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For b ∈ H∞
1 , the closed unit ball of H∞, the de Branges-Rovnyak space H(b) is a 

Hilbert space contractively contained in the Hardy space H2 that is invariant by 
the backward shift operator S∗. We consider the reducing subspaces of the operator 
S∗2|H(b). When b is an inner function, S∗2|H(b) is a truncated Toeplitz operator and 
its reducibility was characterized by Douglas and Foias using model theory. We use 
another approach to extend their result to the case where b is extreme. We prove 
that if b is extreme but not inner, then S∗2|H(b) is reducible if and only if b is even 
or odd, and describe the structure of reducing subspaces.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let D denote the unit disk. Let L2 denote the Lebesgue space of square integrable functions on the 
unit circle T . The Hardy space H2 is the subspace of analytic functions on D whose Taylor coefficients 
are square summable. Then it can also be identified with the subspace of L2 of functions whose negative 
Fourier coefficients vanish. The space of bounded analytic functions on the unit disk is denoted by H∞. 
The Toeplitz operator on the Hardy space H2 with symbol f in L∞(T ) is defined by

Tf (h) = P (fh),

for h ∈ H2. Here P is the orthogonal projection from L2 to H2. The unilateral shift operator on H2 is 
S = Tz.

Let A be a bounded operator on a Hilbert space H. We define the range space M(A) = AH, and endow 
it with the inner product

〈Af,Ag〉M(A) = 〈f, g〉H , f, g ∈ H � KerA.

M(A) has a Hilbert space structure that makes A a coisometry on H.
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Let b be a function in H∞
1 , the closed unit ball of H∞. The de Branges-Rovnyak space H(b) is defined 

to be the space

M((I − TbTb̄)1/2).

We also define the space H(b̄) in the same way as H(b), but with the roles of b and b̄ interchanged, i.e.

H(b̄) = M((I − Tb̄Tb)1/2).

The spaces H(b) and H(b̄) are also called sub-Hardy Hilbert spaces (the terminology comes from the title 
of Sarason’s book [9]).

The space H(b) was introduced by de Branges and Rovnyak [2]. Sarason and several others made es-
sential contributions to the theory [9]. A recent two-volume monograph [4], [5] presents most of the main 
developments in this area.

There are two special cases for H(b) spaces. If ||b||∞ < 1, then H(b) is just a re-normed version of H2. If 
b is an inner function, then

H(b) = H2 � bH2

is a closed subspace of H2, the so-called model space (see [6] for a brief survey).
Let T be a bounded linear operator on a Hilbert space H. A closed subspace M of H is called a reducing 

subspace of T if TM ⊂ M and T ∗M ⊂ M , which is equivalent to the fact that M and M⊥ are both 
invariant by T . If T has a proper reducing subspace, T is called reducible. The reducing subspaces of shift 
operators or multiplication operators have been studied in various function spaces: for weighted unilateral 
shift operators of finite multiplicity, see [10]; for multiplication operators induced by finite Blaschke products 
on the Bergman space, see [14], [8] and the references therein.

Our motivation is the study of reducing subspaces of truncated Toeplitz operators on the model space. 
For an inner function θ and ϕ ∈ L2, the truncated Toeplitz operator Aθ

ϕ with symbol ϕ is defined by

Aθ
ϕf = Pθ(ϕf),

for f on the dense subset H(θ) ∩H∞ of H(θ). Here Pθ is the orthogonal projection from H2 to H(θ). It is 
known that Aθ

z is always irreducible (see e.g. [7]). A function f ∈ L2 is called even if f(z) = f(−z), for every 
z ∈ D, and f is called odd if f(z) = −f(−z), for every z ∈ D. The operator Aθ

z is called the compressed 
shift operator. The reducibility of Aθ

z2 is characterized by Douglas and Foias [3] using model theory for 
contractions [12] as the following.

Theorem 1.1. The operator Aθ
z2 is reducible if and only if either θ is even or there exists μ ∈ D such that

θ(z) = p(z) z + μ

1 + μ̄z
,

where p is even.

