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This article deals with a diffusive cooperative model with state-dependent delay
which is assumed to be an increasing function of the population density with lower
and upper bounds. For the cooperative DDE system, the positivity and boundedness
of solutions are firstly given. Using the comparison principle of the state-dependent
delay equations obtained, the stability criterion of model is analyzed both from local
and global points of view. When the diffusion is properly introduced, the existence
of traveling waves is obtained by constructing a pair of upper–lower solutions and
Schauder’s fixed point theorem. Calculating the minimum wave speed shows that the
wave is slowed down by the state-dependent delay. Finally, the traveling wavefront
solutions for large wave speed are also discussed, and the fronts appear to be all
monotone, regardless of the state dependent time delay. This is an interesting
property, since many findings are frequently reported that delay causes a loss of
monotonicity, with the front developing a prominent hump in some other delay
models.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In a natural ecosystem, the maturity of a species individuals is not an instantaneous process but is
mediated by some time lag which can be viewed as the time taken from birth to maturity. Systems with
time lag (or time delay) lead to delay differential equations (DDE), which have been studied intensively
and systematically [9,23,16,41]. The theory and applications of DDEs are emerging as an important area of
investigation. Previously, some models of population growth with time delay (discrete and distributed time
delays, stochastic, etc.) were discussed in literature [7,15,37,24,40].

But, in these above systems, only the constant time delay is considered. In 1992, Aiello et al. [2] have
already considered a system with a state dependent delay, where the time delay is taken to be an increasing

✩ This work is supported by the National Nature Science Foundation of China (11031002, 11371058), RFDP (20110003110004),
and the Grant of Beijing Education Committee Key Project (Z201310028031).
* Corresponding author.

E-mail address: ryuan@bnu.edu.cn (R. Yuan).
http://dx.doi.org/10.1016/j.jmaa.2014.01.086
0022-247X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2014.01.086
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:ryuan@bnu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2014.01.086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2014.01.086&domain=pdf


544 Y. Lv, R. Yuan / J. Math. Anal. Appl. 415 (2014) 543–573
function of the total populations. This assumption is believed to be realistic in the example of Antarctic
whale and seal populations [11]. It is observed that individual of a small seal species takes three to four years
to mature and of large seals takes five years to mature, of small whales takes seven to ten years and of large
whale species takes twelve to fifteen years to reach maturity. Besides, Andrewartha and Birch [6] considered
how the duration of larval development of flies is viewed as a nonlinear increasing function of larval density.
For the interesting phenomenon, many authors investigated state-dependent time delay population model
in literature [43,4,5,1,21]. In fact, the state-dependent delay τ(u1) measures the intraspecific competition
effects of a species u1. Since the limited food resources made the species individuals devote more energy and
time to finding food for their own survival and virtually none to reproduce, the time to maturity certainly
becomes longer. That is, the period of maturity is longer if the number of species is larger, in return, it
will lead to reduce the size of the population since the growth of the species is slowed down. Finally, the
species will be equilibrium at some level u∗

1, and there is corresponding to an equilibrium delay τ(u∗
1). Our

results imply that the stronger the intraspecific competition of the species, the smaller the equilibrium size
u∗

1 of the species and the lower the equilibrium delay τ(u∗
1). In this paper, we will deal with a diffusive

cooperative model with state-dependent time delay. In biological terms, cooperation can be interpreted as
that the presence of one species encourages the growth of the other species, which is one of the important
interactions among species and is commonly seen in social animals and in human society (see, for example,
[12,28,30]). Furthermore, we believe that such a diffusive model with state-dependent delay has not been
discussed yet, and thus the work in this article is new.

As mentioned above, most species individuals have a life history that takes them through two stages:
immature and mature, and species at two stages may have different behaviors. For example, for a number
of mammals, the immature prey are concealed in the mountain cave and raised by their parents; they do
not necessarily go out seeking food. When motion is allowed, then it is reasonable to suppose that the
immature does not move (especially if the immature phase is a larval phase) and does not have a risk
to contact with other species. Therefore, considering that stage structure in population is in accord with
the natural phenomenon. Based on the fact that the amount of food available per biomass in a closed
environment is a function of the consumer population, we propose the following diffusive cooperative model
with a monotonically increasing, state-dependent delay

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv1

dt
= α1u1 − γ1v1 − α1e

−γ1τ(u1+v1)u1
(
t− τ(u1 + v1)

)
,

∂u1

∂t
= d1

∂2u1

∂x2 + α1e
−γ1τ(u1+v1)u1

(
t− τ(u1 + v1)

)
− β1u

2
1 + μ1u1u2,

dv2

dt
= α2u2 − γ2v2 − α2e

−γ2τ(u2+v2)u2
(
t− τ(u2 + v2)

)
,

∂u2

∂t
= d2

∂2u2

∂x2 + α2e
−γ2τ(u2+v2)u2

(
t− τ(u2 + v2)

)
− β2u

2
2 + μ2u1u2,

t ∈ R
+, x ∈ R. (1.1)

The following assumptions for model (1.1) are made:
• The variables vi(t, x) and ui(t, x) (i = 1, 2) represent the densities of the cooperative immature and

mature species at time t and at position x, respectively.
• The parameter di(> 0), i = 1, 2, is diffusion coefficient of population ui. The delay τ is the time taken

from birth to maturity. This paper considers the time delay to be state dependent, that is, the time delay
is taken to be an increasing function of the total population ui + vi, so that τ ′(ui + vi) � 0, and we shall
also assume that 0 < τm � τ(ui + vi) � τM with τm = τ(0) and τM = τ(∞).

• The rate at which individuals are born is taken to be proportional to the number of matures at that
time; this is the αiui term. Death of immatures is modeled by the term −γivi. Death of matures is modeled
by a quadratic term βiu

2
i , as in the logistic equation. The term αie

−γiτ(ui+vi)ui(t− τ(ui + vi), x) appearing
in both equations represents the rate at time t and position x at which individuals leave the immature
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and enter the mature class, having just reached maturity. These are individuals who were born at time
t − τ(ui + vi). Therefore, the rate of entering the mature class is αiui(t − τ(ui + vi), x) times the fraction
of those born at time t− τ(ui + vi) who are still alive now, where this fraction is e−γiτ(ui+vi) follows from
the assumption that the death of immatures is following a linear law given by the term −γiui (on the basis
of such a law, if X(t) is any population, then the number that survive from (t− τ) to t is e−γiτX(t− τ)).
Since the immature species do not move, the diffusion does not cause nonlocal response in the delay term.

• Assume that interspecific cooperative effects are of the classical Lotka–Volterra kind, and the effects
of u2 on u1, and u1 on u2 are measured by μ1 > 0 and μ2 > 0, respectively.

Accompanied with (1.1), we take the initial conditions

u1(θ, x) = ϕ1(θ, x) � 0, u2(θ, x) = ϕ2(θ, x) � 0, θ ∈ [−τM , 0], x ∈ R,

v1(0, x) = v10(x) > 0, v2(0, x) = v20(x) > 0, ϕ1(0, x) > 0, ϕ2(0, x) > 0, x ∈ R,

with

vi0(x) =
0∫

−τs

αiui(s, x)eγis ds, i = 1, 2.

Thus, vi0(x) represents the number of the immature species i that have survived born from −τs to 0. For
values of t, −τs � t � 0 we understand that ui(t, x) = ϕi(t, x), and that ui(0, x) = ϕi(0, x), since anyone
born before that time will have matured before time t = 0. Note also that τ(ui(0, x)+ vi(0, x)) = τs, that is

τs = τ
(
ui(0, x) + vi(0, x)

)
= τ

(
ui(0, x) +

0∫
−τs

αiui(s, x)eγis ds

)
.

Thus, τs is determined implicitly. From this, we can conclude that the initial conditions of vi is dependent
on the initial conditions of ui. Solving the first Eq. (1.1), it follows that

vi(s) = e−γis

(
vi(0) + αi

s∫
0

eγit
(
ui(t) − e−γiτ(ui(t)+vi(t))ui

(
t− τ

(
ui(t) + vi(t)

)))
dt

)
.

Therefore, the solution vi(s, x) is dependent on the solution ui(s, x). For convenience, we consider that the
delay τ is only the function of ui not ui + vi. Thus, (1.1) is not a fully coupled system in that the second
and fourth equations, for the mature populations u1 and u2, can be solved independent of the first and
third, respectively. Consideration of this second and fourth equations alone is an interesting and non-trivial
mathematical problem in its own right

⎧⎪⎨⎪⎩
∂u1

∂t
= d1

∂2u1

∂x2 + α1e
−γ1τ(u1)u1

(
t− τ(u1)

)
− β1u

2
1 + μ1u1u2, t ∈ R

+, x ∈ R,

∂u2

∂t
= d2

∂2u2

∂x2 + α2e
−γ2τ(u2)u2

(
t− τ(u2)

)
− β2u

2
2 + μ2u1u2, t ∈ R

+, x ∈ R,

(1.2)

with initial conditions

u1(θ, x) = ϕ1(θ, x) � 0, u2(θ, x) = ϕ2(θ, x) � 0, θ ∈ [−τM , 0], x ∈ R,

ϕ1(0, x) > 0, ϕ2(0, x) > 0, x ∈ R. (1.3)
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• For our model to make sense, i.e., excluding the possibility of adults becoming immatures except by
birth, the function t−τ(ui+vi) must be a strictly increasing function of t [2]. So, we need (∂/∂t)τ(ui+vi) =
τ ′(ui + vi)(ui + vi)′ < 1. This is necessary to find conditions on τ(ui + vi) such that this assumption holds.
In the absence of diffusion (di = 0), it follows that

u′
i + v′i = αiui − γivi − βiu

2
i + μiu1u2 � (αi + μiΔi)ui − βiu

2
i � (αi + μiΔi)2

4βi
,

here we used the positivity and boundedness of the solution ui (which will be proved in Theorem 2.1) and
vi (which has been shown in [2]), this means that the assumption holds if τ ′ < min{4β1/(α1 +μ1Δ1)2, 4β2/

(α2+μ2Δ2)2}. In the presence of diffusion (di �= 0), we mainly study the existence of traveling wave solutions
connecting two equilibria which will be obtained in the region Γ := {(u1, u2) | 0 < u1 < B1, 0 < u2 < B2},
(B1, B2 see Proposition 3.1) by constructing upper–lower solutions in Section 3. For the case di �= 0, we are
only interested in the dynamics of model (1.2) in Γ . According to Lemma 3.3.1 in [42], similarly, we can
impose the conditions on τ ′ such that the assumption holds, i.e., there exists a constant L which is dependent
on B1 and B2 such that τ ′ < L.

Without diffusion, the state-dependent delay differential model (1.2) extends the classical two-species
Lotka–Volterra model. For the Lotka–Volterra ODE competition or cooperation system, such system gen-
erates a monotone dynamical system with respect to the standard ordering. The global dynamics is natural
and can be obtained by applying the powerful monotone dynamical systems theory [34]. This flow mono-
tonicity with respect to the standard ordering relation has also made it possible to establish the existence
of traveling waves connecting equilibria for the corresponding reaction–diffusion monotone model. General
results about monostable traveling waves for the above reaction–diffusion equations admitting comparison
principles can be found in literature [39,25,27,22,10]. Some authors in [3,45] have studied the competitive
model with stage structure. Note that in the two species model (1.2) with age stages, delay is indispensable.
However, in the presence of state-dependent delay, it is easy to see that the system (1.2) is no longer order
preserving and the equilibrium solutions depend on the delay. Since a Hopf bifurcation of stable periodic
solutions may occur when time delay is large. There some partial answers for global stability and monotony
of the competitive model with constant delay are given in [3,45,35,36]. It is difficulty to study the monotony
of solutions and the global dynamics of system with state dependent delay. In this work, we will consider
the global behavior, the existence and the monotonicity of traveling wave solutions of the cooperative model
with state-dependent delay.

Furthermore, we will deal with a diffusive cooperative model with state-dependent delay, to allow for
individuals moving around. When different species individuals inhabit the same environment, how species
move, distribute, and persist is an important biological and mathematical question. The existence of traveling
wave solutions for spatial systems provide a good answer to this question. From biological point of view,
traveling wave solutions describe the species invasion, which is called the “wave of invasion”. Some authors
[3,45,20,44,14] investigated the stability and traveling waves in a competitive model with stage structure
and delay. Gourley and Kuang [14] studied wavefronts and global stability for the well known stage structure
model proposed by Aiello and Freedman, to allow for individuals moving around. One may naturally ask
if a similar conclusion holds for the cooperative system with state-dependent delay. It is our main aim in
this paper to study the existence of traveling waves and their properties, especially the monotonicity, for a
diffusive cooperative model with state-dependent delay.

