期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:492
Toeplitz kernels and the backward shift
Article
O'Loughlin, Ryan1 
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词: Vector-valued Hardy space;    Toeplitz operator;    Backward shift operator;   
DOI  :  10.1016/j.jmaa.2020.124489
来源: Elsevier
PDF
【 摘 要 】

In this paper we study the kernels of Toeplitz operators on both the scalar and the vector-valued Hardy space for 1 < p < infinity. We show existence of a minimal kernel for any element of the vector-valued Hardy space and we determine a symbol for the corresponding Toeplitz operator. In the scalar case we give an explicit description of a maximal function for a given Toeplitz kernel which has been decomposed in to a certain form. In the vectorial case we show not all Toeplitz kernels have a maximal function and in the case of p = 2 we find the exact conditions for when a Toeplitz kernel has a maximal function. For both the scalar and vector-valued Hardy space we study the minimal Toeplitz kernel containing multiple elements of the Hardy space, which in turn allows us to deduce an equivalent condition for a function in the Smirnov class to be cyclic for the backward shift. (c) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124489.pdf 467KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次