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In this paper we study the kernels of Toeplitz operators on both the scalar and the 
vector-valued Hardy space for 1 < p < ∞. We show existence of a minimal kernel 
for any element of the vector-valued Hardy space and we determine a symbol for the 
corresponding Toeplitz operator. In the scalar case we give an explicit description of 
a maximal function for a given Toeplitz kernel which has been decomposed in to a 
certain form. In the vectorial case we show not all Toeplitz kernels have a maximal 
function and in the case of p = 2 we find the exact conditions for when a Toeplitz 
kernel has a maximal function. For both the scalar and vector-valued Hardy space 
we study the minimal Toeplitz kernel containing multiple elements of the Hardy 
space, which in turn allows us to deduce an equivalent condition for a function in 
the Smirnov class to be cyclic for the backward shift.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to study the kernels of Toeplitz operators on vector-valued Hardy spaces. 
In particular we shall address the question of whether there is a smallest Toeplitz kernel containing a 
given element or subspace of the Hardy space. This will in turn show how Toeplitz kernels can often be 
completely described by a fixed number of vectors, called maximal functions. We also discover an interesting 
and fundamental link between this topic and cyclic vectors for the backward shift.

Throughout we will generally work in the vector-valued Hardy space of functions analytic in the unit 
disc. Throughout the paper we will fix 1 < p < ∞. The vector-valued Hardy space is denoted Hp(D, Cn)
and is defined to be a column vector of length n, where each entry takes values in Hp. Background theory 
on the classical Hardy space Hp can be found in [9,17].

Let P be the pointwise Riesz projection Lp(D, Cn) → Hp(D, Cn). For G a n-by-n matrix with each entry 
of G taking values in L∞(T ) (T is the unit circle) the Toeplitz operator on the space Hp(D, Cn), with 
symbol G, is defined by
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TG(f) = P (Gf).

We have the direct sum decomposition Lp(D, Cn) = Hp
0 (D, Cn) ⊕Hp(D, Cn), where Hp

0 (D, Cn) := {f : f ∈
Hp(D, Cn), f(0) = 0}, and hence f ∈ kerTG iff Gf ∈ Hp

0 (D, Cn). Perhaps the most fundamental example 
of Toeplitz kernels is the class of model spaces; for θ an inner function, the kernel of the Toeplitz operator 
Tθ is denoted Kθ and can be verified to be Hp ∩ θHp

0 . It follows from Beurling’s Theorem that the model 
spaces are the non-trivial closed invariant subspaces for the backward shift operator on Hp.

The concept of nearly backward shift invariant subspaces was first introduced by Hitt in [15] as a gener-
alisation to Hayashi’s results concerning Toeplitz kernels in [14]. These spaces were then studied further by 
Sarason [18]. The idea of near invariance was then generalised and it was first demonstrated in [3] that for 
any inner function η, Toeplitz kernels are nearly η invariant. This means if φ is in the kernel of a Toeplitz 
operator TG : Hp(D, Cn) → Hp(D, Cn) and φ is such that ηφ ∈ Hp(D, Cn), then ηφ ∈ kerTG. This obser-
vation shows not all φ ∈ HP (D, Cn) lie in one-dimensional Toeplitz kernels. In the scalar case (i.e. when 
n = 1) Theorem 5.1 in [3] shows the existence of a Toeplitz kernel of smallest size containing φ ∈ Hp

(formally known as the minimal kernel for φ and denoted κmin(φ)), furthermore a Toeplitz operator Tg is 
defined such that κmin(φ) = kerTg. This motivates our study for section 2 where we address the question: 
is there a minimal Toeplitz kernel containing a given element φ ∈ Hp(D, Cn)?

In section 3 we consider the following parallel question: given any Toeplitz kernel K does there exist 
a φ such that K = κmin(φ)? We call such a φ a maximal function for K. It has been shown in [3] that 
in the scalar Toeplitz kernel case, whenever the kernel is non-trivial there does exist a maximal function. 
Theorem 3.17 in [4] shows that for p = 2 every matricial Toeplitz kernel which can be expressed as a fixed 
vector-valued function multiplied by a non-trivial scalar Toeplitz kernel also has a maximal function. The 
results of section 3 show not all non-trivial matricial Toeplitz kernels have a maximal function and for p = 2
we find the exact conditions for when a Toeplitz kernel has a maximal function. An interesting application 
of the study of maximal functions is given in [6], which fully characterises multipliers between Toeplitz 
kernels in terms of their maximal functions.

Section 5 of [3] asks if there is a minimal Toeplitz kernel containing a closed subspace E ⊆ Hp(D, Cn), 
so in sections 4 and 5 we turn our attention to finding the minimal kernel of multiple elements f1 . . . fk ∈
Hp(D, Cn). This in turn allows us to find the minimal Toeplitz kernel containing a finite-dimensional space 
E, as we can set E = span{f1 . . . fk}. When considering scalar Toeplitz kernels previous results considering 
the minimal kernel for multiple elements have been presented in [5], in particular Theorem 5.6 of [5] shows 
that when κmin(fj) = Kθj for some inner function θj then κmin(f1 . . . fj) = KLCM(θ1,...θj). The corollaries 
of section 4 show the fundamental link between the minimal kernel of two elements in Hp and the cyclic 
vector for the backward shift, in fact we deduce an equivalent condition for a function to be cyclic for the 
backward shift on N+.

1.1. Notations and convention

• For a function f ∈ Hp we write f = f ifo, where f i/fo is an inner/outer factor of f respectively. 
Furthermore the inner/outer factor of f is unique up to a unimodular constant.

• The backward shift is denoted B, and is defined by B(f) = f−f(0)
z , where f(z) =

∑∞
n=0 anz

n is an 
analytic function in the unit disc.

• Toeplitz operators on Hp will be referred to as scalar Toeplitz operators and Toeplitz operators on 
Hp(D, Cn) will be referred to as matricial Toeplitz operators.

• GCD stands for greatest common divisor and for two inner functions I1, I2 I1|I2 will denote that I1
divides I2.

• Throughout, all Toeplitz operators will be bounded, and hence have bounded symbols.
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2. Minimal kernel of an element in Hp(D, Cn)

For G a n-by-n matrix symbol we say kerTG is the minimal kernel of (φ1 . . . φn )T if (φ1 . . . φn )T ∈
kerTG, and if (φ1 . . . φn )T ∈ kerTH for any other n-by-n matrix symbol H we have kerTG ⊆ kerTH .

Section 5.1 in [3] addresses whether there always exists a minimal Toeplitz kernel containing a function 
in Hp(D, Cn). A complete answer to this question was not given, however Theorem 5.5 showed the existence 
of a minimal Toeplitz kernel containing any rational φ in Hp(D, Cn). The main result of this section is to 
give a complete answer to this question. We will show existence of a minimal Toeplitz kernel containing any 
φ ∈ Hp(D, Cn), and define an operator TG such that κmin(φ) = kerTG.

Lemma 2.1. For any φ1 . . . φn ∈ Hp there exists an outer function u such that |u| = |φ1| + . . . + |φn| + 1.