Firstly, we analyze the stability of the equilibria of the DDE system in Section 2. By constructing a pair
of upper–lower solutions, we employ the cross iteration method and Schauder’s fixed point theorem in a
profile set to obtain the existence of traveling wave solutions, and further discuss the wavefronts for large
enough speed in Section 3. Section 4 is devoted to some conclusions.
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2. Stability analysis

In this section, we shall discuss the stability of the equilibria of the DDE system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
du1

dt
= α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + μ1u1u2,

du2

dt
= α2e

−γ2τ(u2)u2
(
t− τ(u2)

)
− β2u

2
2 + μ2u1u2,

u1(θ) = ϕ1(θ) � 0, u2(θ) = ϕ2(θ) � 0, θ ∈ [−τM , 0].

(2.1)

Firstly, we show the positivity and boundedness of the solution. From the standpoint of biology, positivity
means that the system persists, i.e., the populations may survive. Boundedness may be viewed as a natural
restriction to growth as a result of limited resources in a closed environment. Based on these considerations,
we have the following theorem.

Theorem 2.1. Let ϕi(θ) > 0, i = 1, 2, for θ ∈ [−τM , 0]. Then

(a) ui(t) > 0 for t > 0;
(b) there exists δi = δi(ϕi) > 0 such that ui(t) > δi for all t � 0, where

δi(ϕi) = 1
2 min

{
inf

−τM�θ�0
ϕi(θ), β−1

i αie
−γiτM

}
;

(c) there exists Δi = Δi(ϕi) > 0 such that ui(t) < Δi for all t � 0 if β1β2 > μ1μ2, where

Δ1 = max
{

sup
−τM�θ�0

ϕ1(θ),
β2α1e

−γ1τm + μ1α2e
−γ2τm

β1β2 − μ1μ2

}
,

Δ2 = max
{

sup
−τM�θ�0

ϕ2(θ),
μ2α1e

−γ1τm + β1α2e
−γ2τm

β1β2 − μ1μ2

}
. (2.2)

Proof. First, we show the positivity of ui. Otherwise, there would be t1 so that ui(t1) = 0. By continuity
of solutions, it follows from ui(0) > 0 that such t1 must be strictly greater than zero. Let t∗ := inf{t: t > 0,
ui(t) = 0}. Then from the ith Eq. (2.1), we have

u′
i

(
t∗
)

= αie
−γiτmui

(
t∗ − τm

)
.

From assumption t∗−τm < t∗, then ui(t∗−τm) > 0 by the definition of t∗. This, in turn, implies u′
i(t∗) > 0,

giving us a contradiction. So no such t∗ exists, and we obtain the results (a).
Second, we show ui is uniformly bounded away from zero for a given positive initial function. Set

δi(ϕi) = 1
2 min{inf−τM�θ�0 ϕi(θ), β−1

i αie
−γiτM }. Otherwise, there exists an s1 such that s1 = inf{t: t � 0,

ui(t) = δi} and u′
i(s1) � 0. By the definition of δi, we have ui(0) = ϕi(0) � 2δi. It follows from the continuity

that s1 > 0. Thus,

u′
i(s1) = αie

−γiτ(ui)ui

(
s1 − τ(ui)

)
− βiu

2
i (s1) + μiu1(s1)u2(s1)

� αie
−γiτM δi − βiδ

2
i � αie

−γiτM δi −
1
2αie

−γiτM δi = 1
2αie

−γiτM δi > 0.

We have a contradiction. So, such s1 does not exist and ui(t) > δi for all t > 0.
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Next, we show that the ith population is bounded above by Δi. Our proof is divided into two steps.
(i) Suppose that u′

i(t) � 0 for all t > T for some T � 0. Then for t > T + τ ,

0 � u′
i(t) = αie

−γiτ(ui)ui

(
t− τ(ui)

)
− βiu

2
i (t) + μiu1(t)u2(t)

� αie
−γiτmui(t) − βiu

2
i (t) + μiu1(t)u2(t),

since ui(t− τ(ui)) � ui(t). This means that

β1u1 − μ1u2 � α1e
−γ1τm , β2u2 − μ2u1 � α2e

−γ2τm , t > T.

Thus, it follows from ui(t) > 0 that

u1(t) � β2α1e
−γ1τm + μ1α2e

−γ2τm

β1β2 − μ1μ2
, u2(t) � β1α2e

−γ2τm + μ2α1e
−γ1τm

β1β2 − μ1μ2
,

if β1β2 > μ1μ2, giving us our desired result.
(ii) Assume that β1β2 > μ1μ2. Now, if there are two sequences {tn}∞n=1 and {sm}∞m=1 such that u′

1(tn) = 0,
u′

2(sm) = 0, and u1(tn), u2(sm) is a local maximum, where u1(t) � u1(tn), 0 < t < tn for all n, and
u2(t) � u2(sm), 0 < t < sm for all m, then by a similar analysis at t = tn and t = sm, it follows that

β1u1(tn) − μ1u2(tn) � α1e
−γ1τm , β2u2(sm) − μ2u1(sm) � α2e

−γ2τm . (2.3)

For any given tn, we take sn = max{sm: sm � tn}. If sn = tn, it follows from (i) that the solutions u1(t) and
u2(t) are bounded above by a bound. If sn < tn and u2(sn) < u2(tn), then u′

2(tn) > 0 and u2(t) � u2(tn)
for all t � tn. Otherwise, there is an sn < t < tn such that u′

2(t) = 0, which contradicts the definition of sn.
Thus, we have

0 < u′
2(tn) = α2e

−γ2τ(u2)u2
(
tn − τ(u2)

)
− β2u

2
2(tn) + μ2u1(tn)u2(tn)

� α2e
−γ2τmu2(tn) − β2u

2
2(tn) + μ2u1(tn)u2(tn).

In a similar way of (i), we get the same results u1(t) and u2(t) are bounded above by a bound. If sn < tn
and u2(tn) < u2(sn), then it follows from the first inequality of (2.3) that

β1u1(sm) − μ1u2(sm) � β1u1(tn) − μ1u2(tn) � α1e
−γ1τm .

Combined with the second inequality of (2.3), we obtain the same results u1(t) and u2(t) are bounded above
by a bound.

Choosing Δi(ϕi) in (2.2), this completes the theorem. �
Next, we discuss steady states of system (2.1). We first examine the nullclines of the system{

α1e
−γ1τ(u1) − β1u1 + μ1u2 = 0,

α2e
−γ2τ(u2) − β2u2 + μ2u1 = 0.

(2.4)

It is easy to show that system (2.1) has the extinction equilibrium E0 = (0, 0), the boundary equilibria
E1 = (û1, 0) and E2 = (0, û2) where ûi satisfies the following equation

αie
−γiτ(ui) − βiui = 0, i = 1, 2. (2.5)
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Fig. 1. Graphs of systems (a) and (b).

We observe that αie
−γiτ(ui) is a decreasing function with respect to ui, and αie

−γiτ(0) = αie
−γiτm > 0,

limui→∞ αie
−γiτ(ui) = αie

−γiτM . Furthermore, limui→∞ βiui = ∞, there exists a unique boundary equilibria
E1 = (û1, 0) or E2 = (0, û2). Therefore, if the boundary equilibria exists then ûi < β−1

i αie
−γiτm is unique.

For the well-extended logistic model (1.2), we can denote by ûi the carrying capacity of the species i.
Eqs. (2.4) can be rewritten as the following equations:{

u2 = μ−1
1 (β1u1 − α1e

−γ1τ(u1)),
u1 = μ−1

2 (β2u2 − α2e
−γ2τ(u2)),

(a)
{

u′
2 = μ−1

1 (β1u
′
1 − α1e

−γ1τ(û1)),
u′

1 = μ−1
2 (β2u

′
2 − α2e

−γ2τ(û2)).
(b)

It is easy to verify that the system (b) with constant delays τ(û1) and τ(û2) has a positive solution (u′ ∗
1 , u′ ∗

2 )
if μ1μ2 < β1β2. Note that both lines which are represented by the first equation of (a) and (b) go through
the point E1 = (û1, 0); and both lines which are represented by second equation of (a) and (b) go through
the point E2 = (0, û2); the first line of (a) is always above the first line of (b) for u1 > û1; the second line
of (a) is always below the second line of (b) for u2 > û2. We illustrate the case in Fig. 1. Thus, the system
(a) has always a positive solution (u∗

1, u
∗
2) if μ1μ2 < β1β2.

Besides, solving (2.4) gives

u∗
1 = α1β2e

−γ1τ(u∗
1) + α2μ1e

−γ2τ(u∗
2)

β1β2 − μ1μ2
, u∗

2 = α2β1e
−γ2τ(u∗

2) + α1μ2e
−γ1τ(u∗

1)

β1β2 − μ1μ2
, (2.6)

provided u∗
1 > 0, u∗

2 > 0 if and only if μ1μ2 < β1β2. In order to discuss the criteria for which there exists a
unique equilibrium, both u1-nullcline and u2-nullcline define u2 in Eq. (2.4) as a function of u1, u2 = g1(u1)
and u2 = g2(u1), respectively. Then E∗ will be unique if g′1(u∗

1) > g′2(u∗
1) for every such E∗, otherwise there

were more than one equilibrium E∗, then the reverse inequality must hold for alternate equilibria and this
is a contradiction.

Now, it follows from Eq. (2.4) that u2 = g1(u1) = μ−1
1 (β1u1 − α1e

−γ1τ(u1)) and u2 = g2(u1). Therefore,
taking derivatives along g1 and g2 with respect to u1 gives us

g′1(u1) = μ−1
1

(
γ1τ

′(u1)α1e
−γ1τ(u1) + β1

)
,

g′2(u1) = μ2
(
γ2τ

′(u2)α2e
−γ2τ(u2) + β2

)−1
. (2.7)

From (2.4) we get the relations
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α1e
−γ1τ(u∗

1) = β1u
∗
1 − μ1u

∗
2 > 0, α2e

−γ2τ(u∗
2) = β2u

∗
2 − μ2u

∗
1 > 0, (2.8)

and also

g′1
(
u∗

1
)

= μ−1
1

(
γ1τ

′(u∗
1
)(
β1u

∗
1 − μ1u

∗
2
)

+ β1
)
,

g′2
(
u∗

1
)

= μ2
(
γ2τ

′(u∗
2
)(
β2u

∗
2 − μ2u

∗
1
)

+ β2
)−1

.

The uniqueness of coexistence equilibrium is obtained providing g′1(u∗
1) > g′2(u∗

1), that is

μ1μ2 <
(
γ1τ

′(u∗
1
)(
β1u

∗
1 − μ1u

∗
2
)

+ β1
)(
γ2τ

′(u∗
2
)(
β2u

∗
2 − μ2u

∗
1
)

+ β2
)
. (2.9)

Then, the coexistence equilibrium exists and is unique if μ1μ2 < β1β2, since the right part of the inequal-
ity (2.9) is always above β1β2.

Therefore, we have the following theorem.

Theorem 2.2. The system (2.1) has a unique extinction equilibrium E0 = (0, 0), boundary equilibrium
E1 = (û1, 0) and E2 = (0, û2), and coexistence equilibrium E∗ = (u∗

1, u
∗
2) if and only if μ1μ2 < β1β2.

Remark 2.1. From above analysis, we can conclude that if the coexistence equilibria exists, then u∗
1 > û1

and u∗
2 > û2, which implies the mutualistic effects raises the equilibrium levels of each species. Since, the

coexistence equilibrium values u∗
i is greater than the level ûi (the carrying capacities for each species) in the

absence of cooperative interaction.

Furthermore, we will discuss the local asymptotic stability of equilibria by studying the sign of the real
parts of eigenvalues of the associated characteristic equations (see [18,38] for more details about linearization
and stability of state-dependent delay differential equations). Let E = (u0

1, u
0
2) be an arbitrary equilibrium.

