a31b31 − 3b21a41 − b21b31 − 28a41a51). (12)

Of course, we assume that the denominator 50b01 + 10a11 + 7a31 + 7b21 ≠ 0, otherwise we isolated another coefficient.
Computing the function F30(ρ) defined in Section 3, we obtain

F30(ρ) =
1

393216(50b01 + 10a11 + 7a31 + 7b21)2
ρ(k0 + k1ρ + k2ρ2

+ k3ρ3).

We do not provide the big expressions of the coefficients kj for j = 0, 1, 2, 3, because some of them needs more than one
page.

In view of the expression of the polynomial F30(ρ) it follows immediately that F30(ρ) can have at most three positive
real roots, and that there are systems (3) for which they have 0, 1, 2 or 3 positive real roots. This is due to the fact that in
every coefficient of the polynomial F30(ρ) appears some coefficient of the initial polynomial differential system (3) which
not appear in the other coefficients. For instance, for the system

ẋ = −y + ε2 183653y
5

3584
− ε3 183653x


88y4 − 3


49152

+ ε

x5 + x4y + x3y2 + x2y3 + y5


,

ẏ = x + ε3 183653y
16384

+ ε


−

11
4

x5 − 12x4y + x3y2 + x2y3 + xy4 + y5


,

the polynomials F10(ρ) ≡ F20(ρ) ≡ 0 and

F30(ρ) = −
183653
24576

(ρ − 3)(ρ − 2)(ρ − 1)ρ.

So this system has three positive real roots. This completes the proof of the theorem. �

Proof of Theorem 2. From Corollary 5 it follows that the polynomial differential system (4) becomes the Abel differential
equation (7) with n = 5 and with A(θ) exactly the one given in (9) and B(θ) equal to the one given in (9) minus 1. Again the
Abel differential equation (7) is written in the normal form (8) for applying the averaging theory, where x = ρ, t = θ and
Fk(θ, ρ) is the coefficient εk of dρ/dθ for k = 1, 2, 3.
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We compute the function F10(ρ) defined in Section 3, and we get

F10(ρ) =
1
4
ρ(ρ + 1)(16λ1 + (5b01 + a11 + a31 + b21 + 5a51 + b41 + 16λ1)ρ).

Clearly the polynomial F10(ρ) can have at most one positive real root, and there are polynomial differential systems (4) for
which they have such a positive real root. So, from Section 3 the proof of the theorem follows for k = 1.

Again the values (10) imply that F10(ρ) ≡ 0. Computing the function F20(ρ) we obtain

F20(ρ) =
1
64

ρ(ρ + 1)(256λ2 + 16(R1 + 16λ2)ρ + R2ρ
2),

where R1 and R2 are given in (11). The rest of the proof of the theorem for k = 2 follows as in the proof of Theorem 1.
Taking the values (12) we obtain that F20(ρ) ≡ 0. We calculate the function F30(ρ) and we obtain

F30(ρ) =
1

3072(50b01 + 10a11 + 7a31 + 7b21)
ρ(ρ + 1)(m0 + m1ρ + m2ρ

2
+ m3ρ

3
+ m4ρ

4).

We do not give the big expressions of the coefficients mj for j = 0, 1, 2, 3, 4. In view of the expression of the polynomial
F30(ρ) it follows easily that F30(ρ) can have at most four positive real roots, and that there are systems (4) for which they
have 0, 1, 2, 3 or 4 positive real roots. Again this is due to the fact that in every coefficient of the polynomial F30(ρ) appears
some coefficient of the initial polynomial differential system (4) which not appear in the other coefficients.

Finally, a tedious but easy computation shows that for the particular polynomial differential system (4) of the form

ẋ = −y

1 −


x2 + y2

2
+ ε


xy4 −

60447
220960

y5


+ ε2 71x2y3

441920
− ε3 240xy

4
− x

28282880
,

ẏ = x

1 −


x2 + y2

2
+ ε


−

27937
220960

x5 − x4y + x3y2


+ ε3 y
28282880

,

we obtain F10(ρ) ≡ F20(ρ) ≡ 0 and

F30(ρ) =
1

7070720
ρ(ρ + 1)(2ρ − 1)(3ρ − 1)(4ρ − 1)(5ρ − 1).

So for this system four limit cycles bifurcate from theperiodic orbits of the center ẋ = −y(1−(x2+y2)2), ẏ = x(1−(x2+y2)2).
Moreover, in coordinates (ρ, θ), the periodic orbits that bifurcate are ρ = 1/Rwith R = 2, 3, 4, 5. This completes the proof
of the theorem when k = 3. �

For proving Theorem 3 we shall use the following result

Proposition 6 (See [13]). If h(z) is the displacement function associated to the differential equation dρ/dθ = S(ρ, θ), then

h′′(z) = e
 2π
0

∂S
∂ρ

(ρ(θ,y),θ)dθ
 2π

0

∂2S
∂ρ2

(ρ(θ, y), θ)e
 θ
0

∂S
∂ρ

(ρ(s,y),s)dsdθ


,

where ρ(θ, y) is the solution of the differential equation such that ρ(0, y) = y.

Proof of Theorem 3. The polynomial differential system (5) in polar coordinates x = r cos θ and y = r sin θ becomes

ṙ = λr + a(θ)rn, θ̇ = rn−1b(θ), (13)

where

a(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),

b(θ) = cos θQn(cos θ, sin θ) − sin θPn(cos θ, sin θ).

Note that if b(θ∗) = 0 for some θ∗
∈ [0, 2π), then the straight line through the origin of slope tan θ∗ is invariant and

consequently, the system cannot have limit cycles surrounding the origin, or any other equilibrium (r∗, θ∗) of the system.
So we can assume that b(θ) ≠ 0 for all θ ∈ [0, 2π).

Doing the change ρ = r3−n and taking θ as new independent variable we get that system (13) is equivalent to the
differential equation

dρ
dθ

= (3 − n)

a(θ)

b(θ)
ρ +

λ

b(θ)


= S(ρ, θ).

Applying Proposition 6 to this differential equation we have that the displacement function h(z) satisfies that h′′(z) = 0, so
h(z) = αz + β with α, β ∈ R. So h(z) has at most one simple zero, and consequently our polynomial differential system
has at most one hyperbolic limit cycle. �
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