Proof. Outer functions have a representation

u(z) = α exp

⎛
⎝ 1

2π

2π∫
0

eit + z

eit − z
k(eit)dt

⎞
⎠ ,

where |α| = 1, k ∈ L1(T ) is real. Moreover k = log |u|.
In the above representation, if we let k = log(|φ1| + . . . + |φn| + 1) it then follows that |u| = |φ1| + . . . +

|φn| + 1. It can be seen that k = log(|φ1| + . . .+ |φn| + 1) ∈ L1(T ), as 0 < log(1 + x) < x for all x > 0, and 
φ1 . . . φn ∈ L1. �

We say f belongs to the Smirnov class, denoted N+, if f is holomorphic in the disc and

lim
r→1−

∫
T

log(1 + |f(rz)|)dm(z) =
∫
T

log(1 + |f(z)|)dm(z) < ∞,

where dm is the normalised Lebesgue measure on T , i.e. dm = dθ/2π. On N+ the metric is defined by

ρ(f, g) =
∫
T

log(1 + |f(z) − g(z)|)dm(z).

Let logL denote the class of complex measurable functions f on T for which ρ(f, 0) < ∞. One can check 
logL is an algebra. Furthermore section 3.6.3 of [8] along with the argument laid out on p. 122 of Gamelin’s 
book [11] shows that when logL is equipped with ρ as a metric logL is a topological algebra (fn → f and 
gn → g in logL =⇒ fn + gn → f + g and fngn → fg in logL). Proposition 3.6.10 in [8] further shows that 
N+ is the closure of the analytic polynomials in logL, and hence N+ is a topological algebra.

Throughout various literature there have many equivalent ways to define the Smirnov class; for the sake 
of completeness we list these in the following proposition.

Proposition 2.2. The following three statements are equivalent

1. f ∈ N+.
2. f ∈ { f1

f2
: f2 is outer f1, f2 ∈ H∞}.

3. f ∈ { f1
f2

: f2 is outer f1, f2 ∈ H1/2}.
4. f = bsμ1f

o, where b is a Blaschke product, sμ1 a singular inner function with respect to the measure μ1
and fo an outer function.
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Proof. Following the argument laid out in the proof of Theorem 2.10 [9] shows the equivalence of 1 and 4. 
2 =⇒ 3 is immediate. 3 =⇒ 4 follows from the fact that the reciprocal of an outer function is outer and 
so is the product of two outer functions. We now show 4 implies 2 to show all the statements are equivalent.

We construct two outer functions F1, F2 such that |F1| = min(1, |f |), and |F2| = min(1, |f |−1), as in 
Lemma 2.1 we only need to prove that log(min(1, |f |)) and log(min(1, |f |−1)) are in L1 in order to do 
this. Using the radial limits of f we can define f a.e. on T , we define E := {z ∈ T : |f(z)| > 1} and 
F := {z ∈ T : |f(z)| � 1}. Then

∫
T

log(min(1, |f |)) =
∫
E

log(min(1, |f |)) +
∫
F

log(min(1, |f |)) = 0 +
∫
F

log |f |.

As |f | is log integrable over the whole of T it is also log integrable over any subset of T , so the expression 
above shows logmin(1, |f |) ∈ L1. A similar computation shows min(1, |f |−1) is log integrable, it then 
follows that F1, F2 ∈ H∞. As |F2||f | = |F1| a.e. on T , taking outer factors we can conclude fo = F1

F2
so 

f = bsμ1F1
F2

. �
Notice from the fourth characterisation of N+ from above, that if f ∈ N+ and the boundary function is 

in Lp, then f ∈ Hp, i.e., N+ ∩ Lp = Hp.

We present the main Theorem of this section.

Theorem 2.3. Let u be an outer function such that |u| = |φ1| + . . . + |φn| + 1, where φ1 . . . φn ∈ Hp, then

κmin

⎛
⎝φ1

...
φn

⎞
⎠ = kerT⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1z/φ
o
1 0 . . . . . . . . . . . . 0

−φ2/u φ1/u 0 . . . . . . . . . 0
−φ3/u 0 φ1/u 0 . . . . . . 0
−φ4/u 0 0 φ1/u 0 . . . 0

...
...

...
...

...
...

...
−φn/u 0 . . . . . . . . . 0 φ1/u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. We denote the above symbol by G. We have to show that if (φ1 . . . φn )T ∈ kerTH , for any 
bounded n-by-n matrix H, then every (f1 . . . fn )T ∈ kerTG also lies in kerTH . To this end let 
(φ1 . . . φn )T ∈ kerTH , then

⎛
⎜⎜⎝

h11 h12 . . . h1n
h21 h22 . . . h2n
...

...
...

...
hn1 hn2 . . . hnn

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

φ1
...
...
φn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

zp1
...
...

zpn

⎞
⎟⎟⎟⎠ ,

for some p1 . . . pn ∈ Hp, so that φ1hi1+φ2hi2+. . .+φnhin = zpi for each i ∈ {1 . . . n}. Let (f1 . . . fn )T ∈
kerTG, then f1 = φ1p

φo
1

for some p ∈ Hp. Rows 2 to n of G take values in N+ ∩ L∞ = H∞, so from row 

i ∈ {2 . . . n} in G (f1 . . . fn )T ∈ Hp
0 (D,Cn), taking in to account that Hp ∩Hp

0 = {0}, we deduce

f1
φi

u
= fi

φ1

u
.

Substituting our value for f1 we can write fi as,
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fi = φip

φo
1
,

so
⎛
⎝ f1

...
fn

⎞
⎠ = p

φo
1

⎛
⎝φ1

...
φn

⎞
⎠ ,

and hence

H

⎛
⎝ f1

...
fn

⎞
⎠ = H

⎛
⎝φ1

...
φn

⎞
⎠ p

φo
1

=

⎛
⎝ zp1

...
zpn

⎞
⎠ p

φo
1
.

Proposition 2.2 shows zpi p

φo
1
∈ zN+ ∩ Lp = Hp

0 , so we conclude

⎛
⎝ f1

...
fn

⎞
⎠ ∈ kerTH . �

Remark. The above symbol for the minimal kernel is not unique. In fact we can show there are at least n
different symbols (not including permuting the rows of the symbol) which represent the same kernel, each 
depending on the minimal kernel in the scalar case, of φj , where j ∈ {1 . . . n}. Consider the symbol

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . . . . . . . φjz/φ
o
j 0 . . . 0

0 φj/u 0 . . . . . . . . . −φ2/u 0 . . . 0
0 0 φj/u 0 . . . . . . −φ3/u 0 . . . 0
0 0 0 φj/u 0 . . . −φ4/u 0 . . . 0
...

...
...

...
...

...
...

...
...

...
φj/u 0 . . . . . . . . . 0 −φ1/u 0 . . . 0

0 . . . . . . . . . . . . . . . φj+1/u φj/u 0 0
...

...
...

...
...

...
...

...
...

...
0 . . . . . . . . . . . . . . . φn/u 0 . . . φj/u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first non zero entry on the first row is in the j’th column, and the row where the first entry is 
non zero is the j’th row. This can also be checked to be a symbol for the minimal kernel.

3. Maximal functions for kerTG

Recall that φ is a maximal function for a Toeplitz kernel K if κmin(φ) = K. Unlike the scalar case not 
all matricial Toeplitz kernels have a maximal function. A simple explicit example to show this is

kerT(
z 0
0 z

) = {
(
λ
μ

)
: λ, μ ∈ C}.

Suppose some fixed 
(
λ1
μ1

)
∈ C2 give a maximal function, then

(
λ1
μ1

)
∈ kerT(

μ1 −λ1
) =

(
λ1
μ1

)
Hp,
0 0
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but

kerT(
z 0
0 z

) � kerT(
μ1 −λ1
0 0

),

so kerT(
z 0
0 z

) can not have a maximal function.