Using Taylor expansions, and neglecting all nonlinear terms in u1 and u2, the linearized system (2.1) about E
is given by (

u′
1(t)

u′
2(t)

)
=

(
−2β1u

0
1 − ξ∗1 + μ1u

0
2 μ1u

0
1

μ2u
0
2 −2β2u

0
2 − ξ∗2 + μ2u

0
1

)(
u1(t)
u2(t)

)

+
(
α1e

−γ1τ(u0
1) 0

0 α2e
−γ2τ(u0

2)

)(
u1(t− τ(u1))
u2(t− τ(u2))

)
, (2.10)

where

ξ∗i = αiγiu
0
i e

−γiτ(u0
i )τ ′

(
u0
i

)
, i = 1, 2. (2.11)

Trial solutions proportional to (c1, c2) exp(λt) leads to the characteristic equation∣∣∣∣∣ a11 − ξ∗1 + μ1u
0
2 − λ μ1u

0
1

μ2u
0
2 a22 − ξ∗2 + μ2u

0
1 − λ

∣∣∣∣∣ = 0, (2.12)

where aii = αie
−τ(u0

i )(γi+λ) − 2βiu
0
i .

For the extinction equilibrium E0 = (0, 0), Eq. (2.12) reduces to

(
α1e

−τm(γ1+λ) − λ
)(
α2e

−τm(γ2+λ) − λ
)

= 0.
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All eigenvalues are given by solutions of

λi = αie
−τm(γi+λi), i = 1, 2.

So, the above equation always has a real positive solution and E0 is an unstable point.
For the boundary equilibrium E1 = (û1, 0), the eigenvalues are the roots of the equation

(
α1e

−τ(û1)(γ1+λ) − 2β1û1 − ξ∗1 − λ
)(
α2e

−τm(γ2+λ) + μ2û1 − λ
)

= 0.

Clearly, some of the eigenvalues are given by the equation

λ + 2β1û1 + ξ∗1 = α1e
−τ(û1)(γ1+λ).

We claim that all eigenvalues have negative real parts. Suppose that Reλ � 0, then from the above equation
we compute the real parts of λ and have

Reλ + 2β1û1 + β1γ1τ
′(û1)û2

1 = β1û1e
−τ1 Re λ cos(γ1τ1 Imλ) � β1û1.

Hence Reλ � −β1û1(1 + γ1τ
′(û1)û1) < 0, a contradiction proving the claim.

The others λ are given by the equation

α2e
−τm(γ2+λ) = λ− μ2û1.

It is easy to see that the above equation has always one positive real root, by plotting the left- and right-hand
sides of the above equation against λ. Therefore, the boundary equilibrium E1 = (û1, 0) is unstable.

In a similar way, we can show that E2 = (0, û2) is unstable.
For the coexistence equilibrium state E∗ = (u∗

1, u
∗
2), all eigenvalues satisfy the equation

(
λ− a11 + ξ∗1 − μ1u

∗
2
)(
λ− a22 + ξ∗2 − μ2u

∗
1
)
− μ1μ2u

∗
1u

∗
2 = 0. (2.13)

In order to show that E∗ is locally asymptotically stable, we just need to prove the roots of the above
characteristic equation have negative real parts. Let λ = a + ib, where a and b are real numbers. Let

D1 = a + β1u
∗
1 + α1e

−γ1τ(u∗
1)(1 + γ1u

∗
1τ

′(u∗
1
)
− e−aτ(u∗

1) cos
(
bτ
(
u∗

1
)))

,

D2 = a + β2u
∗
2 + α2e

−γ2τ(u∗
2)(1 + γ2u

∗
2τ

′(u∗
2
)
− e−aτ(u∗

2) cos
(
bτ
(
u∗

2
)))

,

E1 = b + α1e
−τ(u∗

1)(γ1+a) sin
(
bτ
(
u∗

1
))
, E2 = b + α2e

−τ(u∗
2)(γ2+a) sin

(
bτ
(
u∗

2
))
.

Substituting λ = a + ib into Eq. (2.13), we get

D1D2 −E1E2 = μ1μ2u
∗
1u

∗
2 and D1E2 + D2E1 = 0.

Then

(
μ1μ2u

∗
1u

∗
2
)2 = (D1D2)2 + (E1E2)2 − 2D1D2E1E2.

Now, we assume that Reλ = a � 0. By 1 − e−aτ(u∗
i ) cos(bτ(u∗

i )) � 0, it follows that

Di � βiu
∗
i , and D1D2 � μ1μ2u

∗
1u

∗
2 if β1β2 � μ1μ2.
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But, using D1E2 + D2E1 = 0, we have(
μ1μ2u

∗
1u

∗
2
)2 = (D1D2)2 + (E1E2)2 + (D1E2)2 + (D2E1)2.

And so (μ1μ2u
∗
1u

∗
2)2 > (D1D2)2, which contradicts the assumption. Therefore, the coexistence equilibrium

state E∗ is locally asymptotically stable if β1β2 � μ1μ2.
The next two lemmas are elementary but useful in the following discussion, which can be found in

Gopalsamy [13] and Hirsch et al. [19].

Lemma 2.1 (Barbǎlat lemma). Let a be a finite number and f : [a,∞) → R be a differentiable function.
If limt→∞ f(t) exists (finite) and f ′ is uniformly continuous on [a,∞), then limt→∞ f ′(t) = 0.

Lemma 2.2 (Fluctuation lemma). Let a be a finite number and f : [a,∞) → R be a differentiable func-
tion. If lim inft→∞ f(t) < lim supt→∞ f(t), then there exist sequences {tn} ↑ ∞ and {sn} ↑ ∞ such that
limn→∞ f(tn) = lim supt→∞ f(t), f ′(tn) = 0 and limn→∞ f(sn) = lim inft→∞ f(t), f ′(sn) = 0.

Next, we are mainly interested in the global asymptotic stability of the coexistence equilibria of our
model. Before proceeding, we will need the following theorem.

Theorem 2.3. Let u1(t) be the solution of

du1

dt
= α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + Au1, (2.14)

where the initial data u1(θ) = ϕ1(θ) > 0, for θ ∈ [−τM , 0]. Then limt→∞ u1(t) = ũ1 where ũ1 =
β−1

1 (α1e
−γ1τ(ũ1) + A).

Proof. It is easy to verify that u1(t) is positive and bounded (the proof is same as that of Theorem 2.1).
Let us first deal with the case when u1(t) is eventually monotonic. For this case, there exists 0 � ũ1 < ∞
such that limt→∞ u1(t) = ũ1 and limt→∞ u′

1(t) = 0. Hence from system (2.14), taking the limit as t → ∞,
we get that

0 = lim
t→∞

u′
1(t) = ũ1

(
α1e

−γ1τ(ũ1) − β1ũ1 + A
)
.

Thus ũ1 = 0 and ũ1 = β−1
1 (α1e

−γ1τ(ũ1) +A). So, this limit must be an equilibrium of (2.14) and is therefore
either zero or the value stated. Zero is ruled out since a standard linearized analysis yields that the zero
solution of (2.14) is linearly unstable. Therefore, ũ1 = β−1

1 (α1e
−γ1τ(ũ1) + A).

The rest of case to discuss is that u1(t) is neither eventually monotonically increasing nor decreasing.
Thus, we assume that u1(t) is oscillatory. Then u1(t) has an infinite sequence of local maxima and define
the sequence {tj} as those times for which u′

1(tj) = 0 and u′′
1(tj) < 0. Here, we will only discuss in detail the

case of the local maximum u1(tj) > ũ1 for all j = 1, 2, 3, . . . , and other cases can be dealt with analogously.
Now, we prove that supt�t1 u1(t) = u1(tk) for some integer k. Otherwise, after every local maximum

u1(tj) there is another that is higher, and a subsequence of {tj} (still relabeled {tj}) therefore can be
chosen with the property that u1(t) < u1(tj) for all t1 � t < tj and each j. The subsequence is selected by
including each local maximum which is higher than every one before it. By assumption tj − τ(u1(tj)) < tj ,
for each j

0 = u̇1(tj) = α1e
−γ1τ(u1)u1

(
tj − τ(u1)

)
− β1u

2
1(tj) + Au1(tj)

< u1(tj)
(
α1e

−γ1τ(u1) − β1u1(tj) + A
)
< u1(tj)

(
α1e

−γ1τ(ũ1) − β1ũ1 + A
)

= 0,
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this is a contradiction. So, supt�t1 u1(t) = u1(tk) for some integer k and we let s1 = tk. Now, by applying
this same analysis to the interval t � tk+1, the existence of a tl (l > k) with supt�tk+1

u1(t) = u1(tl) can
be obtained, and we set s2 = tl. Continuing this process, we obtain an infinite sequence {sj} of times such
that sj+1 > sj , sj → ∞, u1(t) � u1(sj) for all t > sj , and u′

1(sj) = 0.
Let y(t) = u1(t) − ũ1. Next, we will prove that y(t) → 0 as t → ∞. We have got a sequence y(sj) >

y(sj+l) > 0 (since u1(sj) � u1(sj+l) and u1(sj) > ũ1), and it is now enough to show that y(sj) → 0 as
j → ∞. In terms of y, Eq. (2.14) becomes, at t = sj ,

0 = ẏ(sj) = α1e
−γ1τ(y+ũ1)y

(
sj − τ(y + ũ1)

)
− β1y

2(sj) − 2β1y(sj)ũ1 + Ay(sj)

+
(
α1e

−γ1τ(y+ũ1)ũ1 − β1ũ
2
1 + Aũ1

)
so that

α1e
−γ1τ(y+ũ1)y

(
sj − τ(y + ũ1)

)
=

(
2β1ũ1 + β1y(sj) −A

)
y(sj) − α1ũ1

(
e−γ1τ(y(sj)+ũ1) − e−γ1τ(ũ1)

)
=

(
2β1ũ1 + β1y(sj) + α1e

−γ1τ(ũ1) − β1ũ1
)
y(sj) − α1ũ1

(
e−γ1τ(y(sj)+ũ1) − e−γ1τ(ũ1)

)
=

(
β1ũ1 + β1y(sj) + α1e

−γ1τ(ũ1)
)
y(sj) + α1ũ1

(
e−γ1τ(ũ1) − e−γ1τ(y(sj)+ũ1)

)
�

(
α1e

−γ1τ(ũ1) + β1ũ1
)
y(sj)

since τ(ũ1) < τ(y(sj) + ũ1). By the sequence {sj}, we choose a final subsequence, once again denoted {sj},
so that sj − τM � sj−1. Then y(sj − s) < y(sj−1) for all s ∈ [0, τM ] and therefore

y(sj) � α1e
−γ1τ(y+ũ1)y(sj − τ(y + ũ1))

α1e−γ1τ(ũ1) + β1ũ1
� Sy(sj−1), where S = α1e

−γ1τ(ũ1)

α1e−γ1τ(ũ1) + β1ũ1
.

Now, S < 1 and S is independent of j. Therefore, y(sj) → 0 as j → ∞. We summarize that
limt→∞ u1(t) = ũ1 and complete the proof of Theorem 2.3. �

Besides, in the proof of the following theorem, a comparison principle will be used. As we know, the
comparison principles does not always hold for delay equation, let alone the state-dependent equation, which
depends very much on how the delay term appears in the equations. For example, the essential requirement
for a comparison principle to hold is that the reaction term be a nondecreasing function of the delayed
variable in scalar equation [29]. Now, we give the proof of the comparison principles of state-dependent
delay equations.

Theorem 2.4. Let u1(t) be the solution of

u′
1(t) = α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + λu1, t > 0,

and u2(t) some function satisfying

u′
2(t) � α1e

−γ1τ(u2)u2
(
t− τ(u2)

)
− β1u

2
2 + λu2, t > 0. (2.15)

Assume also that u2(θ) � u1(θ) for all θ ∈ [−τM , 0]. Then u2(t) � u1(t) for all t > 0.

Proof. First suppose that the inequality in (2.15) and u2(θ) > u1(θ) for all θ ∈ [−τM , 0] are strict. We claim
that u2(t) > u1(t) for all t > 0. If it is false there would exist t0 > 0 such that u2(t) > u1(t), t ∈ [−τM , t0)
and u2(t0) = u1(t0). It follows that u′

2(t0) � u′
1(t0). But
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u′
1(t0) = α1e

−γ1τ(u1)u1
(
t0 − τ(u1)

)
− β1u

2
1(t0) + λu1(t0)

< α1e
−γ1τ(u2)u2

(
t0 − τ(u2)

)
− β1u

2
2(t0) + λu2(t0)

< u′
2(t0)

because u2(t0 − τ(u2(t0))) > u1(t0 − τ(u1(t0))) and u2(t0) = u1(t0). This contradiction proves the result in
this case.