Recently, Li, Yang and Lu found a different proof of Theorem 1.1 and extended it to the case where the 
symbol of a truncated Toeplitz operator is a Blaschke product of order 2 or 3 [13].

The theory of H(b) spaces is pervaded by a fundamental dichotomy, when b is an extreme point of H∞
1

and when it is not. The nonextreme case includes ||b||∞ < 1 and the extreme case includes b is an inner 
function. Roughly speaking, when b is nonextreme, H(b) behaves similar to H2, while in the extreme case, 
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H(b) is more closely related to the model space. For example, the polynomials belong to H(b) if and only 
if b is non-extreme (see [9, Chapter IV, V]).

Notice that (Aθ
z2)∗ = S∗2|H(θ). Thus, in view of Theorem 1.1, it is natural to consider reducing subspaces 

of S∗2|H(b) when b is extreme. The main purpose of this paper is to characterize the reducibility of S∗2|H(b)
on H(b) in the extreme case and describe the reducing subspaces (Theorem 4.1). We also show that Xb is 
irreducible for every b.

2. Background on de Branges-Rovnyak spaces

In this section, we present some basic theory of de Branges-Rovnyak spaces and the results we shall use 
later.

The relation between H(b) and H(b̄) can be found in [9, II-4]. Here we use 〈 , 〉b to denote the inner 
product of H(b).

Theorem 2.1. A function f belongs to H(b) if and only if Tb̄f belongs to H(b̄). If f1, f2 ∈ H(b), then

〈f1, f2〉b = 〈f1, f2〉2 + 〈Tb̄f1, Tb̄f2〉b̄.

Let b ∈ H∞
1 . Let ρ = 1 −|b|2 on T and let H2(ρ) be the closure of polynomials in L2(ρ) = L2(T , ρ dθ

2π ) (we 
will keep using these notations in the remaining of this paper). The Cauchy transform Kρ is the mapping 
from L2(ρ) to H2 defined by

Kρf = P (ρf).

In the theory of H(b) spaces, H(b̄) is often more amenable than H(b) because of a representation theorem 
for H(b̄) [9, III-2].

Theorem 2.2. The operator Kρ is an isometry from H2(ρ) to H(b̄).

The operator on H2(ρ) of multiplication by the independent variable will be denoted by Zρ. We have the 
intertwining relation [9, III-3]

KρZ
∗
ρ = S∗Kρ. (2.1)

The space H(b) is invariant under S∗ = Tz̄ [9, II-7], and the restriction of S∗ is a contraction. We use Xb

to denote S∗|H(b). This operator can serve as a model for a large class of Hilbert space contractions [2], [1].
The following identity shows the difference between Xb and S∗ [9, II-9].

Theorem 2.3. Let b ∈ H∞
1 . For every f ∈ H(b),

X∗
b f = Sf − 〈f, S∗b〉bb.

If x and y are in a Hilbert space H, we shall use x ⊗ y to be the following rank one operator on H

(x⊗ y)(f) = 〈f, y〉H · x, f ∈ H.

It is obvious that

(x⊗ y)∗ = y ⊗ x,
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and if A, B are bounded linear operators on H, then

A(x⊗ y)B = (Ax) ⊗ (B∗y).

It could be misleading to write the identity in Theorem 2.3 as X∗
b = S − b ⊗ S∗b because b may not be 

in H(b). But it is known that S∗b ∈ H(b) [9, II-8], and we have

I −XbX
∗
b = (S∗b) ⊗ (S∗b). (2.2)

The space H(b) is a reproducing kernel Hilbert space with kernel function:

kbw(z) = 1 − b(w)b(z)
1 − w̄z

.

When b is extreme, we have the following identity (see e.g. [5, Theorem 25.11]).

Lemma 2.1. Let b be an extreme point in H∞
1 . Then

I −X∗
bXb = kb0 ⊗ kb0.