We can build on this example to give a condition for when Toeplitz kernels do not have a maximal 
function.

We use the notation kerTG(0) := {f(0) : f ∈ kerTG}. For a matrix A with each entry of A being a 
holomorphic function in the disc we write A(0) to mean A with each entry evaluated at 0.

Theorem 3.1. If kerTG is such that dim kerTG(0) > 1 then kerTG does not have a maximal function.

Proof. Suppose for contradiction kerTG is such that dim kerTG(0) > 1 and kerTG has a maximal function

v =

⎛
⎝ v1

...
vn

⎞
⎠ ,

then for any symbol H if v ∈ kerTH , we must have kerTG ⊆ kerTH . Let

x =

⎛
⎝x1

...
xn

⎞
⎠ , y =

⎛
⎝ y1

...
yn

⎞
⎠ ,

be two linearly independent vectors in kerTG(0). Pick i, j ∈ {1...n}, i < j such that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
xi

0
...
0
xj

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
yi
0
...
0
yj
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

span a two dimensional subspace of Cn. Let n be the largest integer such that vi
zn and vj

zn lie in Hp, let u
be an outer function such that |u| = |vi| + |vj | + 1, and let

H =

⎛
⎜⎜⎜⎜⎝

0 . . . 0 vj
znu 0 . . . 0 − vi

znu 0 . . . 0
0 . . . 0 0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 0 . . . 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠ ,

where the first non zero entry is in the i’th column and the second is in the j’th column. As vi
znu , 

vj
znu ∈

L∞ ∩N+ = H∞ each entry of H takes values in H∞, furthermore v ∈ kerTH , so
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kerTG ⊆ kerTH ,

which means that

kerTG(0) ⊆ kerTH(0).

For (f1 . . . fn )T ∈ kerTH we have fi
vj
znu = fj

vi
znu , and by dividing vi, vj by zn, we have ensured there 

is a linear relation between fi(0) and fj(0). So the i’th and j’th coordinate of kerTH(0) only span a one 
dimensional subspace of Cn, but we have picked i, j so that the i’th and j’th coordinate of kerTG(0) span 
a two dimensional subspace of Cn, which is a contradiction. So we conclude that maximal functions do not 
exist whenever dim kerTG(0) > 1. �

We now aim to generalise Dyakonov’s decomposition of Toeplitz kernels which is Theorem 1 in [10] to a 
matrix setting, we will then use this result to further study maximal functions. In the case of p = 2 Theorem 
7.4 of [1] presents a similar formula to what we will obtain.

We define L∞(L(Cn)) to be the space of all n-by-n matrices with each entry taking values in L∞, we 
analogously define H∞(L(Cn)) and N+(L(Cn)). For a n-by-n matrix inner function I we denote the B-
invariant subspace kerTI∗ = I(Hp

0 (D,Cn) ∩Hp(D, Cn) by KI . KI can easily be checked to be B-invariant 
by noting if I∗f ∈ Hp

0 (D,Cn), then I∗f(0) ∈ Hp(D,Cn) and so I∗(f − f(0)) ∈ Hp(D,Cn), which implies 
I∗ f−f(0)

z = I∗B(f) ∈ Hp
0 (D,Cn).

For a symbol G, if detG is an invertible element in L∞ then 
∫
T log 1

| detG(z)|dm(z) < ∞, and so ∫
T log |detG(z)|dm(z) = − 

∫
T log 1

| detG(z)|dm(z) > −∞. This means we can construct a scalar outer func-
tion q such that | detG| = |q|.

Lemma 3.2. Let G ∈ L∞(L(Cn)) be such that detG is invertible in L∞ and let q be the outer function such 
that | detG| = |q|. Then if we define G′ ∈ L∞(L(Cn)) to be the matrix G with the first row divided by q, we 
have kerTG = kerTG′ . Furthermore detG′ is unimodular.

Proof. We only need to consider the first row of G′. Denote the first row of G (respectively G′) by G1
(respectively G′

1). As q is invertible in H∞, for f ∈ Hp(D, Cn) we have G1f ∈ Hp
0 if and only if G1

q f ∈ Hp
0 . 

The fact detG′ is unimodular is a result of linearity of the determinant in each row. �
Under the assumption that detG is invertible in L∞, by the argument laid out above we can assume 

without loss of generality that detG is actually unimodular. Theorem 4.2 of [2] states we can now write G
as

G = G2
∗G1, (1)

with G1, G2 ∈ H∞(L(Cn)). Furthermore taking the determinant of our unimodular G shows us that 1 =
| detG∗

2|| detG1| and so detG∗
2 and detG1 are invertible in L∞, and it then follows G∗

2 and G1 are invertible 
in L∞(L(Cn)).

By (1) under the assumptions above we can write f ∈ kerTG if and only if f ∈ Hp(D, Cn) and G∗
2G1f ∈

Hp
0 (D,Cn) i.e. G1f ∈ kerTG∗

2 . However the following proposition shows the kernel of TG∗
2 can be simplified.

Proposition 3.3. If G2 ∈ H∞(L(Cn)) then kerTG∗
2 = kerT(Gi

2)∗ .

Before we begin the proof we make a remark about inner-outer matrix factorisation. Definition 3.1 in [16]
of outer functions in N+(L(Cn)) is that E ∈ N+(L(Cn)) is outer if an only if detE is outer in N+. Theorem 
5.4 of [16] says that given a function F ∈ N+(L(Cn)) such that detF is not equal to the 0 function, there 
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exist matrix functions F i inner and F o outer (respectively F i′ , F o′) such that we may write F as F = F iF o

(respectively F = F o′F i′).

Proof. Since det(Go
2) is outer in H∞ and invertible in L∞, it is invertible in H∞, so (Go

2)∗ is invertible in 
H∞(L(Cn)). Then, after writing G2 as G2 = Gi

2G
o
2, it immediately follows that kerTG∗

2 = kerT(Gi
2)∗ . �

The following theorem is the generalisation of Dyakonov’s decomposition of Toeplitz kernels to a matrix 
setting.

Theorem 3.4. Using the decomposition for G given in (1),

kerTG = (Gi′

1 )∗
(
(Go′

1 )−1KGi
2
∩Gi′

1 H
p(D,Cn)

)
.

Proof. Using the proposition above and (1) we may write f ∈ kerTG if and only if f ∈ Hp(D, Cn) and 
G1f ∈ KGi

2
. We write G1 = Go′

1 Gi′
1 . Since detGo′

1 is outer in H∞ and invertible in L∞, it is invertible in 

H∞, which means (Go′
1 )−1 ∈ H∞(L(Cn)). Hence we can write the condition f ∈ Hp(D, Cn) and G1f ∈ KGi

2

as Gi′
1 f ∈ (Go′

1 )−1KGi
2
∩Gi′

1 H
p(D, Cn) and so f ∈ kerTG if and only if

f ∈ (Gi′

1 )∗
(
(Go′

1 )−1KGi
2
∩Gi′

1 H
p(D,Cn)

)
. �

Proposition 3.5. Let K be a B-invariant subspace of Hp(D, Cn) such that K evaluated at 0 is a one-
dimensional subspace of Cn. Then K is of scalar type i.e., K is a fixed vector multiplied by a scalar backward 
shift invariant subspace of Hp.