For the general case, let ε > 0 and uε(t) be the solution of

u′
1(t) = α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + λu1 − ε

corresponding to initial data uε(θ) = u1(θ) − ε, θ ∈ [−τM , 0). By the results of the previous paragraph, we
may conclude that uε(t) < u2(t) for all t > 0 for which uε(t) is defined. It can be shown that for sufficiently
small ε > 0, the solution uε(t) → u1(t) as ε → 0 for all t � −τM . See, for example, Theorem 2.2 of Chapter 2
in [17]. Consequently, u1(t) = limε→0 uε(t) � u2(t). This proves the general case. �

For the comparison principles, the other reversed inequalities follow analogously, and will be used in the
next discussions. Furthermore, a differential inequality of the form (2.15), which holds only for t above some
value, say t1, and not for all t > 0, will be often used in applications of these comparison results. That is
the initial time is simply thought of as t1 rather than 0, and u2(t) � u1(t) is arranged to hold for t � t1 by
appropriate definition of u1(t) for values of t � t1. In the interests of clarity, this latter case in detail will
not be always explained.

As well as we know, the consequence of global stability is that the state-dependent effects will not
irreversibly change the system. As long as one of two species does not extinct, the system is able to recover.
So, it is possible and necessary to investigate the global stability of the equilibrium.

Theorem 2.5. The coexistence equilibrium E∗ is globally asymptotically stable if β1β2 > μ1μ2.

Proof. We first give some definitions u1 = lim supt→∞ u1(t), u1 = lim inft→∞ u1(t), u2 = lim supt→∞ u2(t),
u2 = lim inft→∞ u2(t). Since

u′
i(t) = αie

−γiτ(ui)ui

(
t− τ(ui)

)
− βiu

2
i (t) + μiu1(t)u2(t)

� αie
−γiτ(ui)ui

(
t− τ(ui)

)
− βiu

2
i (t),

we can obtain from Theorem 2.3 that ui � ûi = β−1
i αie

−γiτ(ûi), where ûi is the positive component of the
equilibrium Ei.

From the condition of β1β2 > μ1μ2, it follows that E∗ is linearly stable. Thus, we only need to prove
the global attractiveness of the equilibrium. We shall construct four sequences, Mu1

n , Mu2
n , Nu1

n and Nu2
n

with the properties that ui � Mui
n for each n with Mui

n → u∗
i as n → ∞, and ui � Nui

n for each n with
Nui

n → u∗
i as n → ∞ (so that ui � u∗

i ). It is useful to know that Mn denotes an upper bound and Nn a
lower bound on the lim inf and lim sup, respectively, as t → ∞, of the variable in the superscript. We will
derive recursion formulae for these bounds and use them to prove the result. Firstly, let vi1(t) satisfy

v′i1(t) = αie
−γiτ(vi1)vi1

(
t− τ(vi1)

)
− βiv

2
i1, t > 0,

with, for −τM � t � 0, vi1(t) ≡ max{ui(t), t ∈ [−τM , 0]} > 0. Since ui(t) is nonnegative, by comparison
principle, ui(t) � vi1(t) and therefore

ui = lim supui(t) � lim vi1(t) = v∗i1 = β−1
i αie

−γiτ(v∗
i1) =: Nui

1 .

t→∞ t→∞
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It is easy to see that Nui
1 < u∗

i . From the assumption of the theorem, we can choose ε > 0 small enough so
that

0 < ε < β2β1 − μ1μ2. (2.16)

Then there exists t1 > τM so that u2(t) � Nu2
1 − ε for every t � t1. For t > t1, let v12(t) be the solution of

v′12(t) = α1e
−γ1τ(v12)v12

(
t− τ(v12)

)
− β1v

2
12 + μ1v12

(
Nu2

1 − ε
)
,

and let

v12(t) ≡ max
{
u1(t), t ∈ [t1 − τM , t1]

}
for t ∈ [t1 − τM , t1],

which is strictly positive, since u1(t) > 0 on (0,∞). As mentioned in above, Theorem 2.4 is now being
applied with initial time t1 rather than 0, therefore, it is not necessary to define v12(t) for t < t1 − τM . By
the definition ε in (2.16), Theorem 2.3 tells us that limt→∞ v12(t) = v∗12, where v∗12 satisfies

v∗12 = β−1
1

(
α1e

−γ1τ(v∗
12) + μ1

(
Nu2

1 − ε
))
.

Now, since u2(t) � Nu2
1 − ε for t � t1, we have, for such t,

u′
1(t) = α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + μ1u1u2

� α1e
−γ1τ(u1)u1

(
t− τ(u1)

)
− β1u

2
1 + μ1u1

(
Nu2

1 − ε
)
.

By comparison principle, u1(t) � v12(t) and therefore

u1 = lim inf
t→∞

u1(t) � lim
t→∞

v12(t) = v∗12.

Since this is true for any ε > 0 satisfying (2.16), it follows that

u1 � β−1
1

(
α1e

−γ1τ(Nu1
2 ) + μ1N

u2
1

)
=: Nu1

2 , and Nu1
2 < u∗

1.

In a similar way, we have

u2 � β−1
2

(
α2e

−γ2τ(Nu2
2 ) + μ2N

u1
1

)
=: Nu2

2 , and Nu2
2 < u∗

2.

This process can be continued to generated two sequences Nu1
n , Nu2

n , n = 1, 2, 3, . . . , such that, for n � 2,
Nui

n < u∗
i , i = 1, 2, and

Nu2
n = β−1

2
(
α2e

−γ2τ(Nu2
n ) + μ2N

u1
n−1

)
, Nu1

n = β−1
1

(
α1e

−γ1τ(Nu1
n ) + μ1N

u2
n−1

)
. (2.17)

Now, we consider the other two sequences Mu1
n and Mu2

n . From Theorem 2.1, it follows that the two
populations are bounded from above under the condition of β1β2 > μ1μ2. That is there exist Δi which is
defined in (2.2) such that ui(t) < Δi and Δi � u∗

i for all t � −τM . It follows that

u′
1(t) = α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + μ1u1u2 � α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + μ1u1Δ2.

Set

Mu1
1 := β−1

1
(
α1e

−γ1τ(Mu1
1 ) + μ1Δ2

)
.
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Clearly, Mu1
1 � u∗

1. Hence, u1 = lim supt→∞ u1(t) � Mu1
1 . In a similar way, we have

Mu2
1 := β−1

2
(
α2e

−γ2τ(Mu2
1 ) + μ2Δ1

)
, u2 = lim sup

t→∞
u2(t) � Mu2

1 ,

and Mu2
1 � u∗

2. Let ε > 0. We have t2 > 0 so that u2(t) � Mu2
1 + ε for every t � t2. Then

u′
1(t) � α1e

−γ1τ(u1)u1
(
t− τ(u1)

)
− β1u

2
1 + μ1u1

(
Mu2

1 + ε
)

for t � t2.

Thus, let nu1
1 (t) be the solution of

nu1
1

′(t) = α1e
−γ1τ(nu1

1 )u1
(
t− τ

(
nu1

1
))

− β1
(
nu1

1
)2 + μ1n

u1
1
(
Mu2

1 + ε
)

for t � t2

with appropriate initial data, then u1(t) � nu1
1 (t) and therefore

u1 � lim
t→∞

nu1
1 (t) = β−1

1
(
α1e

−γ1τ(limt→∞ n
u1
1 (t)) + μ1

(
Mu2

1 + ε
))
.

In fact, we have used assumption of Theorem 2.5 to infer that nu1
1 (t) has this limiting behavior. So, for

any ε, we have

Mu1
2 := β−1

1
(
α1e

−γ1τ(Mu1
2 ) + μ1M

u2
1

)
and u1 � Mu1

2 , Mu1
2 � u∗

1.

Similarly, we deduce the following estimated for u2:

Mu2
2 := β−1

2
(
α2e

−γ2τ(Mu2
2 ) + μ2M

u1
1

)
and u2 � Mu2

2 , Mu2
2 � u∗

2.

If follows that the transition from the (n− 1)th to the nth step in this iterative process

Mu2
n = β−1

2
(
α2e

−γ2τ(Mu2
n ) + μ2M

u1
n−1

)
and Mu1

n = β−1
1

(
α1e

−γ1τ(Mu1
n ) + μ1M

u2
n−1

)
,

and Mu1
n � u∗

1, Mu2
n � u∗

2. It necessary to show that both Mu1
n and Nu1

n approach u∗
1 as n → ∞ and that

both Mu2
n and Nu2

n approach u∗
2.

We see at once that

Nu1
n = β2α1e

−γ1τ(Nu1
n ) + μ1α2e

−γ2τ(Nu2
n−1)

β1β2
+ μ1μ2

β1β2
Nu1

n−2. (2.18)

We claim that Nu1
n is a monotonically increasing sequence that is bounded above by u∗

1. The boundedness
below by u∗

1 follows immediately from (2.18) by induction. Then, by (2.17) and (2.18),

Nu1
n

Nu1
n−2

= β2α1e
−γ1τ(Nu1

n ) + μ1α2e
−γ2τ(Nu2

n−1)

β1β2N
u1
n−2

+ μ1μ2

β1β2

� β2α1e
−γ1τ(u∗

1) + μ1α2e
−γ2τ(u∗

2)

β1β2u∗
1

+ μ1μ2

β1β2
= 1 (2.19)

so that Nu1
n is a monotonically increasing. Hence Nu1

n converges to a limit which, by (2.17)–(2.19), equals u∗
1.

Clearly, convergence of Nu1
n means convergence of Nu2

n , and it is easy to verify that Nu2
n has the limit u∗

2.
The analysis for the remaining two sequences Mu1

n and Mu2
n is similar. �

Our focus so far has been on the dynamic behaviors of the system (2.1). To facilitate the interpretation
of our mathematical results in model (2.1), we give a summary of the dynamic behavior in Table 1.
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Table 1
Conditions and dynamic behavior for system (2.1).

Solutions of (2.1) E0 E1 E2 E∗

β1β2 > μ1μ2 Bounded Unstable Unstable Unstable GAS
β1β2 < μ1μ2 Unbounded Unstable Unstable Unstable Does not exist

GAS: Globally asymptotical stability.

Our conclusion, therefore, is that the dynamics depends on the values of the two quantities β1β2 and μ1μ2.
From biological point of view, the term βiu

2
i represents the death of population ui, which can be also

illustrated the death caused by crowding effects or the intraspecific competition effects; the term μiu1u2
represents strongly mutualistic effects between both species. The conditions β1β2 � μ1μ2 means that the
intraspecific competition of species is stronger than the mutualistic effects between both species. Therefore,
the intraspecific competition effects is the main factor which affects the boundedness of solutions and the
existence, stability of the coexistence equilibrium E∗. As long as the intraspecific competition of one species
do not result in the extinction of the species and its effects is stronger than mutualistic effects between
both species, the system is able to stable at the coexistence equilibrium. However, when the intraspecific
competition of species is lower than the mutualistic effects between both species, the mutualistic effects
would result in the growth unlimited of the two populations, i.e., both populations grow unboundedly.

3. Existence of traveling waves

Motivated by the results of the linearized analysis we have just carried out, it is interesting to inquire
into the possibility of traveling wave solutions connecting the extinct equilibrium state E0 to the coexis-
tence equilibrium state E∗ when the diffusion is introduced. A traveling wave solution of (1.2) is a special
translation invariant solution.

To obtain a traveling wave solution of the system (1.2), we set u1(x, t) = φ1(s), u2(x, t) = φ2(s), s = x+ct

where (φ1, φ2) ∈ C2(R,R2) are the profiles of the wave that propagates through one-dimensional spatial
domain at a constant speed c � 0. Substituting u1(x, t) = φ1(s) and u2(x, t) = φ2(s) into (1.2), we obtain
the wave equations{

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τ(φ1)φ1

(
s− cτ(φ1)

)
− β1φ

2
1(s) + μ1φ1(s)φ2(s) = 0,

d2φ
′′
2(s) − cφ′

2(s) + α2e
−γ2τ(φ2)φ2

(
s− cτ(φ2)

)
− β2φ

2
2(s) + μ2φ1(s)φ2(s) = 0,

(3.1)

with (
φ1(−∞), φ2(−∞)

)
= (0, 0) and

(
φ1(∞), φ2(∞)

)
=

(
u∗

1, u
∗
2
)
. (3.2)

A solution of (3.1), (3.2) corresponds to a leftward-moving traveling wave solution moving with speed c.
Based on the ecological considerations, we are only concentrated on solutions that are non-negative for all s.
Rewrite system (3.1) as an equivalent system in R

4

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1(s) = ψ1(s),

ψ′
1(s) = 1

d1

(
cψ1(s) − α1e

−γ1τ(φ1)φ1
(
s− cτ(φ1)

)
+ β1φ

2
1(s) − μ1φ1(s)φ2(s)

)
,

φ′
2(s) = ψ2(s),

ψ′
2(s) = 1

d2

(
cψ2(s) − α2e

−γ2τ(φ2)φ2
(
s− cτ(φ2)

)
+ β2φ

2
2(s) − μ2φ1(s)φ2(s)

)
.