For an inner function θ, S∗θ is a cyclic vector of (Aθ
z)∗. A similar result holds for extreme functions (see 

e.g. [5, Section 26.6]).

Theorem 2.4. If b is extreme, then

H(b) = Span{S∗nb : n � 1}.

Here Span denotes the closed linear span.

3. An equivalent condition for the reducibility

In this section we first prove that Xb is irreducible for every b. The idea in the proof will be used to study 
X2

b .

Theorem 3.1. Let b ∈ H∞
1 . Then Xb is not reducible.

Proof. Suppose Xb is reducible. Then

H(b) = M1 ⊕b M2,

where M1, M2 are nontrivial reducing subspaces of Xb.
Note that for every f ∈ M1, g ∈ M2,

(I −XbX
∗
b )f ⊥ (I −XbX

∗
b )g

in H(b). By equation (2.2),

dim((I −XbX
∗
b )H(b)) � 1.

Then one of the two range spaces
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(I −XbX
∗
b )M1, (I −XbX

∗
b )M2

must be 0. WLOG, we may assume

(I −XbX
∗
b )M1 = 0,

i.e. for every f ∈ M1,

0 = (I −XbX
∗
b )f = 〈f, S∗b〉bS∗b.

Thus f is orthogonal to S∗b in H(b) and then S∗b ∈ M2. Since M2 is invariant under S∗, we have

Span{S∗nb : n � 1} ⊂ M2.

If b is extreme, it follows from Theorem 2.4 that M2 = H(b), which is a contradiction.
If b is nonextreme, then polynomials are dense in H(b). For every f ∈ M1, since f is orthogonal to S∗b, we 

see from Theorem 2.3 that Sf = Xbf . Thus M1 is invariant under both S and S∗. Pick a nonzero function 
h ∈ M1, then

h(z) =
∞∑
j=k

hjz
j ,

for some k � 0 with hk �= 0. Thus

1
hk

(I − Sk+1S∗k+1)h = zk ∈ M1,

which implies that M1 contain all the polynomials. So M1 = H(b), which is a contradiction. �
Lemma 3.1. Let b be an extreme point in H∞

1 . Then S∗b, S∗2b are linearly dependent if and only if b is a 
single Blaschke product.

Proof. By Theorem 2.4, S∗b, S∗2b are linearly dependent if and only if H(b) is a one-dimensional space, 
which is equivalent to b being a single Blaschke product. �

For the extreme case, we have the following equivalent condition for the reducibility of X2
b .

Theorem 3.2. Let b be an extreme point in H∞
1 . Suppose b is not a single Blaschke product. Then X2

b is 
reducible if and only if there exist complex numbers α, β, αβ �= 1, such that for every n, m � 0,

S∗2m(S∗b + αS∗2b) ⊥ S∗2n(βS∗b + S∗2b) (3.1)

in H(b). In this case the reducing subspaces of X2
b are given by

H(b) = M1 ⊕b M2,

where

M1 = Span{S∗2n(S∗b + αS∗2b) : n � 0} (3.2)

and
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M2 = Span{S∗2n(βS∗b + S∗2b) : n � 0}. (3.3)

Proof. Suppose (3.1) holds, then take M1, M2 as in (3.2), (3.3). It is clear that M1, M2 are invariant under 
X2

b (or S∗2) and are orthogonal in H(b). By Theorem 2.4, we have

H(b) = Span{M1,M2}.

Thus

H(b) = M1 ⊕b M2,

and X2
b is reducible.

Next we assume X2
b is reducible. Then

H(b) = M1 ⊕b M2,

where M1, M2 are nontrivial reducing subspaces of X2
b . Note that for every f ∈ M1, g ∈ M2,

(I −X2
bX

∗2
b )f ∈ M1, (I −X2

bX
∗2
b )g ∈ M2.