Proof. Let K evaluated at 0 be equal to the span of (λ1 . . . λn )T , then by assumption for any f ∈ K

we must have f(0) = x0 (λ1 . . . λn )T for some x0 ∈ C. Similarly B(f)(0) = x1 (λ1 . . . λn )T for some 
x1 ∈ C, and we repeat this process recursively to obtain Bi(f)(0) = xi (λ1 . . . λn )T . Noting that Bi(f)(0)
is the coefficient of zi for f and polynomials are dense in Hp, we deduce that f =

∑∞
i=0 xiz

i (λ1 . . . λn )T . 
Furthermore

{
∞∑
i=0

xiz
i ∈ Hp :

∞∑
i=0

xiz
i (λ1 . . . λn )T ∈ K}

is B-invariant because K is. �
Corollary 3.6. If kerTG(0) is a one-dimensional subspace of Cn and in the decomposition of the kernel given 
in Theorem 3.4 we have Gi′

1 = I and KGi
2

is non-trivial, then kerTG has a maximal function.

Proof. If Gi′

1 = I then we have Go′

1 kerTG = KGi
2
, so Go′

1 (0) kerTG(0) = KGi
2
(0). Which means either 

KGi
2
(0) is a one-dimensional subspace of Cn or is equal to 0, but as KGi

2
is B-invariant it can never be the 

case that KGi
2
⊆ zHp(D, Cn). So we must have KGi

2
(0) is a one-dimensional subspace of Cn. Then by the 

previous proposition KGi
2

must be equal to (λ1 . . . λn )T Kθ for some (λ1 . . . λn )T ∈ Cn, and some 
scalar inner function θ.

We now use Corollaries 4.2 and 4.3 which are proved later in section 4 but the proof is independent of 
any previous results. If we let m be the maximal function of Kθ (which exists by Corollary 4.2) then by 
Corollary 4.3 given any f ∈ kerTG we can write f = (Go′

1 )−1 (λ1 . . . λn )T mn for some n ∈ N+. So if 
(Go′

1 )−1 (λ1 . . . λn )T m ∈ kerTH then
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Hf = H(Go′

1 )−1

⎛
⎝λ1

...
λn

⎞
⎠mn ∈ nHp(D,Cn) ⊆ N+(D,Cn).

Furthermore f ∈ Hp(D, Cn) and H is bounded so we must actually have Hf ∈ Hp(D,Cn), and so f ∈
kerTH . As our f was arbitrary we have kerTG ⊆ kerTH . This shows (Go′

1 )−1 (λ1 . . . λn )T m is a maximal 
vector for kerTG. �

For 1 < p < ∞ and a Toeplitz operator Tg : Hp → Hp Theorem 2 in [12] shows existence of an extremal 
function q ∈ kerTg, and an inner function I vanishing at 0 such that:

1. If p � 2 then qK2
I ⊂ kerTg ⊂ qKp

I .
2. If p � 2 then qKp

i ⊂ kerTg ⊂ qK2
I .

We now state a reformulation of this result, which may be viewed as a generalisation of the result given by 
Hayashi in [14] to 1 < p < ∞.

Corollary 3.7.

1. If p � 2 then kerTg = qKp
I ∩Hp.

2. If p � 2 then kerTg = qK2
I ∩Hp.

Proof. We will prove statement (1). The ⊂ inclusion is clear from the original result. To show the other 
inclusion we first observe that as qK2

I ⊂ kerTg we must have qIz ∈ kerTg. Then for all p ∈ Hp we must 
then have

gqIzp ∈ zN+,

and so if qIzp also lies in Hp we must have gqIzp ∈ Hp
0 , and so consequently qIzp ∈ kerTg. The result now 

follows from the fact that any element of qKp
I ∩Hp can be written as qIzp for some p ∈ Hp. �

Although the existence of maximal functions in the scalar case has been established in [3], we can use 
the above corollary to give an alternate expression for a maximal function of a given scalar Toeplitz kernel.

Corollary 3.8. If kerTg is expressed as in Corollary 3.7, then κmin(qIz) = kerTg.

Proof. We will prove the statement in the case p � 2. It is clear qIz ∈ kerTg. If qIz ∈ kerTh for any 
other bounded symbol h, then for any p ∈ Hp such that qIzp ∈ Hp, because hqIz ∈ Hp

0 , we must have 
hqIzp ∈ Hp

0 . �
3.1. Maximal functions when p = 2

For the remainder of this section we set p = 2, and only consider Toeplitz operators

TG : H2(D,Cn) → H2(D,Cn).

When considering whether a given Toeplitz kernel has a maximal function the space W := kerTG 

(kerTG ∩ zH2(D, Cn)) is central to this problem. We know from Corollary 4.5 in [7] that kerTG can be 
written as
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kerTG = [W1,W2, ...Wr](H2(D,Cr) 
 ΦH2(D,Cr′)), (2)

where W1, ...Wr is an orthonormal basis for W , Φ is a r by r′ matrix inner function vanishing at 0 (i.e. an 
isometry from (H2(D, Cr′) to (H2(D, Cr)) and in this decomposition r′ � r.

Lemma 3.9. dim kerTG(0) = dimW .

Proof. W1(0), ...Wr(0) are linearly independent, as if Wk(0) =
∑

i�=k λiWi(0) this would mean Wk −∑
i�=k λiWi vanishes at 0 and therefore lies in zH2(D, Cn). Next we show that W1(0), ...Wr(0) span kerTG(0). 

Evaluating kerTG at 0 gives

kerTG(0) = [W1(0),W2(0), ...Wr(0)]Cr,

which is equal to the span of W1(0), ...Wr(0). So W1(0), ...Wr(0) are a basis for kerTG(0). �
Taking in to account Theorem 3.1 and the previous lemma we can conclude if kerTG is such that 

dimW > 1, then kerTG does not have a maximal function. This leaves us with the following question: if 
kerTG is such that dimW = 1 does this Toeplitz kernel have a maximal function? When dimW = 1, using 
the Sarason style decomposition from (2) we can write

kerTG = W1(H2 
 ΦH2), (3)

where Φ is an inner function vanishing at 0 or Φ = 0. So either:

1. kerTG = W1KΦ,
2. kerTG = W1H

2.

In case 1 KΦ is a Toeplitz kernel so kerTG has a maximal function given by W1Φz as shown in Theorem 
3.17 in [4].

For case 2 we find that unlike the scalar Toeplitz kernel case there are non-trivial matricial Toeplitz 

kernels that are shift invariant, for example kerT(
1 −1
0 0

) =
(

1
1

)
H2. In case 2, kerTG can not have a 

maximal function as if it did we would have κmin(φ) = W1H
2, but this can’t be the case as Theorem 2.3

shows the minimal kernel of any element φ ∈ H2(D, Cn) is not shift invariant (in particular φz /∈ κmin(φ)). 
We can summarise these results to conclude the following theorem.

Theorem 3.10. A non zero Toeplitz kernel, kerTG, has a maximal function if and only if both: dimW = 1
(or equivalently dim kerTG(0) = 1)), and when kerTG is decomposed as in (3), kerTG takes the form 
kerTG = W1KΦ.

Remark. From (3) these two conditions can be concisely written as, dimkerTG(0) = 1 and kerTG is not 
shift invariant.