(3.3)

We can obtain a necessary condition (under which the solutions are non-negative) on the front speed c by
linearizing (3.3) ahead of the front, i.e. for s → −∞. The linearized equations at (0, 0, 0, 0) will be
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Fig. 2. Graphs of the left- and right-hand sides of (3.6) as function of λ.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1(s) = ψ1(s),

ψ′
1(s) = 1

d1

(
cψ1(s) − α1e

−γ1τmφ1(s− cτm)
)
,

φ′
2(s) = ψ2(s),

ψ′
2(s) = 1

d2

(
cψ2(s) − α2e

−γ2τmφ2(s− cτm)
)
.

(3.4)

Seeking solutions of this proportional to (c1, c2, c3, c4) exp(λs), we find λ satisfies

(
d1λ

2 − cλ + α1e
−(γ1+cλ)τm

)(
d2λ

2 − cλ + α2e
−(γ2+cλ)τm

)
= 0. (3.5)

Certainly, when the delay τm = 0, Eq. (3.5) reduces to two quadratic equations. Using standard phase-plane
arguments, it is easy to compute that the minimum wave speed c for having a solution that is non-negative
for all s is max{2

√
α1d1, 2

√
α2d2 }. Now we increase τm from zero, τm > 0. To seek a front (φ1(s), φ2(s))

which approaches to (0, 0) as s → −∞ without oscillating, it will be necessary for (3.5) to have some real
positive roots. The total loss of all real positive roots of (3.5) implies the onset of oscillations. In fact, Fig. 2
shows a plot of the left- and right-hand sides of the following equation as functions of λ

cλ− diλ
2 = αie

−(γi+cλ)τm , (3.6)

and the situation tells us that there are two real positive roots.
In general, there exist either two real positive roots or none, and it is easy to see that the latter situation

can be brought about through changing the values of certain parameters. The critical case which determine
the minimum wave speed c is when the two curves touch, such that there is just one repeated root, and this
happens when {

cλi∗ − diλ
2
i∗ = αie

−(γi+cλi∗)τm ,

c− 2diλi∗ = −cτmαie
−(γi+cλi∗)τm ,

(3.7)

where λi∗ is the single repeated root. Eliminating the exponential terms, it follows that λi∗ must satisfy the
square equation

f(λi∗) := cτmλ2
i∗ +

(
2 − c2τm

)
λi∗ −

c = 0. (3.8)

di di
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It is immediately to find that this square equation always has one real positive root and one real negative
root. Again, from the fact that f(c/di) = c/di > 0, we have that the positive root is less than c/di. The
negative root cannot satisfy the second equation of (3.7). So, we conclude that λi∗ must be the positive root
of (3.8). After knowing λi∗, the value of c can be given implicitly by either equation of (3.7), which we then
can denote by c∗i = ci,min(τm) the minimum wave speed. However, the minimum speed cannot be solved
explicitly.

It is known that the minimum speed is 2
√
αidi when τm = 0. We now want to know whether the minimum

speed will decrease or increase when delay is introduced, and some useful information on this can be given
using a perturbation analysis for small τm. Note that λi∗ depends on τm too. So, we have{

ci,min(τm) = c
(0)
i,min + τmc

(1)
i,min + τ2

mc
(2)
i,min + · · · ,

λi∗ = λ
(0)
i∗ + τmλ

(1)
i∗ + τ2

mλ
(2)
i∗ + · · · ,

where c
(0)
i,min = 2

√
αidi and λ

(0)
i∗ = c

(0)
i,min/2di. Hence, we find that

c
(1)
i,min = −di

√
αidi(γi + 2αi) < 0,

such that, for small delays, the minimum speed is given by

ci,min(τm) = 2
√
αidi − τmdi

√
αidi(γi + 2αi) + · · · . (3.9)

Whether the speed is reduced or increased by a small delay τm depends on the sign of c(1)i,min. It is easy to
see that c(1)i,min < 0, and therefore the speed is slowed down by the state-dependent delay. Here, we leave the
nonexistence of nonnegative traveling waves for future study when c < c∗i .

3.1. Existence of traveling waves

In this subsection, we use Schauder’s fixed point theorem, the method of cross iteration scheme associated
with upper–lower solutions to establish the existence of traveling wave solutions connecting the extinction
equilibrium state E0 = (0, 0) to the coexistence equilibrium state E∗ = (u∗

1, u
∗
2) with large wave speeds.

To seek such a traveling wave solution of (1.2), it is necessary to construct a pair of upper–lower solutions.
The linearisation of the wave equation at E0 is given by{

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τmφ1(s− cτm) = 0,

d2φ
′′
2(s) − cφ′

2(s) + α2e
−γ2τmφ2(s− cτm) = 0.

(3.10)

Substituting (φ1, φ2)(s) = (c1, c2)eλs into the above equations yields the characteristic equations

Δi(λ, c) := diλ
2 − cλ + αie

−(γi+cλ)τm = 0, i = 1, 2. (3.11)

Then it is easy to verify the following properties (i = 1, 2):

(i) Δi(0, c) = αie
−γiτm > 0;

(ii) limλ→∞ Δi(λ, c) = ∞ for all c � 0;
(iii) ∂2Δi(λ,c)

∂λ2 = 2di + c2τ2
mαie

−(γi+cλ)τm > 0 and

∂Δi(λ, c)
∂c

= −λ− λτmαie
−(γi+cλ)τm < 0 for all λ > 0;

(iv) limc→∞ Δi(λ, c) = −∞ for all λ > 0 and Δi(λ, 0) > 0.



560 Y. Lv, R. Yuan / J. Math. Anal. Appl. 415 (2014) 543–573
Besides, we have discussed the minimum wave speed c∗1 and c∗2. Clearly, c∗i > 0, i = 1, 2, is well defined.
As mentioned in [26], c∗i may be viewed as the spreading speeds of one species ui in the absence of the other
species. These above properties lead to the following lemma.

Lemma 3.1. Let c∗i (i = 1, 2) be defined as above, then the following statements hold.

(a) If c � c∗i , then there exist two positive roots λi1, λi2 with λi1 � λi2 such that Δi(λi1, c) = Δi(λi2, c) = 0,
i = 1, 2.

(b) If c < c∗i , then Δi(λ, c) > 0 for all λ > 0.
(c) If c = c∗i , then λi1 = λi2; and if c > c∗i , then λi1 < λi2, Δi(λ, c) < 0 for all λ ∈ (λi1, λi2), and

Δi(λ, c) � 0 for all λ ∈ [0,∞)\[λi1, λi2].

For convenience, we need the following lemma.

Lemma 3.2. Assume

β1u
∗
1 � 3μ1u

∗
2, β2u

∗
2 � 3μ2u

∗
1 (3.12)

hold, there exist εi ∈ (0, u∗
i /2) (i = 1, 2) such that{

−β1ε
2
1 + β1u

∗
1ε1 + μ1

(
u∗

1 − ε1e
−λs

)(
u∗

2 − ε2e
−λs

)
− μ1u

∗
1u

∗
2 > ε0,

−β2ε
2
2 + β2u

∗
2ε2 + μ2

(
u∗

2 − ε2e
−λs

)(
u∗

1 − ε1e
−λs

)
− μ2u

∗
1u

∗
2 > ε0,

where ε0 > 0 is a constant.

Proof. Let

h1(ε1) = β1u
∗
1ε1 − β1ε

2
1 and h2(ε1) = μ1u

∗
1u

∗
2 − μ1

(
u∗

1 − ε1
)(
u∗

2 − ε2
)
.

We have

h1(0) = 0, max
{
h1(ε1)

}
= h1

(
u∗

1
2

)
= 1

4β1u
∗
1
2,

h2(0) = μ1u
∗
1ε2 > 0, h2

(
u∗

1
2

)
= μ1u

∗
1u

∗
2 −

μ1u
∗
1

2
(
u∗

2 − ε2
)

� 3
4μ1u

∗
1u

∗
2, if ε2 ∈

(
0, u∗

2/2
)
.

If the first inequality of (3.12) holds, then h1(0) � h2(0) and h1(u
∗
1
2 ) � h2(u

∗
1
2 ). Again, the function h2(ε1)

is increasing with respect to ε1. Thus, there exist ε∗1 ∈ (0, u∗
1/2) such that h1(ε∗1) = h2(ε∗1) and

h1(ε1) � h2(ε1) for 0 < ε1 � ε∗1, h1(ε1) > h2(ε1) for ε∗1 < ε1 < u∗
1/2.

So, the first result is obtained, and the other result can be gotten similarly. The proof is completed. �
From the conditions of Lemma 3.2, we derive that

β1β2 � 9μ1μ2.

That is, the condition in Theorem 2.5 is satisfied, thus the coexistence equilibrium (u∗
1, u

∗
2) is globally

asymptotically stable.
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In order to give more clear parameter ranges such that (3.12) holds, it follows from (2.4), (2.6) and the
assumptions of state dependent delay that

α1e
−γ1τ(u∗

1) � α1e
−γ1τM � 2μ1

α2β1e
−γ2τm + α1μ2e

−γ1τm

β1β2 − μ1μ2
� 2μ1u

∗
2,

α2e
−γ2τ(u∗

2) � α2e
−γ2τM � 2μ2

α1β2e
−γ1τm + α2μ1e

−γ2τm

β1β2 − μ1μ2
� 2μ1u

∗
1.

Thus, inequalities (3.12) hold providing μ2 � β1α2e
−γ2τM

2α1e−γ1τm =: μ∗
2 and

μ1 � min
{

β1β2α1e
−γ1τM

2α2β1e−γ2τm + α1μ2(2e−γ1τm + e−γ1τM ) ,
β1β2α2e

−γ2τM − 2μ2β2α1e
−γ1τm

μ2α2(2e−γ2τm + e−γ2τM )

}
=: μ∗

1.

Remark 3.1. The coexistence equilibrium (u∗
1, u

∗
2) is globally asymptotically stable, and the statement of

Lemma 3.2 holds if μ1 � μ∗
1 and μ2 � μ∗

2.

Define

c∗ = max
{
c∗1, c

∗
2
}

and λ0 = max{λ11, λ21}.

We can state the following theorem of the existence of traveling wave solution, and will give the proof as
follows.

Theorem 3.1. For c > c∗, if μ1 � μ∗
1, μ2 � μ∗

2 and

Δ1(λ0, c) � 0, Δ2(λ0, c) � 0, (3.13)

then system (1.2) has traveling wave solutions connecting both equilibria E0 and E∗.

Remark 3.2. It seems that the conditions (3.13) is inconvenient and probably not necessary for Theorem 3.1
to hold, however, it is needed in constructing the upper–lower solutions. The conditions (3.13) are equivalent
to (λ11, λ12) ∩ (λ21, λ22) �= ∅ which guarantee the existence of λ0 ∈ (λ11, λ12) ∩ (λ21, λ22). Intuitively, it
holds if two species have similar behavior. In fact, (3.13) can be certainly made (for example, by taking d1
or d2 sufficiently small).

A pair of function (φ1(s), φ2(s)) and (φ1(s), φ2(s)) can be constructed as follows:

φ1(s) =
{

u∗
1e

λ0s, s � 0,
u∗

1, s � 0,
φ1(s) =

{
0, s � s1,

u∗
1 − ε1e

−λs, s � s1,

φ2(s) =
{

u∗
2e

λ0s, s � 0,
u∗

2, s � 0,
φ2(s) =

{
0, s � s2,

u∗
2 − ε2e

−λs, s � s2,
(3.14)

where λ > 0 is sufficiently small. Clearly, si = −1
λ ln(u

∗
i

ε1
) < 0.

It is straightforwardly to summarize some useful properties of (φ1, φ2) and (φ1, φ2) as follows.

Proposition 3.1. Let (φ1(s), φ2(s)) and (φ1(s), φ2(s)) be constructed in (3.14), then the following statements
are valid.
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(i) There exist constants B1 > 0 and B2 > 0 such that 0 � φ1(s) < φ1(s) � B1 and 0 � φ2(s) <

φ2(s) � B2.
(ii) φ1(s) � u∗

1e
λ0s and φ1(s) � u∗

1 for s ∈ R, and φ2(s) � u∗
2e

λ0s and φ2(s) � u∗
2 for s ∈ R.