Then

(I −X2
bX

∗2
b )f ⊥ (I −X2

bX
∗2
b )g

in H(b). Using (2.2), we have

I −X2
bX

∗2
b = I −XbX

∗
b + Xb(I −XbX

∗
b )X∗

b (3.4)

= S∗b⊗ S∗b + Xb(S∗b⊗ S∗b)X∗
b

= S∗b⊗ S∗b + S∗2b⊗ S∗2b.

By Lemma 3.1, S∗b and S∗2b are linearly independent. Thus

dim(I −X2
bX

∗2
b )H(b) = 2.

Suppose one of the two range spaces

(I −X2
bX

∗2
b )M1, (I −X2

bX
∗2
b )M2

is zero, say

(I −X2
bX

∗2
b )M1 = 0.

By (3.4), we see that every function in M1 is orthogonal to S∗b and S∗2b in H(b), which implies S∗b, S∗2b

are in M2. Since M2 is invariant for X2
b , using Theorem 2.4 we see that

H(b) = Span{S∗nb : n � 1} ⊂ M2.

This is a contradiction. Therefore, we must have

dim(I −X2
bX

∗2
b )M1 = dim(I −X2

bX
∗2
b )M2 = 1.
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This means, WLOG, there exist complex numbers α, β such that

(I −X2
bX

∗2
b )M1 = Span{S∗b + αS∗2b} ⊂ M1,

(I −X2
bX

∗2
b )M1 = Span{βS∗b + S∗2b} ⊂ M2.

Since M1, M2 are invariant under X2
b , we have

Span{S∗2n(S∗b + αS∗2b) : n � 0} ⊂ M1,

Span{S∗2n(βS∗b + S∗2b) : n � 0} ⊂ M2.

Using Theorem 2.4, we obtain

H(b) = M1 ∪M2,

and thus (3.2), (3.3) hold. The relation (3.1) follows from M1 ⊥b M2. Note that αβ �= 1; otherwise βS∗b +
S∗2b ∈ M1 ∩M2 = {0}, which contradicts Lemma 3.1. �
4. Main results

In this section, we analyze the condition (3.1) and characterize the reducibility of X2
b when b is extreme 

but not inner.

Lemma 4.1. Let b be an extreme point in H∞
1 . Then for every n � 1,

I −X∗n
b Xn

b =
n−1∑
j=0

(X∗j
b kb0) ⊗ (X∗j

b kb0).

Proof. This proof is by induction on n. For n = 1, the equality is exactly the one in Lemma 2.1. Assume 
that the equality holds for some n � 2. Then, using once again Lemma 2.1 and the induction hypothesis, 
we have

X∗n
b Xn

b = X∗
b (X∗n−1

b Xn−1
b )Xb

=X∗
b (I −

n−2∑
j=0

(X∗j
b kb0) ⊗ (X∗j

b kb0))Xb

=X∗
bXb −

n−2∑
j=0

X∗
b (X∗j

b kb0) ⊗ (X∗j
b kb0)Xb

=I − kb0 ⊗ kb0 −
n−2∑
j=0

(X∗(j+1)
b kb0) ⊗ (X∗(j+1)

b kb0)

=I −
n−1∑
j=0

(X∗j
b kb0) ⊗ (X∗j

b kb0). �

Lemma 4.2. Let b be an extreme point in H∞
1 and let f, g ∈ H(b). Suppose b is not a single Blaschke product. 

Then

〈X2m
b f,X2n

b g〉b = 0, (4.1)
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for every m, n � 0 if and only if the following hold

(1) for every k � 0,

〈Tb̄f, Tb̄X
2k
b g〉b̄ = 〈Tb̄g, Tb̄X

2k
b f〉b̄ = 0. (4.2)

(2) for every m, n � 0,

〈S∗2mf, S∗2ng〉2 = 0,

i.e. there exist functions F, G ∈ H2 and complex numbers a0, b0, a1, b1 such that

f(z) = F (z2)(a0 + a1z), g(z) = G(z2)(b0 + b1z) (4.3)

and

a0b̄0 + a1b̄1 = 0.

