期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:424
Tensor product of quotient Hilbert modules
Article
Chattopadhyay, Arup1  Das, B. Krishna1  Sarkar, Jaydeb1 
[1] Indian Stat Inst, Stat & Math Unit, Bangalore 560059, Karnataka, India
关键词: Hilbert modules;    Hardy and weighted Bergman spaces over polydisc;    Doubly commuting quotient modules;    Essential normality;    Wandering subspace;    Rank;   
DOI  :  10.1016/j.jmaa.2014.11.038
来源: Elsevier
PDF
【 摘 要 】

In this paper, we present a unified approach to problems of tensor product of quotient modules of Hilbert modules over C[z] and corresponding submodules of reproducing kernel Hilbert modules over C[z(1),..., z(n)] and the doubly commutativity property of module multiplication operators by the coordinate functions. More precisely, for a reproducing kernel Hilbert module H over C[z(1),..., z(n)] of analytic functions on the polydisc in C-n which satisfies certain conditions, we characterize the quotient modules Q of H such that Q is of the form Q(1 circle times)...circle times Q(n), for some one-variable quotient modules {Q(1),..,Q(n)}. For H the Hardy module over polydisc, H-2 (D-n), this reduces to some recent results by Izuchi, Nakazi and Seto, and the third author. This is used to obtain a classification of co-doubly commuting submodules for a class of reproducing kernel Hilbert modules over the unit polyclisc. These results are applied to compute the cross commutators of co-doubly commuting submodules. Moreover, this provides further insight into the wandering subspaces and ranks of submodules of the Hardy module. Our results include the case of weighted Bergman modules over the unit polydisc in C-n. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_11_038.pdf 458KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:2次