Proof. Lemma 3.9 and Theorem 3.1 show that if dimW > 1 then kerTG does not have a maximal vector. 
Conversely if dimW = 1 then writing the kernel as we have done in (3) shows that if kerTG can be written 
as W1KΦ, then it necessarily must have a maximal function. If kerTG = W1H

2, then kerTG can have no 
maximal function as minimal kernels are never shift invariant. �
Corollary 3.11. If kerTG is non zero, then kerTG is of scalar type if and only if dim kerTG(0) = 1.
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Proof. If kerTG is of scalar type it is clear that dimkerTG(0) = 1. Conversely if dim kerTG(0) = 1, then 
Lemma 3.9 shows dimW = 1, and then (3) shows kerTG is of scalar type. �
Theorem 3.12. If Φ = 0 in (3) i.e. if kerTG = W1H

2, then for any f ∈ H2 which is a cyclic vector for the 
backward shift on H2, we have κmin(W1, W1f) = W1H

2.

Proof. It is clear the two vectors are in the required kernel. Theorem 4.4 in [7] shows that multiplication by 
W1 is an isometric mapping from H2 to H2(D, C2), so W1 is a 2 by 1 matrix inner function. If W1, W1f ∈
kerTH for any bounded H, then for any λ ∈ C

W1(f − λ) ∈ kerTH .

So setting λ = f(0), and using the near invariance property of Toeplitz kernels we see that

W1
f − f(0)

z
= W1B(f) ∈ kerTH .

Repeating this inductively gives W1B
n(f) ∈ kerTH for all n ∈ N, and as f is cyclic for the backward shift 

and W1 is inner, we can deduce

W1H
2 ⊆ kerTH . �

This demonstrates that the number of maximal functions needed to specify a matricial Toeplitz kernel 
is highly non-trivial and poses the question: for an arbitrary Toeplitz kernel kerTG, how large should k be 
such that we can find φ1 . . . φk where κmin(φ1 . . . φk) = kerTG? In this case we call φ1 . . . φk a maximal 
k-tuple of functions or when k = 2 a maximal pair of functions for kerTG.

We examine the case further for n = 2. We have seen if dimW = 2 then kerTG does not have a maximal 
function, however we will now show if dimW = 2 under certain conditions kerTG does have a maximal pair 
of functions. For a matrix A we denote Ci(A) to be the i’th column of A.

Proposition 3.13. If the decomposition of kerTG in (2) is such that Φ is square i.e. if kerTG =
[W1, W2](H2(D, C2) 
ΦH2(D, C2)), then kerTG has a maximal pair of functions given by [W1, W2]C1(Φz), 
and [W1, W2]C2(Φz).

Proof. When Φ is square we have ΦΦ∗ = Φ∗Φ = I, and so a computation shows (H2(D, C2) 

ΦH2(D, C2)) = kerTΦ∗ . Then it is clear both vectors are in the required kernel.

Take any x ∈ [W1, W2](H2(D, C2) 
 ΦH2(D, C2)) = [W1, W2] kerTΦ∗ , then x = [W1, W2]Φ 
(
zp1
zp2

)
=

[W1, W2] (C1(Φz)p1 + C2(Φz)p2), for some p1, p2 ∈ H2. If [W1, W2]C1(Φz), [W1, W2]C2(Φz) ∈ kerTH for 
any bounded symbol H then

H[W1,W2]C1(Φz)p1 ∈ N+(D,C2) and H[W1,W2]C1(Φz)p2 ∈ N+(D,C2).

Which means

Hx = H[W1,W2] (C1(Φz)p1 + C2(Φz)p2) ∈ N+(D,C2),

but as x ∈ H2(D, Cn) and H is bounded we can further conclude Hx ∈ H2
0 (D,C2), and so x ∈ kerTH . Our 

x ∈ kerTG was arbitrarily chosen so

kerTG ⊆ kerTH .
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Thus kerTG has a maximal pair of functions given by

{[W1,W2]C1(Φz), [W1,W2]C2(Φz)}. �
Remark. This result can be extended to show that if

kerTG = [W1,W2, ...Wn](H2(D,Cn) 
 ΦH2(D,Cn)),

then [W1, W2, ...Wn]Ci(Φz) for i ∈ {1 . . . n} is a maximal n-tuple of functions for kerTG.

4. Minimal kernel of multiple elements in Hp

As previously mentioned it has been shown in [3] that every f ∈ Hp lies in a non-trivial Toeplitz kernel. 
If we try to consider the minimal kernel of two elements f, g ∈ Hp we often find that κmin(f, g) = Hp, 
furthermore this seems to have a connection to cyclic vectors for the backward shift. This is demonstrated 
with the following example.

Example 4.1. Let f be a cyclic vector for the backward shift on Hp, then κmin(f, 1) is equal to Hp.
If for any symbol h, f, 1 ∈ kerTh, then f − λ ∈ kerTh for any λ ∈ C. Hence f − f(0) ∈ kerTh, and by 

near invariance of Toeplitz kernels f−f(0)
z = B(f) ∈ kerTh. We can repeat this process inductively to give 

Bn(f) ∈ kerTh, for all n ∈ N and as f is cyclic, we deduce Hp ⊆ kerTh.

The following theorem gives a sufficient condition for a given function g to be the symbol of a Toeplitz 
operator whose kernel is the minimal kernel of a given set of functions in Hp. This result may be viewed as 
a partial generalisation of Theorem 2.2 in [6].

Theorem 4.1. If f1 . . . fk ∈ Hp and g ∈ L∞ are such that gfj = zpj for some pj ∈ Hp and GCD(pi1 . . . pik) =
1, then κmin(f1 . . . fk) = kerTg.

Proof. It is clear that fj ∈ kerTg for all j. We can write g as g = zpj

fj
, then for all x ∈ kerTg we have

xg = zp for some p ∈ Hp. Substituting our expression for g in to xg = zp we may write xzpj

fj
= zp, and so 

x = fjp
i
jp

po
j

and then hx = pi
j(hfj)p

po
j

∈ Lp. Therefore if fj ∈ kerTh, by Proposition 2.2 (hfj)p
po
j

∈ zN+ ∩ Lp =

Hp
0 , which means hx = pi

j(hfj)p
po
j

∈ pijH
p
0 , so P (hx) ∈ Kpi

j
for all j. As GCD(pi1 . . . pin) = 1 this means 

P (hx) ∈
⋂

j Kpi
j

= K1 = {0}. We conclude x ∈ kerTh and then kerTg ⊆ kerTh. �
Although the following corollary can also be obtained from Corollary 5.1 in [3], we give an alternate 

proof.

Corollary 4.2. Every non-trivial scalar Toeplitz kernel has a maximal function.

Proof. Specialising the above theorem to k = 1, we see that if there exists an f ∈ Hp such that gf = zp

where p ∈ Hp is outer then κmin(f) = kerTg. If kerTg is non-trivial then there exists a f ′ such that 
gf ′ = zp′ for some p′ ∈ Hp, multiplying both sides of this equality by (p′)i we see that f ′(p′)i is a maximal 
function. �
Remark. Using the above corollary, we also obtain an explicit expression for a maximal function in a non-
trivial Toeplitz kernel (when the symbol for the Toeplitz operator is known). This expression can also be 
derived from Theorem 2.2 in [6].
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The following corollary can also be proved as a consequence of Theorem 2.2 in [6], but again we write a 
proof here.

Corollary 4.3. If m is a maximal function for kerTg then kerTg = mN+ ∩Hp.

Proof. We first show the ⊇ inclusion. As m ∈ kerTg, we must have mgp ∈ zN+ for all p ∈ N+, so 
consequently if mp ∈ Hp we would have gmp ∈ Hp

0 . To show the ⊆ inclusion we note that gm = zpo1 where 
po1 is an outer function in Hp, and if f ∈ kerTg then gf = zp2 where p2 ∈ Hp. Solving these expressions for 
f we see f = m zp2

po
1
∈ mN+ ∩Hp. �

For clarity in the following theorem we will write spanN+ to mean the closed linear span in N+, and we 
will write span to mean the linear span.