Proof. Let

f(z) =
∞∑
k=0

fkz
k and g(z) =

∞∑
k=0

gkz
k.

Suppose (4.1) holds. Then for m � n, we have

0 = 〈X2m
b f,X2n

b g〉b = 〈X∗2m
b X2m

b f,X2n−2m
b g〉b. (4.4)

By Lemma 4.1, we have

(I −X∗2m
b X2m

b )f = f −X∗2m
b X2m

b f

=
2m−1∑
j=0

〈f,X∗j
b kb0〉b · (X∗j

b kb0)

=
2m−1∑
j=0

〈Xj
b f, k

b
0〉b · (X∗j

b kb0)

=
2m−1∑
j=0

(S∗jf)(0) · (X∗j
b kb0)

=
2m−1∑
j=0

fj ·X∗j
b kb0.

Then

X∗2m
b X2m

b f = f −
2m−1∑
j=0

fj ·X∗j
b kb0.

This together with (4.4) implies
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0 = 〈f −
2m−1∑
j=0

fj ·X∗j
b kb0, X

2n−2m
b g〉b

= 〈f,X2n−2m
b g〉b − 〈

2m−1∑
j=0

fj ·X∗j
b kb0, X

2n−2m
b g〉b

= 〈f,X2n−2m
b g〉b −

2m−1∑
j=0

fj · 〈X∗j
b kb0, X

2n−2m
b g〉b

= 〈f,X2n−2m
b g〉b −

2m−1∑
j=0

fj · 〈kb0, X2n−2m+j
b g〉b

= 〈f,X2n−2m
b g〉b −

2m−1∑
j=0

fj · 〈X2n−2m+j
b g, kb0〉b

= 〈f,X2n−2m
b g〉b −

2m−1∑
j=0

fj · g2n−2m+j . (4.5)

Replacing n, m in (4.5) by n + 1, m + 1 respectively, we have

0 = 〈f,X2n−2m
b g〉b −

2m+1∑
j=0

fj · g2n−2m+j . (4.6)

Subtracting (4.6) by (4.5) implies

f2mg2n + f2m+1g2n+1 = 0, (4.7)

for m � n. A similar argument shows that (4.7) also holds for n � m. Thus we have for every n, m � 0, the 
two vectors

(f2m, f2m+1), (g2n, g2n+1)

are orthogonal in C2. It is easy to check f, g must have the form (4.3). In particular, we have

〈f,X2k
b g〉2 = 〈g,X2k

b f〉2 = 0, for every k � 0. (4.8)

It follows from (4.5) and (4.7) that

〈f,X2k
b g〉b = 〈g,X2k

b f〉b = 0, for every k � 0.

This together with (4.8) and Theorem 2.1 give (4.2).
The sufficiency follows easily from the calculation in (4.5). �

Remark 4.1. When b is an inner function, H(b̄) is trivial and then (4.2) is automatically satisfied. One may 
expect the reducibility of X2

b is more restrictive if b is not inner. We shall see it is true in the remaining of 
this section.

When b is extreme, the following Lemma will be used to calculate the inner products in (4.2).
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Lemma 4.3. Let b be an extreme point in H∞
1 . Let ρ = 1 − |b|2 on T . Then for every m, n � 1,

〈Tb̄S
∗mb, Tb̄S

∗nb〉b̄ =

⎧⎪⎪⎨
⎪⎪⎩

− 〈zn−m, |b|2〉2,m < n,

− 〈|b|2, zm−n〉2,m > n,

1 − ||b||22, m = n.

Proof. Suppose m � n. Using the intertwining relation (2.1), we can easily get

KρZ
∗n
ρ = S∗nKρ.

Thus

KρZ
∗n
ρ 1 =S∗nKρ1 = S∗nP (ρ) = S∗nP (1 − |b|2)

= − S∗nP (|b|2) = −S∗nTb̄b = −Tb̄S
∗nb.

