JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:415 |
Global stability and wavefronts in a cooperation model with state-dependent time delay | |
Article | |
Lv, Yunfei1  Yuan, Rong1  | |
[1] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R China | |
关键词: State-dependent delay; Cooperation; Stage structure; Comparison principle; Global stability; Wavefronts; | |
DOI : 10.1016/j.jmaa.2014.01.086 | |
来源: Elsevier | |
【 摘 要 】
This article deals with a diffusive cooperative model with state-dependent delay which is assumed to be an increasing function of the population density with lower and upper bounds. For the cooperative DDE system, the positivity and boundedness of solutions are firstly given. Using the comparison principle of the state-dependent delay equations obtained, the stability criterion of model is analyzed both from local and global points of view. When the diffusion is properly introduced, the existence of traveling waves is obtained by constructing a pair of upper-lower solutions and Schauder's fixed point theorem. Calculating the minimum wave speed shows that the wave is slowed down by the state-dependent delay. Finally, the traveling wavefront solutions for large wave speed are also discussed, and the fronts appear to be all monotone, regardless of the state dependent time delay. This is an interesting property, since many findings are frequently reported that delay causes a loss of monotonicity, with the front developing a prominent hump in some other delay models. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2014_01_086.pdf | 503KB | download |