Theorem 4.4. Let f, g ∈ Hp. If g
fo is cyclic for the backward shift on N+ then κmin(f, g) = Hp.

Proof. For any bounded h, if f, g ∈ kerTh then near invariance shows fo ∈ kerTh, and so for any λ ∈ C,

g − λfo = fo( g

fo
− λ) ∈ kerTh.

Letting λ = g
fo (0) we see that

fo( g

fo
− g

fo
(0)) ∈ kerTh,

and near invariance gives

fo
( g
fo − g

fo (0))
z

= foB( g

fo
) ∈ kerTh.

We can repeat this process inductively to give

span{foBn( g

fo
)} ⊆ kerTh. (4)

We now take the closure of both sides of this set inclusion in the Hp subspace topology of N+. We first 
show spanN+{foBn( g

fo )} = N+.
We have fo ∈ N+ and Bn( g

fo ) ∈ N+, so as N+ is closed under multiplication {foBn( g
fo )} ⊆ N+

and hence spanN+{foBn( g
fo )} ⊆ N+, so one set inclusion is clear. We now show N+ is contained in 

spanN+{foBn( g
fo )}. Take any x ∈ N+ then as g

fo is cyclic for N+ and x
fo ∈ N+ there exists an (xk) ⊆

span{Bn( g
fo )} such that xk → x

fo in N+. Then as N+ is a topological algebra we must have foxk → x in 
N+. So the closure of the left hand side of (4) in the Hp subspace topology of N+ is equal to N+∩Hp = Hp.

The closure of the right hand side of (4) in the Hp subspace topology of N+ is the closure of kerTh in N+

intersected with Hp. This can be seen to equal kerTh via the following observation. Let xk ∈ kerTh ⊆ N+ be 
such that xk → x in logL (or equivalently N+), then as logL is a topological algebra zhxk → zhx in logL. 
As zhxk ∈ N+ and N+ is closed in logL so we must have zhx ∈ N+. If x ∈ Hp then zhx ∈ N+ ∩Lp = Hp

so x ∈ kerTh. We conclude

Hp ⊆ kerTh. �
Corollary 4.5. Let f1 . . . fk ∈ Hp. If for any pair fj , fl with j, l = 1 . . . k, fj

fo
l

is a cyclic vector for the 

backward shift on N+, then κmin(f1 . . . fk) = Hp.
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We now find a minimal kernel for when g
fo is not a cyclic vector for the backward shift. It is immediate 

that if g
fo is not cyclic for N+ then it lies inside some B invariant subspace, and so to further understand 

κmin(f, g) we must discuss the B invariant subspaces of N+. As far as the author is aware the B invariant 
subspaces of N+ have not been described, however the following (unproved) conjecture is due to Aleksandrov 
and can be found in section 11.15 of [13].

Conjecture 4.1. The B invariant subspaces of N+ depend on three parameters:

1. An inner function θ.
2. A closed set F ⊆ T with σ(θ) ∩ T ⊆ F , where

σ(θ) = {z ∈ D− : lim inf
λ−→z

|θ(λ)| = 0}

is the spectrum of an inner function θ.
3. A function k : F → N ∪ {∞} with the additional property k(η) = ∞ for all η ∈ σ(θ) ∩ T and for all 

non-isolated points η ∈ F .

Define E(θ, F, k) to be the set of f ∈ N+ with:

1. zθf ∈ N+.
2. f has an meromorphic continuation f̃ to a neighbourhood of Ĉ \ F .
3. η is a pole of f̃ of order at most k(η) for all η ∈ F with k(η) 
= ∞.

Then E(θ, F, k) is a proper B invariant subspace of N+ and for every non-trivial B invariant subspace 
E ⊂ N+, there is a triple (θ, F, k) such that E = E(θ, F, k).

We will focus on B invariant subspaces of N+ of the form {f ∈ N+ : zθf ∈ N+} =: θ∗(N+), where θ is 
some fixed inner function and the above multiplication is understood on T . We call B invariant subspaces 
of this form one component B invariant subspaces.

Proposition 4.6. Let τ be a family of inner functions, then

⋂
θ∈τ

θ∗(N+) = GCD(τ)∗(N+).

Proof. The ⊇ is clear. To prove the ⊆ inclusion we start with the fact that the H2 closure of span{θH2 :
θ ∈ τ} is equal to GCD(τ)H2. This means we can find a sequence hn ∈ span{θH2 : θ ∈ τ} such that 
hn → GCD(τ) in the H2 norm (which also then implies convergence in N+). So if f ∈ ∩θ∈τθ

∗(N+), then 
zθf ∈ N+ for all θ ∈ τ , in particular as N+ is an algebra zhnf ∈ N+. Taking the limit in the metric of 
logL, noting logL is a topological algebra and N+ is closed we see that zGCD(τ)f ∈ N+. �

Although the B invariant subspaces of N+ have not been completely described, there is a partial result 
showing all B invariant subspaces of N+ are contained in a one component B invariant subspace. The 
following can be found as Corollary 1, page 42 in [13].

Proposition 4.7. Given a non-trivial B invariant subspace of N+, E, there exists an inner function I such 
that E ⊆ I∗(N+).
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If g
fo is not cyclic, from the above proposition there exists a θ such that g

fo lies in θ∗(N+). It then follows 
f i, g

fo lie in a one component B invariant subspace ((θf i)∗(N+) is one such example). Then Theorem 4.6
allows us to talk about the smallest one component B invariant subspace containing f i, g

fo .

Theorem 4.8. Let f, g ∈ Hp. If g
fo is not cyclic for B then κmin(f, g) = kerTfoθ/fo , where θ is such that 

θ∗(N+) is the smallest one component B invariant subspace containing both g
fo and f i.

Proof. We first show f, g ∈ kerTfoθ/fo . As g
fo , f i ∈ θ∗(N+),

g

fo
= θzp1,

and

f i = θzp2,

for some p1, p2 ∈ N+. So

g(f
oθ

fo
) = fozp1,

and

f(f
oθ

fo
) = foz p2,

both of which are in zN+ ∩Lp = Hp
0 (both can be seen to lie in LP because the symbol for the operator is 

unimodular). Now by Theorem 4.1 all that remains to be proved is that GCD(pi1, pi2) = 1.
Because f i is inner this then forces p2 to be inner. If GCD(p2, pi1) = α 
= 1 then as p2|θ, this then forces 

α|θ and then this would imply g
fo , f i ∈ (θα)∗(N+) ⊆ θ(N+). Which can not be the case by minimality of 

our choice of θ. �
Combining Theorem 4.4 and Theorem 4.8 we can now give a complete answer as to when κmin(f, g) = Hp. 

This characterisation allows us to deduce an equivalent condition for a function to be cyclic for the backward 
shift on N+.

Corollary 4.9. Let f, g ∈ Hp. There are no non-trivial Toeplitz kernels containing both f and g if and only 
if g

fo is a cyclic vector for the backward shift on N+.

Due to symmetry of the above corollary and the fact that every outer function in N+ can be expressed 
as the quotient of two outer functions in Hp we can also deduce the following.

Corollary 4.10. Let f ∈ N+ and outer, then f is cyclic for the backward shift if and only if 1
f is a cyclic 

vector for the backward shift.