By Theorem 2.2, we have

〈Tb̄S
∗mb, Tb̄S

∗nb〉b̄ = 〈KρZ
∗m
ρ 1,KρZ

∗n
ρ 1〉b̄ = 〈Z∗m

ρ 1, Z∗n
ρ 1〉L2(ρ).

If b is extreme, then H2(ρ) = L2(ρ) [11], which implies Zρ is a unitary operator. Then

〈Tb̄S
∗mb, Tb̄S

∗nb〉b̄ =〈Z∗m
ρ 1, Z∗n

ρ 1〉L2(ρ) = 〈Zn−m
ρ 1, 1〉L2(ρ) = 〈zn−m, 1〉L2(ρ)

=〈zn−m, 1〉2 − 〈zn−m, |b|2〉2

=
{

− 〈zn−m, |b|2〉2,m < n,

1 − ||b||22, m = n.
�

We also need the following three elementary results.

Lemma 4.4. Let b ∈ H∞
1 . Then

lim
n→∞

〈zn, |b|2〉2 = 0.

Proof. This is just Riemann Lebesgue lemma on Fourier coefficients. �
Lemma 4.5. Let b ∈ H∞. Then |b|2 is even if and only if b is even or odd.

Proof. Let b(z) = b0(z) + zb1(z), where b0, b1 are even functions. Then |b|2 is even if and only if

|b0(z) + zb1(z)|2 = |b0(z) − zb1(z)|2,

which is equivalent to b0zb1 ≡ 0. Then the conclusion follows easily. �
Lemma 4.6. Let α, β ∈ C with αβ �= 0 and αβ �= 1. Let {an}∞n=0 be a sequence of complex numbers but not 
the zero sequence. Suppose

lim
n→∞

an = 0

and for every n � 1, the following conditions hold.
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a2n+1 + (α + β̄)a2n + αβ̄a2n−1 = 0, (4.9)

a2n+1 + ( 1
ᾱ

+ 1
β

)a2n + 1
ᾱβ

a2n−1 = 0. (4.10)

Then we have either

β = −ᾱ, and a2n−1 = 0, for every n � 1

or

|α| = |β| = 1.

Proof. Subtracting (4.10) from (4.9), we have

(α + β̄ − 1
ᾱ
− 1

β
)a2n + (αβ̄ − 1

ᾱβ
)a2n−1 = 0. (4.11)

Since {an}∞n=0 is nonzero, we have the following four cases.
Case I: α + β̄ − 1

ᾱ − 1
β = αβ̄ − 1

ᾱβ = 0. Then we have |αβ| = 1 and

0 =α + β̄ − 1
ᾱ
− 1

β
= 1

ᾱ
(|α|2 − 1) + 1

β
(|β|2 − 1)

= 1
ᾱ

(|α|2 − 1) + 1
β

( 1
|α|2 − 1) = |α|2 − 1

ᾱ
(1 − 1

αβ
).

Thus |α| = |β| = 1.
Case II: α + β̄ = 1

ᾱ + 1
β and a2n−1 = 0, for every n � 1. Then (4.9) implies β = −ᾱ.

Case III: αβ̄ = 1
ᾱβ and a2n = 0, for every n � 1. Then |αβ| = 1 and by (4.9), we have

|a2n+1| = |αβ| · |a2n−1| = |a2n−1|.

Since an tends to 0, we have a2n−1 = 0 and thus {an}∞n=0 is the zero sequence, which contradicts the 
assumption.

Case IV: α + β̄ − 1
ᾱ − 1

β �= 0 and αβ̄ − 1
ᾱβ �= 0. Then by (4.11),

a2n =
1
ᾱβ − αβ̄

α + β̄ − 1
ᾱ − 1

β

a2n−1 = 1 − |αβ|2
β|α|2 + ᾱ|β|2 − β − ᾱ

a2n−1.

