期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:477
Reducing subspaces of de Branges-Rovnyak spaces
Article
Chu, Cheng1 
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词: Reducing subspace;    de Branges-Rovnyak space;    Backward shift operator;   
DOI  :  10.1016/j.jmaa.2019.04.071
来源: Elsevier
PDF
【 摘 要 】

For b is an element of H-1(infinity), the closed unit ball of H-infinity, the de Branges-Rovnyak space H(b) is a Hilbert space contractively contained in the Hardy space H-2 that is invariant by the backward shift operator S*. We consider the reducing subspaces of the operator S*(2)vertical bar(H(b)). When b is an inner function, S*(2)vertical bar(H(b)) is a truncated Toeplitz operator and its reducibility was characterized by Douglas and Foias using model theory. We use another approach to extend their result to the case where b is extreme. We prove that if b is extreme but not inner, then S*(2)vertical bar(H(b)) is reducible if and only if b is even or odd, and describe the structure of reducing subspaces. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_04_071.pdf 330KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次