(iii) φ1(s) � u∗
1 − ε1e

−λs > 0, and φ2(s) � u∗
2 − ε2e

−λs > 0 for s ∈ R.
(iv) lims→−∞(φ1(s), φ2(s)) = (0, 0) and lims→∞(φ1(s), φ2(s)) = (u∗

1, u
∗
2).

Throughout this paper, we adopt the standard ordering in R
2. Thus, for u = (u1, u2)T and v = (v1, v2)T ,

we denote u � v if ui � vi, i = 1, 2; u < v if u � v but u �= v; and u � v if u � v but ui �= vi,
i = 1, 2. If u � v, we also denote (u, v] = {w ∈ R

2: u < w � v}, [u, v) = {w ∈ R
2: u � w < v} and

[u, v] = {w ∈ R
2: u � w � v}. Now, we introduce the concept of desirable pair of upper–lower solutions of

system (3.1) as follows.

Definition 3.1. A pair of continuous functions ρ = (φ1, φ2) and ρ = (φ1, φ2) for s ∈ R is called a pair
of upper–lower solutions of (3.1), if there exists a finite set of points S = {si ∈ R, i = 1, 2, . . . , n} with
s1 < s2 < · · · < sn such that ρ and ρ are twice continuously differentiable on R \ S and satisfy

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τ(φ1)φ1

(
s− cτ(φ1)

)
− β1φ

2
1(s) + μ1φ1(s)φ2(s) � 0,

d2φ
′′
2(s) − cφ′

2(s) + α2e
−γ2τ(φ2)φ2

(
s− cτ(φ2)

)
− β2φ

2
2(s) + μ2φ2(s)φ1(s) � 0,

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τ(φ1)φ1

(
s− cτ(φ1)

)
− β1φ

2
1(s) + μ1φ1(s)φ2(s) � 0,

d2φ
′′
2(s) − cφ′

2(s) + α2e
−γ2τ(φ2)φ2

(
s− cτ(φ2)

)
− β2φ

2
2(s) + μ2φ2(s)φ1(s) � 0. (3.15)

We shall prove that the continuous function (φ1(s), φ2(s)) and (φ1(s), φ2(s)) is an upper and a lower
solutions of (3.1), respectively.

Lemma 3.3. Suppose μ1 � μ∗
1, μ2 � μ∗

2 and (3.13). Then (φ1(s), φ2(s)) and (φ1(s), φ2(s)) which are con-
structed in (3.14) is a pair of upper–lower solutions of (3.1).

Proof. It suffices to prove that (φ1(s), φ2(s)) and (φ1(s), φ2(s)) satisfy the definition of upper–lower solu-
tions.

We first consider φ1. It is easy to verify the case of s > 0 is trivial. If s � 0, then φ1(s) = u∗
1e

λ0s.
Proposition 3.1 (ii) shows that φ2(s) � u∗

2e
λ0s for s ∈ R. It follows that

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τ(φ1)φ1

(
s− cτ(φ1)

)
− β1φ

2
1(s) + μ1φ1(s)φ2(s)

� d1
(
u∗

1e
λ0s

)′′ − c
(
u∗

1e
λ0s

)′ + α1u
∗
1e

λ0s−τ(φ1)(γ1+cλ0) − β1
(
u∗

1e
λ0s

)2 + μ1u
∗
1u

∗
2e

2λ0s

� u∗
1e

λ0s
(
d1λ

2
0 − cλ0 + α1e

−τm(γ1+cλ0) − β1u
∗
1e

λ0s + μ1u
∗
2e

λ0s
)

= u∗
1e

λ0s
(
Δ1(λ0, c) − eλ0s

(
β1u

∗
1 − μ1u

∗
2
))

� 0.

Here, we have used some assumptions that Δ1(λ0, c) � 0 and β1u
∗
1 − μ1u

∗
2 = α1e

−γ1τ(u∗
1) > 0. Thus, we

have shown that φ1(s) is an upper solution. Similarly, we can also show that φ2(s) is an upper solution.
We now verify (φ1, φ2). Let us consider the first case of lower solution φ1 for the intervals s > s1 and

s � s1. Obviously, it trivially holds for s < s1 since in the case we have φ1(s) = 0, and φ1(s) = u∗
1 − ε1e

−λs

for s � s1. Furthermore, φ2(s) � u∗
2 − ε2e

−λs for s ∈ R. We thus obtain that

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τ(φ1)φ1

(
s− cτ(φ1)

)
− β1φ

2
1(s) + μ1φ1(s)φ2(s)

� d1
(
u∗

1 − ε1e
−λs

)′′ − c
(
u∗

1 − ε1e
−λs

)′ + α1e
−γ1τ(u∗

1)(u∗
1 − ε1e

−λ(s−cτ(φ1))
)
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− β1
(
u∗

1 − ε1e
−λs

)2 + μ1
(
u∗

1 − ε1e
−λs

)(
u∗

2 − ε2e
−λs

)
� ε1e

−λs
(
−d1λ

2 − cλ− α1e
−(γ1−cλ)τ(u∗

1)) + α1e
−γ1τ(u∗

1)u∗
1 − β1

(
u∗

1 − ε1e
−λs

)2
+ μ1

(
u∗

1 − ε1e
−λs

)(
u∗

2 − ε2e
−λs

)
= ε1e

−λs
(
−Δ(−λ, c) + β1u

∗
1
)

+ β1u
∗
1ε1e

−λs − β1ε
2
1e

−2λs − μ1e
−λs

(
u∗

1ε2 + u∗
2ε1 − ε1ε2e

−λs
)
.

Noting that −Δ(0, c)+β1u
∗
1 = −α1e

−γ1τ(u∗
1)+β1u

∗
1 = μ1u

∗
2 > 0, we can choose λ∗

1 > 0 such that −Δ(−λ, c)+
β1u

∗
1 > 0 for λ ∈ (0, λ∗

1). Besides, let

H1(λ, s) := β1u
∗
1ε1e

−λs − β1ε
2
1e

−2λs + μ1
(
u∗

1 − ε1e
−λs

)(
u∗

2 − ε2e
−λs

)
− μ1u

∗
1u

∗
2.

By Lemma 3.2, we have that

H1(λ, 0) = β1u
∗
1ε1 − β1ε

2
1 − μ1u

∗
1u

∗
2 + μ1

(
u∗

1 − ε1
)(
u∗

2 − ε2
)
> ε0 > 0.

Noting that we can choose δ1, δ2 > 0 to be small enough such that δ∗1 := ε1 + δ1 and δ∗2 := ε2 + δ2 satisfying

β1u
∗
1δ − β1δ

2 − μ1u
∗
1u

∗
2 + μ1

(
u∗

1 − δ
)(
u∗

2 − δ′
)
>

ε0
2 > 0 for δ ∈

[
ε1, δ

∗
1
]
, δ′ ∈

[
ε2, δ

∗
2
]
.

Let ν(s) := ε1e
−λs, μ(s) := ε2e

−λs. Choose λ∗
1 > 0 small enough such that for any given λ ∈ (0, λ∗

1), we
have

ν(s1) = δ∗1 , μ(s1) = δ∗2 (noting that s1 < 0)

which leads to

ε1 � ν(s) < δ∗1 , ε2 � μ(s) < δ∗2 for s ∈ (s1, 0].

Therefore, it follows that H1(λ, s) > 0 for s ∈ (s1, 0].
Furthermore, the function

μ1
(
u∗

1 − ε1e
−λs

)(
u∗

2 − ε2e
−λs

)
− μ1u

∗
1u

∗
2 = μ1ε1ε2e

−2λs − μ1e
−λs

(
u∗

1ε2 + u∗
2ε1

)
< 0 for s � 0

and is increasing on s � 0. The function β1u
∗
1ε1e

−λs − β1ε
2
1e

−2λs > 0 for s � 0 and is decreasing for
s > − 1

λ ln( u∗
1

2ε1 ). We obtain H1(λ, 0) > ε0 > 0 and H1(λ,∞) = 0. Thus, H1(λ, s) > 0 uniformly for s � s1.
Therefore, φ1 satisfies the definition of the lower solution. That is

d1φ
′′
1(s) − cφ′

1(s) + α1e
−γ1τ1φ1(s− cτ1) − β1φ

2
1(s) + μ1φ1(s)φ2(s) � 0 for s ∈ R.

Similarly, we also can show that there exists a constant λ∗
2 > 0 such that for λ ∈ (0, λ∗

2)

d2φ
′′
2(s) − cφ′

2(s) + α2e
−γ2τ2φ2(s− cτ2) − β2φ

2
2(s) + μ2φ1(s)φ2(s) � 0 for s ∈ R.

It follows that the statement of Lemma 3.3 holds for λ ∈ (0,min{λ∗
1, λ

∗
2}). Thus, φ1 and φ2 satisfy the

definition of the lower solution. The proof of Lemma 3.3 is complete. �
Using the upper and lower solutions, we will show the existence of traveling wave solutions. Define a set

of functions
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Γ :=
{
(φ1, φ2) ∈ C

(
R,R2) ∣∣ 0 < φ1 � φ1 � φ1 < B1, 0 < φ2 � φ2 � φ2 < B2

}
,

where Bi is as Proposition 3.1. Define a function hi(φi) = αie
−γiτ(φi)φi(t− cτ(φi)). Notice that τ ′(φi) � 0,

it is not difficult to verify the following equality∣∣h′
i(φi)

∣∣ =
∣∣αi − αiγiτ

′(φi)φi

(
t− cτ(φi)

)∣∣e−γiτ(φi) � max{αi, BiLαiγi} := Ai, i = 1, 2.

Define the operator F = (F1, F2) from Γ to C(R,R2) by

F1(φ1, φ2)(s) := α1e
−γ1τ(φ1)φ1

(
s− cτ(φ1)

)
− β1φ

2
1(s) + μ1φ1(s)φ2(s) + δ1φ1(s),

F2(φ1, φ2)(s) := α2e
−γ2τ(φ2)φ2

(
s− cτ(φ2)

)
− β2φ

2
2(s) + μ2φ1(s)φ2(s) + δ2φ2(s), (3.16)

where δ1 and δ2 are large positive numbers so that δ1 > 2β1B1+A1 and δ2 > 2β2B2+A2. Then system (3.1)
now can be rewritten as

d1φ
′′
1(s) − cφ′

1(s) − δ1φ1(s) + F1(φ1, φ2)(s) = 0,

d2φ
′′
2(s) − cφ′

2(s) − δ2φ2(s) + F2(φ1, φ2)(s) = 0. (3.17)

Let

Λ11 = c−
√
c2 + 4δ1d1

2d1
< 0, Λ12 = c +

√
c2 + 4δ1d1

2d1
> 0,

Λ21 = c−
√
c2 + 4δ2d2

2d2
< 0, Λ22 = c +

√
c2 + 4δ2d2

2d2
> 0.

Clearly, Λ11 < 0 < Λ12, Λ21 < 0 < Λ22, and d1Λ
2
1i − cΛ1i − δ1 = 0 and d2Λ

2
2i − cΛ2i − δ2 = 0, i = 1, 2.

For μ > 0, define

Bμ :=
{

(φ1, φ2) ∈ C
(
R,R2) ∣∣∣ sup

s∈R

∣∣(φ1, φ2)(s)
∣∣e−μ|s| < ∞

}
and ∣∣(φ1, φ2)

∣∣
μ

= sup
s∈R

∣∣(φ1, φ2)(s)
∣∣e−μ|s|.

Then it is easy to check that (Bμ(R,R2), | · |μ) is a Banach space. For our purpose, we will take μ such that

0 < μ < min{−Λ11, Λ12,−Λ21, Λ22}.

Clearly, Γ is a bounded nonempty closed convex subset of Bμ.
Define the operator Q = (Q1, Q2) : Γ → Bμ by

Q1(φ1, φ2) := 1
d1(Λ12 − Λ11)

( s∫
−∞

eΛ11(s−t)F1(φ1, φ2)(s) dt +
∞∫
s

eΛ12(s−t)F1(φ1, φ2)(s) dt
)
,

Q2(φ1, φ2) := 1
d2(Λ22 − Λ21)

( s∫
−∞

eΛ21(s−t)F2(φ1, φ2)(s) dt +
∞∫
s

eΛ22(s−t)F2(φ1, φ2)(s) dt
)
. (3.18)

It easily verify that the operator Q is well defined for (φ1, φ2) ∈ Γ and
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diQi(φ1, φ2)′′(s) − cQi(φ1, φ2)′(s) − δiQi(φ1, φ2)(s) + Fi(φ1, φ2)(s) = 0, i = 1, 2.