Put this in (4.9), we have

a2n+1 = −(α + β̄)a2n − αβ̄a2n−1

= −
(
(α + β̄) 1 − |αβ|2

β|α|2 + ᾱ|β|2 − β − ᾱ
+ αβ̄

)
a2n−1

= α|β|2 + β̄|α|2 − α− β̄

β|α|2 + ᾱ|β|2 − β − ᾱ
a2n−1.

Thus |a2n+1| = |a2n−1| and, similar to Case III, a2n−1 = 0, for every n � 1. From (4.9), (4.10), we see that 
either a2n = 0, for every n � 1 or α + β̄ = 1

ᾱ + 1
β = 0. They are both excluded by the assumptions. �

Now we are ready to prove the main Theorem.
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Theorem 4.1. Let b be an extreme point in H∞
1 . If b is not an inner function, then X2

b is reducible if and 
only if b is even or odd. If b is even, the reducing subspaces of X2

b are

M = Span{(S∗2nb)(z + α) : n � 1}

with

M⊥ = Span{(S∗2nb)(−ᾱz + 1) : n � 1},

for some α ∈ C.
If b is odd, the reducing subspaces of X2

b are

M = Span{S∗2n−1b : n � 1}

with

M⊥ = Span{S∗2nb : n � 1}.

Proof. Necessity. We assume X2
b is reducible and b is not inner. Let

b(z) =
∞∑
k=0

bkz
k.

By Theorem 3.2, there exists α, β ∈ C such that αβ �= 1 and (3.1) holds. Let

f = S∗b + αS∗2b, g = βS∗b + S∗2b.

Then f, g are in H(b), and using Lemma 4.2, we have

〈Tb̄f, Tb̄X
2n
b g〉b̄ = 〈Tb̄g, Tb̄X

2n
b f〉b̄ = 0,

for every n � 0. If n � 1, using Lemma 4.3, we have

0 =〈Tb̄f, Tb̄X
2n
b g〉b̄

=〈Tb̄S
∗b + αTb̄S

∗2b, βTb̄(S∗)2n+1b + Tb̄(S∗)2n+2b〉b̄
=β̄〈Tb̄S

∗b, Tb̄(S∗)2n+1b〉b̄ + 〈Tb̄S
∗b, Tb̄(S∗)2n+2b〉b̄

+ αβ̄〈Tb̄S
∗2b, Tb̄(S∗)2n+1〉b̄ + α〈Tb̄S

∗2b, Tb̄(S∗)2n+2b〉b̄
= − β̄〈z2n, |b|2〉2 − 〈z2n+1, |b|2〉2 − αβ̄〈z2n−1, |b|2〉2 − α〈z2n, |b|2〉2,

which can be simplified to

〈z2n+1, |b|2〉2 + (α + β̄)〈z2n, |b|2〉2 + αβ̄〈z2n−1, |b|2〉2 = 0. (4.12)

Similarly,

〈Tb̄g, Tb̄X
2n
b f〉b̄ = 0

implies
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ᾱβ〈z2n+1, |b|2〉2 + (ᾱ + β)〈z2n, |b|2〉2 + 〈z2n−1, |b|2〉2 = 0. (4.13)

If α = β = 0, then (4.13) implies for every n � 1,

0 = 〈z2n−1, |b|2〉2 = 〈|b|2, z̄2n−1〉2.

This means b is even or odd by Lemma 4.5.
If α = 0 and β �= 0, using (4.12), (4.13), we have

〈z2n+1, |b|2〉2 + β̄〈z2n, |b|2〉2 = 0,

and

β〈z2n, |b|2〉2 + 〈z2n−1, |b|2〉2 = 0.

Thus

|〈z2n+1, |b|2〉2| = | β̄
β
〈z2n−1, |b|2〉2| = |〈z2n−1, |b|2〉2|.

By Lemma 4.4, we see that for every n � 1, 〈z2n−1, |b|2〉2 = 0. Thus (4.12) shows that 〈zn, |b|2〉2 = 0, which 
implies b is inner. A similar argument works for the case when β = 0 and α �= 0.