5. Minimal kernel of multiple elements in Hp(D, C2)

Keeping with earlier notation we will use Greek symbols for elements of Hp(D, C2). When considering the 

minimal kernel of 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ Hp(D, C2), we find that the minimal kernel depends on the determinant 

of M =
(
φ1 ψ1
φ ψ

)
. We first consider the case when detM = φ1ψ2 − ψ1φ2 is not identically equal to zero.
2 2
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Theorem 5.1. Let 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ Hp(D, C2). If φ1ψ2 − ψ1φ2 is not identically equal to zero then 

κmin(
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
) = kerT(u1/u2)zM−1 , where u1 is a scalar outer function with |u1| = |φ1ψ2 − ψ1φ2|, 

and u2 is a scalar outer function with |u2| = |φ1| + |φ2| + |ψ1| + |ψ2| + 1.

Proof. We first note that the specified symbol is in fact bounded. We have

(u1/u2)zM−1 = z
u1

φ1ψ2 − ψ1φ2

(
ψ2/u2 −ψ1/u2
−φ2/u2 φ1/u2

)
,

by construction |z u1
φ1ψ2−ψ1φ2

| = 1 and each entry in 
(

ψ2/u2 −ψ1/u2
−φ2/u2 φ1/u2

)
has modulus smaller than 1, 

hence (u1/u2)zM−1 is a bounded matrix symbol.

For any 
(
f1
f2

)
∈ kerT(u1/u2)zM−1 , we have

(u1/u2)zM−1
(
f1
f2

)
∈ Hp

0 (D,C2).

Dividing through by u1, then multiplying through by u2 we see that

zM−1
(
f1
f2

)
=

(
zp1
zp2

)
,

for some p1, p2 ∈ N+, so

(
f1
f2

)
= M

(
p1
p2

)
=

(
φ1
φ2

)
p1 +

(
ψ1
ψ2

)
p2.

Then for any other bounded matrix H we have

H

(
f1
f2

)
= H

(
φ1
φ2

)
p1 + H

(
ψ1
ψ2

)
p2.

So if 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ kerTH , then both coordinates of H

(
f1
f2

)
lie in Lp and both H

(
φ1
φ2

)
p1 and 

H

(
ψ1
ψ2

)
p2 have both their co-ordinates lying in zN+, so therefore H

(
f1
f2

)
∈ Hp

0 (D,C2). We conclude

kerT(u1/u2)zM−1 ⊆ kerTH . �
We now consider the minimal kernel for when φ1ψ2 −ψ1φ2 = 0. In the following we let P1 and P2 denote 

the projections Lp(D, C2) → Hp on to the first and second coordinate respectively.

Theorem 5.2. Let 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ Hp(D, C2) and let u be an outer function such that |u| = |φ1| + |φ2| + 1. 

If ψ2
φo

2
is not a cyclic vector for the backward shift on N+ and φ1ψ2 − ψ1φ2 = 0, then we have

κmin(
(
φ1
φ2

)
,

(
ψ1
ψ2

)
) = kerT(

φ2/u −φ1/u
o o

),

0 φ2θ/φ2
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where θ is such that θ∗(N+) is the smallest one component B invariant subspace containing both ψ2
φo

2
and 

φi
2.

Remark. We note how θ is the same inner function that appears in the symbol for the scalar minimal kernel 
of φ2 and ψ2.

Proof. Our choice of θ guarantees both the vectors are in the required kernel.

Let 
(
x1
x2

)
∈ kerT(

φ2/u −φ1/u
0 φo

2θ/φ
o
2

), then we have

x2 = φo
2θzp

φo
2

,

for some p ∈ Hp. As in the scalar case for our choice of θ we have ψ2
φo

2
= θzp1 and φi = θzp2, for some 

p1, p2 ∈ N+, so θ can be written as

θ = ψ2zp
i
1

φo
2p

o
1
,

and

θ = φi
2zp2,

where p2 is inner. Substituting our two expressions for θ in to the above expression for x2 gives

x2 = ψ2p
i
1p

φo
2p

o
1
, (5)

and

x2 = φ2p2p

φo
2

. (6)

We also have that 
(
x1
x2

)
satisfies

x1φ2 − φ1x2 = 0,

so substituting x2 = φ2p2p

φo
2

from (6) yields

x1φ2 − φ1
φ2p2p

φo
2

= 0,

and so

x1 = φ1
p2p

φo
2
.

Consequently we may write all 
(
x1
x2

)
∈ kerT(

φ2/u −φ1/u
o o

) are of the form

0 φ2θ/φ2
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(
x1
x2

)
=

(
φ1
φ2

)
p2p

φo
2
.

We will now find a similar expression relating 
(
x1
x2

)
and 

(
ψ1
ψ2

)
. Multiplying

x1φ2 − φ1x2 = 0,

by ψ1
φ1

= ψ2
φ2

gives

x1ψ2 − ψ1x2 = 0,

and substituting x2 = ψ2p
i
1p

φo
2p

o
1

from (5) in to this expression yields

x1ψ2 − ψ1
ψ2p

i
1p

φo
2p

o
1

= 0,

so

x1 = ψ1
pi1p

φo
2p

o
1
.

Consequently we can write

(
x1
x2

)
=

(
ψ1
ψ2

)
pi1p

φo
2p

o
1
.

Now we have two expressions for 
(
x1
x2

)
∈ kerT(

φ2/u −φ1/u
0 φo

2θ/φ
o
2

),

(
x1
x2

)
=

(
ψ1
ψ2

)
pi1p

φo
2p

o
1
,

and (
x1
x2

)
=

(
φ1
φ2

)
p2p

φo
2
.

So if 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ kerTH , for any symbol H, then

H

(
x1
x2

)
= H

(
ψ1
ψ2

)
pi1p

φo
2p

o
1

=
(
H

(
ψ1
ψ2

))( pi1p

φo
2p

o
1

)
.

By Proposition 2.2 p

φo
2o

o
1
∈ N+ and H

(
ψ1
ψ2

)
∈ Hp

0 (D,C2), so both coordinates of 
(
H

(
ψ1
ψ2

))(
p

φo
2p

o
1

)
are 

in zN+ ∩ Lp(T ) = Hp
0 , and so H

(
x1
x2

)
=

(
H

(
ψ1
ψ2

))(
pi
1p

φo
2p

o
1

)
∈ pi1H

2
0 (D,C2). Similarly

H

(
x1
x2

)
= H

(
φ1
φ2

)
p2p

o
=

(
H

(
φ1
φ2

))(p2p
o

)
∈ p2H

p
0 (D,C2).
φ2 φ2
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So P1(H
(
x1
x2

)
) ∈ Kp2 ∩ Kpi

1
= KGCD(p2,pi

1), but as in the scalar case we have chosen θ such that 

GCD(p2, pi1) = 1, so P1(H
(
x1
x2

)
) ∈ K1 = {0}. The same holds for P2(H

(
x1
x2

)
) and so P (H

(
x1
x2

)
) = 0, 

and therefore

kerT(
φ2/u −φ1/u

0 φo
2θ/φ

o
2

) ⊆ kerTH . �

We now consider the case when ψ2
φo

2
is cyclic for B. In doing so we need to introduce some new theory. 

