期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:381
Limit cycles bifurcating from isochronous surfaces of revolution in R3
Article
Llibre, Jaume1  Rebollo-Perdomo, Salomon1  Torregrosa, Joan1 
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词: Limit cycle;    Periodic orbit;    Isochronous set;    Averaging method;   
DOI  :  10.1016/j.jmaa.2011.04.009
来源: Elsevier
PDF
【 摘 要 】

In this paper we study the number of limit cycles bifurcating from isochronous surfaces of revolution contained in R-3, when we consider polynomial perturbations of arbitrary degree. The method for studying these limit cycles is based on the averaging theory and on the properties of Chebyshev systems. We present a new result on averaging theory and generalizations of some classical Chebyshev systems which allow us to obtain the main results. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_04_009.pdf 231KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次