Next, suppose αβ �= 0. Rewrite (4.13) as

〈z2n+1, |b|2〉2 + ( 1
ᾱ

+ 1
β

)〈z2n, |b|2〉2 + 1
ᾱβ

〈z2n−1, |b|2〉2 = 0. (4.14)

Consider the sequence {〈zn, |b|2〉2}∞n=1. If it is the zero sequence, then b is an inner function. Otherwise by 
Lemma 4.4 and (4.12), (4.14), it satisfies the assumptions in Lemma 4.6. Then we have the following two 
cases:

Case I: β = −ᾱ, 〈z2n−1, |b|2〉2 = 0, for every n � 1.
Case II: |α| = |β| = 1.
By condition (2) in Lemma 4.2, we have for every n � 0,

〈S∗2nf, S∗2ng〉2 = 0.

Then

0 =〈S∗2nf, S∗2ng〉2 = 〈S∗2n+1b + αS∗2n+2b, βS∗2n+1b + S∗2n+2b〉2
=β̄||S∗2n+1b||22 + α||S∗2n+2b||22 + 〈S∗2n+1b, S∗2n+2b〉2 + αβ̄〈S∗2n+2b, S∗2n+1b〉2.

For simplicity, let

cn = 〈S∗2n+1b, S∗2n+2b〉2.

Since

||S∗2n+2b||22 = ||S∗2n+1b||22 − |b2n+1|2,

we obtain
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(β̄ + α)||S∗2n+1b||22 − α|b2n+1|2 + cn + αβ̄c̄n = 0. (4.15)

In Case I, |b|2 is even, and Lemma 4.5 implies that b is even or odd. Thus cn = 0 and (4.15) becomes 
α|b2n+1|2 = 0, which implies b2n+1 = 0 and b is even.

In Case II, taking conjugate on (4.15), we get

(β + ᾱ)||S∗2n+1b||22 − ᾱ|b2n+1|2 + ᾱβcn + c̄n = 0. (4.16)

Multiplying (4.15) by ᾱβ and using |α| = |β| = 1, we have

(ᾱ + β)||S∗2n+1b||22 − β|b2n+1|2 + ᾱβcn + c̄n = 0. (4.17)

By (4.16), (4.17), we have

(ᾱ− β)|b2n+1|2 = 0.

Note that ᾱ �= β because αβ �= 1. We see that b2n+1 = 0, which means b is even. Using (4.12), we see that 
if b is not inner, then β = −ᾱ.

Sufficiency. Let

M1 = Span{S∗2n(S∗b + αS∗2b) : n � 0}

and

M2 = Span{S∗2n(−ᾱS∗b + S∗2b) : n � 0}.

We show that M1, M2 are reducing subspaces of X2
b for appropriate choices of α. By Theorem 3.2 and 

Lemma 4.2, we need to verify (4.2) and (4.3) when β = −ᾱ.
Note that

〈z2n−1, |b|2〉2 = 0, for every n � 1,

whenever b is even or odd.
For (4.2), if n � 1, (4.2) follows from (4.12), (4.13) and the above relation. When n = 0, using Lemma 4.3, 

we have

〈Tb̄(S∗b + αS∗2b), Tb̄(−ᾱS∗b + S∗2b)〉b̄
= − α||Tb̄S

∗b||2
b̄

+ α||Tb̄S
∗2b||2

b̄
+ 〈Tb̄S

∗b, Tb̄S
∗2b〉b̄ − α2〈Tb̄S

∗2b, Tb̄S
∗b〉b̄

= − α(1 − ||b||22) + α(1 − ||b||22) − 〈z, |b|2〉2 + α2〈z̄, |b|2〉2 = 0.

If b is odd and α = 0, it is obvious that (4.3) holds.
If b is even, then S∗2b is also even and

S∗b = zS∗2b.

We can write

S∗b + αS∗2b = (S∗2b)(z + α),
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and

−ᾱS∗b + S∗2b = (S∗2b)(−ᾱz + 1).

Thus (4.3) is satisfied. �
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