Thus the fixed point of Q is the solution of (3.17), which is the traveling solutions of (1.2).
Next, we explore some basic properties of F and Q. In view of the boundedness and continuity of

Fi(φ1, φ2) − δiφi on Γ , the following conclusion is obvious.

Lemma 3.4. For (φ1, φ2) ∈ Γ , Qi(φ1, φ2) ∈ Γ (i = 1, 2) is nondecreasing in φ1 and φ2, respectively.

Proof. It suffices to show that for (φ1, φ2) ∈ Γ , Fi(φ1, φ2) ∈ Γ is nondecreasing in φ1 and φ2, respectively.
In view of the definition of Q(Q1, Q2), it is easy to see that Q also enjoys the same properties as those for F .

For (φ11, φ21) � (φ12, φ22) where (φ1i, φ2i) ∈ Γ , we obtain from δ1 > 2β1B1 + A1 that

F1(φ11, φ21) − F1(φ12, φ21)

= α1e
−γ1τ(φ11)φ11

(
s− cτ(φ11)

)
− α1e

−γ1τ(φ12)φ12
(
s− cτ(φ12)

)
− β1

(
φ2

11 − φ2
12
)

+ μ1φ21(φ11 − φ12) + δ1(φ11 − φ12)

� −A1(φ11 − φ12) − β1
(
φ2

11 − φ2
12
)

+ μ1φ21(φ11 − φ12) + δ1(φ11 − φ12)

� (δ1 − 2β1B1 −A1 + μ1B2)(φ11 − φ12) � 0.

So, F1(φ1, φ2) is nondecreasing in φ1. Furthermore, F1(φ1, φ2) is obvious nondecreasing in φ2. The second
result of Lemma 3.4 follows analogously. The proof is complete. �
Lemma 3.5. (φ1, φ2) is an upper solution and (φ1, φ2) is a lower solution of the operator Q defined by (3.18)
in the sense that

Q1(φ1, φ2) � φ1, Q1(φ1, φ2) � φ1 and Q2(φ1, φ2) � φ2, Q2(φ1, φ2) � φ2.

Proof. From Lemma 3.3 and the first equation of (3.17) we have that

F1(φ1, φ2)(s) � −d1φ
′′
1(s) + cφ′

1(s) + δ1φ1(s),

which together with the equation of (3.18) gives

Q1(φ1, φ2)(s)

= 1
d1(Λ12 − Λ11)

( s∫
−∞

eΛ11(s−t) +
∞∫
s

eΛ12(s−t)

)
F1(φ1, φ2)(s) dt

� 1
d1(Λ12 − Λ11)

( s∫
−∞

eΛ11(s−t) +
∞∫
s

eΛ12(s−t)

)(
−d1φ

′′
1(s) + cφ′

1(s) + δ1φ1(s)
)
dt

= φ1(s), s ∈ R.

An analogous argument shows Q2(φ1, φ2)(s) � φ2. Similarly, using Lemma 3.3, (3.17) and (3.18) one can
also show that Q1(φ1, φ2) � φ1 and Q2(φ1, φ2) � φ2. The proof is complete. �
Lemma 3.6. The operator Q : Γ → Γ is continuous with respect to the norm | · |μ in Γ .
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Proof. We first prove that F : Γ → Γ is continuous with respect to the norm | · |μ. Let Φ1 = (φ11, φ21),
Φ2 = (φ12, φ22) ∈ Γ with |Φ1 − Φ2|μ = sups∈R

|Φ1 − Φ2|e−μ|s| < δ. It is easy to verify that∣∣F1(φ11, φ21) − F1(φ12, φ22)
∣∣e−μ|s|

�
∣∣α1e

−γ1τ(φ11)φ11
(
s− cτ(φ11)

)
− α1e

−γ1τ(φ12)φ12
(
s− cτ(φ12)

)∣∣e−μ|s| + δ1|φ11 − φ12|e−μ|s|

+ β1(φ11 + φ12)|φ11 − φ12|e−μ|s| + μ1φ11|φ21 − φ22|e−μ|s| + μ1φ22|φ11 − φ12|e−μ|s|

�
(
A1 + 2β1B1 + μ1(B1 + B2) + δ1

)
|Φ1 − Φ2|μ.

Define C1 := A1 +2β1B1 +μ1(B1 +B2)+ δ1. Therefore, that implies F1 : Γ → Γ is continuous with respect
to the norm | · |μ. Similarly, we can show that∣∣F2(φ11, φ21) − F2(φ12, φ22)

∣∣e−μ|s| � C2|Φ1 − Φ2|μ,

where C2 := A2 + 2β2B2 + μ2(B1 + B2) + δ2, and thus F2 : Γ → Γ is continuous with respect to the
norm | · |μ.

Now, we show that Q1 : Γ → Γ is continuous with respect to the norm | · |μ. For s � 0, we have from
the choice of μ that∣∣Q1(φ11, φ21) −Q1(φ12, φ22)

∣∣e−μ|s|

� e−μs

d1(Λ12 − Λ11)

( s∫
−∞

eΛ11(s−t) +
∞∫
s

eΛ12(s−t)

)∣∣F1(φ11, φ21)(s) − F1(φ11, φ21)(s)
∣∣ dt

� C1

d1(Λ12 − Λ11)

( s∫
−∞

eΛ11(s−t) dt +
∞∫
s

eΛ12(s−t) dt

)
|Φ1 − Φ2|μ

� C1

d1(Λ12 − Λ11)

( 0∫
−∞

eΛ11(s−t) dt +
s∫

0

eΛ11(s−t) dt +
∞∫
s

eΛ12(s−t) dt

)
|Φ1 − Φ2|μ

= C1

d1(Λ12 − Λ11)

(
1

Λ12
− 1

Λ11

)
|Φ1 − Φ2|μ

= −C1

d1Λ11Λ12
|Φ1 − Φ2|μ.

Similarly, for s < 0 we have

∣∣Q1(φ11, φ21) −Q1(φ12, φ22)
∣∣e−μ|s| � −C1

d1Λ11Λ12
|Φ1 − Φ2|μ.

For any ε > 0, we set δ = −d1Λ11Λ12
C1

ε, if |Φ1 − Φ2|μ < δ, then |Q1(φ11, φ21) −Q1(φ12, φ22)|e−μ|s| < ε. This
indicates that operator Q1 is continuous with respect to the norm | · |μ.

By using a similar argument as above, we can also prove that Q2 : Γ → Γ is continuous with respect to
the norm | · |μ. The proof is complete. �
Proof of Theorem 3.1. By Lemmas 3.5 and 3.6, we obtain that for (φ1(s), φ2(s)) ∈ Γ

φ1 � Q1(φ1, φ2) � Q1(φ1, φ2) � Q1(φ1, φ2) � φ1,

φ2 � Q2(φ1, φ2) � Q2(φ1, φ2) � Q2(φ1, φ2) � φ2.
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This shows that if (φ1, φ2) ∈ Γ then Q(φ1, φ2)(s) ∈ Γ . It follows that Γ is an invariant bounded nonempty
closed convex subset of Bμ.

Let

Mi = sup
(φ1,φ2)∈Γ,s∈R

∣∣Fi(φ1, φ2)(s)
∣∣e−μ|s|.

For any given ε > 0 and (φ1, φ2) ∈ Γ , keeping in mind that Λ11 < 0 < Λ12, by the definition of Q1 we
obtain that∣∣Q1(φ1, φ2)(s + ε) −Q1(φ1, φ2)(s)

∣∣e−μ|s|

= e−μ|s|

d1(Λ12 − Λ11)

∣∣∣∣∣
( s+ε∫

−∞

eΛ11(s+ε−t) −
s∫

−∞

eΛ11(s−t)

)
F1(φ1, φ2)(s) dt

+
( ∞∫

s+ε

eΛ12(s+ε−t) −
∞∫
s

eΛ12(s−t)

)
F1(φ1, φ2)(s) dt

∣∣∣∣∣
� 1

d1(Λ12 − Λ11)

(∣∣eΛ11ε − 1
∣∣ s∫
−∞

eΛ11(s−t)∣∣F1(φ1, φ2)(s)
∣∣e−μ|s| dt

+
s+ε∫
s

eΛ11(s+ε−t)∣∣F1(φ1, φ2)(t)
∣∣e−μ|s| dt +

∣∣eΛ12ε − 1
∣∣ ∞∫
s+ε

eΛ12(s−t)∣∣F1(φ1, φ2)(s)
∣∣e−μ|s| dt

+
s+ε∫
s

eΛ12(s−t)∣∣F1(φ1, φ2)(s)
∣∣e−μ|s| dt

)

� M1

d1(Λ12 − Λ11)

(
eΛ11s

(
1 − eΛ11ε

) s∫
−∞

e−Λ11t dt + eΛ11(s+ε)
s+ε∫
s

e−Λ11t dt

+ eΛ12s
(
eΛ12ε − 1

) ∞∫
s+ε

e−Λ12t dt +
s+ε∫
s

eΛ12(s−t) dt

)

� M1

d1(Λ12 − Λ11)

(
2(eΛ11ε − 1)

Λ11
+ 2(1 − e−Λ12ε)

Λ12

)
.

Similarly, one also can show that

∣∣Q2(φ1, φ2)(s + ε) −Q2(φ1, φ2)(s)
∣∣e−μ|s| � M2

d2(Λ22 − Λ21)

(
2(eΛ21ε − 1)

Λ21
+ 2(1 − e−Λ22ε)

Λ22

)
.

It follows that {Q(φ1, φ2)(s): (φ1, φ2) ∈ Γ} represents a family of equicontinuous functions. Then the
Arzelà–Ascoli theorem implies that Q takes the bounded convex subset of Γ into a compact subset
of Γ . An application of the Schauder–Tychonoff fixed point (see [32]) shows that Q has a fixed point
(φ1, φ2) in Γ , which represents a traveling wave solution. Since φ1(s) � φ1(s) � φ1(s) and φ2(s) �
φ2(s) � φ2(s), the properties of (φ1(s), φ2(s)) and (φ1(s), φ2(s)) show that lims→−∞(φ1(s), φ2(s)) → (0, 0)
and lims→∞(φ1(s), φ2(s)) → (u∗

1, u
∗
2). The proof is complete. �

From above discussion, we have shown system (2.1) has heteroclinic orbit connecting E0 and E∗ if
β1β2 > μ1μ2.
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3.2. Wavefronts

The existence of traveling wave solutions connecting E0 and E∗ has been established when β1β2 > μ1μ2.
In this subsection, we are interesting in their properties, especially the monotonicity.

(1) In order to ensure that the solutions are non-negative, we have discussed the linearization at the
start E0 in the first part of Section 3. From this, the minimum wave speed is obtained and the wave is
slowed down by the state-dependent delay.

(2) Another problem we concern with is whether the traveling wave solutions approaches the end E∗ of
the front ultimate monotonously as s → ∞. Now, we consider the linearized system (3.3) at the rear of the
front, where s → ∞ and (φ1, ψ1, φ2, ψ2)(s) → (u∗

1, 0, u∗
2, 0), and obtain the following characteristic equation(

d1λ
2 − cλ + α1e

−γ1τ(u∗
1)(e−cλτ(u∗

1) − γ1u
∗
1τ

′(u∗
1
)
− 1

)
− β1u

∗
1
)(
d2λ

2 − cλ

+ α2e
−γ2τ(u∗

2)(e−cλτ(u∗
2) − γ2u

∗
2τ

′(u∗
2
)
− 1

)
− β2u

∗
2
)
− μ1μ2u

∗
1u

∗
2 = 0. (3.19)

We define four functions as follows

fi(λ) = αie
−(γi+cλ)τ(u∗

i ), gi(λ) = −diλ
2 + cλ + αie

−γiτ(u∗
i )(γiu∗

i τ
′(u∗

i

)
+ 1

)
+ βiu

∗
i , i = 1, 2.

Obviously, fi(λ) is a decreasing function and gi(λ) is a quadratic function with c/2di > 0. It is easy to
compute that

fi(0) = αie
−γiτ(u∗

i ) < αie
−γiτ(u∗

i )(1 + γiu
∗
i τ

′(u∗
i

))
+ βiu

∗
i = gi(0).