Let N+(D, C2) := {
(
f1
f2

)
: f1, f2 ∈ N+} with the metric on N+(D, C2) defined by

ρ2
((

f1
f2

)
,

(
g1
g2

))
= ρ(f1, g1) + ρ(f2, g2),

where ρ is the metric on N+. It is easily checked that N+(D, C2) is also a metric space and a sequence 
in N+(D, C2) converges if and only if both of its coordinates converge in N+. As outer functions are 

invertible in N+ for a fixed f ∈ N+, fN+ = f iN+ is closed. For a fixed 
(
f1
f2

)
∈ N+(D, C2), the following 

computation shows 
(
f1
f2

)
N+ is closed in N+(D, C2). If 

(
f1
f2

)
xn →

(
x1
x2

)
then f1xn → x1 so x1 = f1x0, 

for some x0 ∈ N+, then as logL is a topological algebra we can deduce xn → x0. So then f2xn → f2x0 and (
f1
f2

)
xn →

(
f1
f2

)
x0 ∈

(
f1
f2

)
N+.

We can also let ρ2 define a metric on logL(D, C2) = {
(
f1
f2

)
: f1, f2 ∈ logL} and in this metric N+(D, C2)

is a closed subspace of logL(D, C2).

Theorem 5.3. Let 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ Hp(D, C2), let β = GCD(φi

1, φ
i
2) and let u be an outer function such 

that |u| = |φ1| + |φ2| + 1. If ψ2
βφ2

is a cyclic vector for the backward shift on N+ and φ1ψ2 − ψ1φ2 = 0, then 
we have

κmin

((
φ1
φ2

)
,

(
ψ1
ψ2

))
= kerT(

φ2/u −φ1/u
0 0

).

The assumption φ1ψ2 − ψ1φ2 = 0 ensures ψ2
βφ2

∈ N+, as βφ1ψ2 = ψ1βφ2 and GCD(βφi
1, βφ

i
2) = 1 so 

every inner factor of βφ2 divides ψ2.
In the following proof we will write spanN+ to mean the closed linear span in N+(D, C2), and span to 

mean the linear span.

Proof. We split the proof up in to two stages. We first prove if for any bounded symbol H we have (
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ kerTH , then β

(
φ1
φ2

)
N+ ∩Hp(D, C2) ⊆ kerTH . Then we prove kerT(

φ2/u −φ1/u
0 0

) =

β

(
φ1
φ2

)
N+ ∩Hp(D, C2).

If 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ kerTH then near invariance of Toeplitz kernels guarantees β

(
φ1
φ2

)
∈ kerTH , and so 

for λ ∈ C
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(
ψ1
ψ2

)
− λβ

(
φ1
φ2

)
= β

(
φ1( ψ1

βφ1
− λ)

φ2( ψ2
βφ2

− λ)

)
∈ kerTH .

Noting ψ1
βφ1

= ψ2
βφ2

, and letting λ = ψ1
βφ1

(0) = ψ2
βφ2

(0) we see that,

β

(
φ1( ψ2

βφ2
− ψ2

βφ2
(0))

φ2( ψ2
βφ2

− ψ2
βφ2

(0))

)
∈ kerTH ,

and near invariance of Toeplitz kernels gives

β

(
φ1( ψ2

βφ2
− ψ2

βφ2
(0))

φ2( ψ2
βφ2

− ψ2
βφ2

(0))

)

z
= β

(
φ1
φ2

)
B( ψ2

βφ2
) ∈ kerTH .

We can repeat this process inductively to get β
(
φ1
φ2

)
Bn( ψ2

βφ2
) ∈ kerTH , and hence

span{β
(
φ1
φ2

)
Bn( ψ2

βφ2
) : n ∈ N0} ⊆ kerTH . (7)

We will now take the closure of both sides of this set inclusion in the Hp(D, C2) subspace topology of 
N+(D, C2).

The closure of the left hand side of (7) is equal to spanN+{β
(
φ1
φ2

)
Bn( ψ2

βφ2
)} intersected with Hp(D, C2). 

As β
(
φ1
φ2

)
N+ is closed, ψ2

βφ2
is cyclic and N+ is a topological algebra the closure of the left hand side of 

(7) equals β
(
φ1
φ2

)
N+ ∩Hp(D, C2).

The closure of the right hand side of (7) is the closure of kerTH in N+(D, C2) intersected with Hp(D, C2). 

We now argue this is equal to kerTH . Let 
(
x1n
x2n

)
∈ kerTH be such that 

(
x1n
x2n

)
→

(
x1
x2

)
in N+(D, C2), then (

x1n
x2n

)
→

(
x1
x2

)
in logL(D, C2). As logL is a topological algebra and H

(
x1n
x2n

)
=

(
h11x1n + h12x2n
h21x2n + h22x2n

)
, we 

must have zH
(
x1n
x2n

)
→ zH

(
x1
x2

)
in logL(D, C2). As 

(
x1n
x2n

)
∈ kerTH we have zH

(
x1n
x2n

)
∈ N+(D, C2), 

and as N+(D, C2) is closed in logL(D, C2) we must have zH
(
x1
x2

)
∈ N+(D, C2). So if 

(
x1
x2

)
∈ Hp(D, C2)

then zH
(
x1
x2

)
∈ N+(D, C2) ∩ Lp(D, C2) = Hp(D, C2), so 

(
x1
x2

)
∈ kerTH . From this we deduce

β

(
φ1
φ2

)
N+ ∩Hp(D,C2) ⊆ kerTH .

It remains to prove that kerT(
φ2/u −φ1/u

0 0

) = β

(
φ1
φ2

)
N+ ∩ Hp(D, C2). The ⊇ inclusion is clear. 

We will now show the ⊆ inclusion. If we let 
(
F1
F2

)
lie in kerT(

φ2/u −φ1/u
0 0

), then F1φ2 = F2φ1, and 

so βF1φ2 = βF2φ1 and F1 can be written as F1 = βφ1
F2 . Furthermore F2 is in the Smirnov class, 

βφ2 βφ2
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because βF1φ2 = βF2φ1 and GCD(βφ1, βφ2) = 1 so every inner factor of βφ2 divides F2. We can also write 

F2 = βφ2
F1
βφ1

, and as βF1φ2 = βF2φ1, we have F1
βφ1

= F2
βφ2

, so 
(
F1
F2

)
∈ β

(
φ1
φ2

)
N+ ∩Hp(D, C2).

Thus we have proved that if 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ kerTH then kerT(

φ2/u −φ1/u
0 0

) ⊆ kerTH . �

Proposition 5.4. Let θ be inner. Then f ∈ N+ is cyclic for B iff θf is cyclic for B.

Proof. If f is not cyclic then it lies in a non-trivial B invariant subspace. Then by Proposition 4.7 f ∈ I∗(N+)
for some inner function I, which then means θf ∈ (θI)∗(N+) and is therefore not cyclic for B. Conversely 
if θf is not cyclic, θf lies in some one component B invariant subspace and hence so does f . So f can not 
be cyclic. �

Combining the two previous Theorems and the previous Proposition we can deduce the following unifying 
theorem.

Theorem 5.5. Let 
(
φ1
φ2

)
, 
(
ψ1
ψ2

)
∈ Hp(D, C2) be such that φ1ψ2 − ψ1φ2 = 0. Then we have

κmin

((
φ1
φ2

)
,

(
ψ1
ψ2

))
= kerT(

φ2/u −φ1/u
0 χ

),

where u is an outer function such that |u| = φ1 + φ2 + 1 and χ is our previously given symbol for the scalar 
Toeplitz kernel κmin(φ2, ψ2). (Here if κmin(φ2, ψ2) = Hp the symbol is formally defined to be 0.)
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