期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:381 |
Limit cycles bifurcating from isochronous surfaces of revolution in R3 | |
Article | |
Llibre, Jaume1  Rebollo-Perdomo, Salomon1  Torregrosa, Joan1  | |
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain | |
关键词: Limit cycle; Periodic orbit; Isochronous set; Averaging method; | |
DOI : 10.1016/j.jmaa.2011.04.009 | |
来源: Elsevier | |
【 摘 要 】
In this paper we study the number of limit cycles bifurcating from isochronous surfaces of revolution contained in R-3, when we consider polynomial perturbations of arbitrary degree. The method for studying these limit cycles is based on the averaging theory and on the properties of Chebyshev systems. We present a new result on averaging theory and generalizations of some classical Chebyshev systems which allow us to obtain the main results. (C) 2011 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2011_04_009.pdf | 231KB | download |