Therefore, (fi−gi)(λ) = 0 has two roots which are denoted by λi,1 and λi,2. Clearly λi,1 < 0 < λi,2. Let λ′ =
min{λ1,1, λ2,1} < 0. In addition, it can be easy to verify (fi − gi)(λ) is a monotonically decreasing function
of λ ∈ (−∞, λ′], and (f1 − g1)(f2 − g2)(λ) is also a decreasing function with (f1 − g1)(f2 − g2)(−∞) = ∞
and (f1 − g1)(f2 − g2)(λ′) = 0. By the continuity of function, there exists a λ0 ∈ (−∞, λ′] such that
(f1 − g1)(f2 − g2)(λ0) = μ1μ2u

∗
1u

∗
2, therefore, Eq. (3.19) has real negative roots. Our results suggests that

oscillations never set in and that the front probably approaches (u∗
1, u

∗
2) monotonically as s → ∞. Since

monotonicity requires Eq. (3.19) to have real negative roots for s → ∞, while, oscillations occurs in if all
such roots are lost. For this situation, other investigators have observed ‘humps’ and oscillations in the
traveling-front solutions of their constant delay models.

(3) We will consider the case of large wave speed c, by computing a uniformly valid asymptotic expression
for the front. That is the speed is large enough for the front, c → ∞. The approach is based on the idea of
the constant time delay case studied by other investigators, for example, Canosa [8] obtained a similar such
approximation to the traveling-front solution for the well-known Fisher equation when the speeds c → ∞.
Murray [31] got the same results when the speed c is given its lowest ecologically relevant value i.e., the
minimum speed for positive solutions. Besides, Sherratt [33] also discussed the asymptotic approach for
large wave-speeds in studying certain coupled systems.

By the approach of Canosa, we assume c is large, and introduce the small parameter

ε = c−2.

We now seek a solution of (3.1) of the form (φ1(s), φ2(s)) = (φ̃1(s̃), φ̃2(s̃)), where s̃ =
√
εs = s/c. By this

transformation, system (3.1) is rewritten as

{
φ̃′

1(s̃) = εd1φ̃
′′
1(s) + α1e

−γ1τ(φ̃1)φ̃1
(
s̃− τ(φ̃1)

)
− β1φ̃

2
1(s̃) + μ1φ̃1(s̃)φ̃2(s̃),

φ̃′ (s̃) = εd φ̃′′(s) + α e−γ2τ(φ̃2)φ̃
(
s̃− τ(φ̃ )

)
− β φ̃2(s̃) + μ φ̃ (s̃)φ̃ (s̃).

(3.20)

2 2 2 2 2 2 2 2 2 1 2
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The above equation admits a solution of the form(
φ̃1(s̃), φ̃2(s̃)

)
=

(
φ̃10(s̃) + εφ̃11(s̃) + · · · , φ̃20(s̃) + εφ̃21(s̃) + · · ·

)
. (3.21)

Substituting into (3.20) and comparing powers of ε0 gives the finding that (φ̃10, φ̃20) (we still denote
(φ̃10(s̃), φ̃20(s̃)) as (φ10(s), φ20(s))) must satisfy{

φ′
10(s) = α1e

−γ1τ(φ10)φ10
(
s− τ(φ10)

)
− β1φ

2
10(s) + μ1φ10(s)φ20(s),

φ′
20(s) = α2e

−γ2τ(φ20)φ20
(
s− τ(φ20)

)
− β2φ

2
20(s) + μ2φ10(s)φ20(s),

(3.22)

with

(φ10, φ20)(−∞) = (0, 0), (φ10, φ20)(∞) =
(
u∗

1, u
∗
2
)
. (3.23)

We discuss the uniqueness of the solution for problem (3.22), (3.23) which is invariant to translations in s.
In fact, the slight non-uniqueness can be solved. Since we are mainly interesting in the monotonicity, but
we can, if we wish, eliminate the non-uniqueness by taking condition

(
φ10(0), φ20(0)

)
=

(
u∗

1
2 ,

u∗
2
2

)
.

The solution (φ10(s), φ20(s)) is the lowest-order term in the asymptotic expression (3.22) and (3.23), and
what we shall now do is prove the following theorem concerning monotonicity of (φ10(s), φ20(s)). It is
already known that some asymptotic analysis of the full nonlinear problem as c → ∞ has been discussed in
Section 2. From this, we know that all positive solutions of (3.22) tend to the state (u∗

1, u
∗
2) as s → ∞.

Theorem 3.2. All positive solution of (3.22) subject to (3.23) is strictly increasing function of s for all s ∈ R

providing β1β2 > μ1μ2.

Proof. We will prove the theorem in three steps:

(i) the decay of a positive solution of (3.22), (3.23) to zero as s → −∞ is strictly monotone;
(ii) a positive state solution φi0(s) ∈ [0, u∗

i ], i = 1, 2;
(iii) a positive solution is strictly increasing.

The existence of traveling wave solutions connecting the equilibria E0 and E∗ has been obtained. In fact,
by the results of linearized analysis, the extinction equilibrium E0 = (0, 0) is an unstable point. Thus, for
any small ε > 0, there exists an sε such that 0 < φ10(s) < ε and 0 < φ20(s) < ε for s � sε.

To prove (i), we let

δ1(θ) := α1β
−1
1 exp

{
−τmγ1 − τM

(
α1e

β1θτM−γ1τm + μ1θ
)}

and further choose ε ∈ (0,min{1, δ1(1)}). For s � sε, it follows from the first equation of (3.22) that

φ′
10(s) � −β1φ

2
10(s) � −β1εφ10(s),

which yields φ10(s) � φ10(s− τ(φ10))e−β1ετ(φ10) or, equivalently,

φ10
(
s− τ(φ10)

)
� φ10(s)eβ1ετ(φ10) � φ10(s)eβ1ετM .
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Substituting this into the first equation of (3.22) yields

φ′
10(s) � α1e

−γ1τ(φ10)φ10(s)eβ1ετM − β1φ
2
10(s) + μ1φ10(s)φ20(s)

�
(
α1e

β1ετM−γ1τm + μ1ε
)
φ10(s)

which leads to

φ10(s) � φ10
(
s− τ(φ10)

)
eτ(φ10)(α1e

β1ετM−γ1τm+μ1ε).

Thus, it follows, for s � sε, that

φ10
(
s− τ(φ10)

)
� φ10(s)e−τ(φ10)(α1e

β1ετM−γ1τm+μ1ε) � φ10(s)e−τM (α1e
β1ετM−γ1τm+μ1ε)

and

φ′
10(s) � α1φ10(s)e−τ(φ10)γ1−τM (α1e

β1ετM−γ1τm+μ1ε) − β1φ
2
10(s) + μ1φ10(s)φ20(s).

Therefore, φ′
10(s) > 0 if s � sε and

φ10(s) < α1β
−1
1 exp

{
−τmγ1 − τM

(
α1e

β1ετM−γ1τm + μ1ε
)}

= δ1(ε).

It is straightforward to see that φ10(s) < δ1(ε) for s � sε. Note that δ1(ε) is strictly decreasing. Hence,
δ1(ε) > δ(1) for ε < 1. So, we have φ10(s) < ε < min{1, δ1(1)} < δ1(ε) providing s � sε, as desired.

Similarly, we can obtain the same result on φ20(s). If s � sε, we have φ20(s) < ε < min{1, δ2(1)} < δ2(ε),
where

δ2(θ) := α2β
−1
2 exp

{
−τmγ2 − τM

(
α2e

β2θτM−γ2τm + μ2θ
)}

.

Thus s � sε implies φ′
10(s) > 0 and φ′

20(s) > 0, proving (i).
We now prove (ii), suppose that there exists a point where φ10(s) > u∗

1. Then φ10(s) must attain a
global maximum s2. Without loss of generality, assume that φ′

10(s2) = 0 at s2. So, we have the fact that
φ′

10(s2) = 0 and φ10(s2) > u∗
1. Then, it follows from the first equation of (3.22) that

0 = φ′
10(s2) = α1e

−γ1τ(φ10)φ10
(
s2 − τ(φ10)

)
− β1φ

2
10(s2) + μ1φ10(s2)φ20(s2)

� α1e
−γ1τ(φ10)φ10(s2) − β1φ

2
10(s2) + μ1φ10(s2)φ20(s2)

< φ10(s2)
(
α1e

−γ1τ(u∗
1) − β1u

∗
1 + μ1φ20(s2)

)
= φ10(s2)

(
−μ1u

∗
2 + μ1φ20(s2)

)
.

This means that φ20(s2) > u∗
2. From the result of (i) and a similar proof of (c) in Theorem 2.1, we can

obtain a contradiction. Thus, φi0(s) ∈ [0, u∗
i ], i = 1, 2.

Next, we prove that the solution is strictly increasing. For the sake of contradiction and by translation
invariance, assume that there exists a point such that φ′

10(s) = 0. Let s0 be the leftmost such point, which
is well defined by the result (i). Furthermore, it follows from (i) that φ′′

10(s0) � 0. Derivative of the first
equation of (3.22) with respect to s takes the form

φ′′
10(s) = α1e

−γ1τ(φ10)
(
φ′

10
(
s− τ(φ10)

)
− τ ′(φ10)φ′

10(s)
(
γ1φ10

(
s− τ(φ10)

)
+ φ′

10
(
s− τ(φ10)

)))
− 2β1φ10(s)φ′

10(s) + μ1φ
′
10(s)φ20(s) + μ1φ10(s)φ′

20(s). (3.24)

If the solution φ20(s) is strictly increasing, then φ′
20(s0) > 0. When s = s0, it follows from (3.24) that

φ′
10(s0 − τ(φ10)) < 0, giving a contradiction.
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If the solution φ20(s) is not strictly increasing, then there exists at least one point such that φ′
20(s) = 0,

since the solution will ultimately tend to the state (u∗
1, u

∗
2). Let s1 be the leftmost such point, which is

well defined by the result (i). Without loss of generality, we assume s1 > s0, otherwise, we consider the
solution φ20(s). Thus, the solutions φ′

20(s0) > 0 and φ′
10(s0 − τ(φ10)) < 0, giving a contradiction. The proof

of the theorem is completed. �
4. Discussion

This article deals with a cooperative model with state-dependent delay which is the time taken from
birth to maturity is directly related to the number of the species individuals. For the model to make sense,
the delay is assumed to be an increasing function of the population density with lower and upper bound.
Compared to the constant delay, the state-dependent delay makes the dynamic behavior more complex.

For the DDE system (2.1), the positivity and boundedness are firstly given, which implies the system
persists and the populations is subjected to the natural restriction, the existence and the uniqueness of
equilibria are then discussed. It is important to note that the comparison principle of the state-dependent
delay equations are proved, which do not always hold even if for the constant delay equations. Using the
comparison principle obtained, the stability criterion of the model is analyzed both from local and global
points of view. For the PDE system (1.2), we mainly discuss the existence of traveling waves solutions.
Firstly, we calculate the minimum speed c∗i implicitly by linearizing the model at the origin, and shows that
the wave is slowed down by the state-dependent delay. Then, the existence of traveling waves is obtain by
constructing a pair of upper–lower solutions and using the cross iteration method and Schauder’s fixed point
theorem for c > c∗. As we know, the construction of upper and lower solutions is extremely skill, let alone
the state-dependent delay system. In this article, the idea for the construction of upper and lower solutions is
motivated from Zhang et al. [44], but we improved and developed the argument on verification of upper–lower
solutions for our state-dependent delay cooperative model. Finally, the traveling wavefront solutions for large
wave speed is also discussed. Our results implies that our fronts appear to be all monotone, regardless of
the state-dependent time delay. This is an interesting property, since many findings are frequently reported
that delay causes a loss of monotonicity, with the front developing a prominent hump in some other delay
models.

Our results shows that the dynamics depends on the two quantities β1β2 and μ1μ2. The positivity and
boundedness of solutions, the existence and global stability of the coexistence equilibrium, the existence
and the monotonicity of the traveling wave solutions can be obtained if β1β2 > μ1μ2; such will lose if
β1β2 < μ1μ2. From biological view of point, the term βiu

2
i represents the death of population ui, which can

be also illustrated the death caused by crowding effects or the intraspecific competition effects; the term
μiu1u2 represents strongly mutualistic effects between both species. The conditions β1β2 � μ1μ2 means
that the intraspecific competition of species is stronger than the mutualistic effects between both species.
Therefore, the intraspecific competition effects is the main factor which affects the boundedness of solutions
and the existence, stability of the coexistence equilibrium E∗. As long as the intraspecific competition of one
species do not result in the extinction of the species and its effects is stronger than mutualistic effects between
both species, the system is able to stable at the coexistence equilibrium. However, when the intraspecific
competition of species is lower than the mutualistic effects between both species, the mutualistic effects
would result in the growth unlimited of the two populations.
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