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In this paper, we present a unified approach to problems of tensor product of 
quotient modules of Hilbert modules over C[z] and corresponding submodules of 
reproducing kernel Hilbert modules over C[z1, . . . , zn] and the doubly commutativity 
property of module multiplication operators by the coordinate functions. More 
precisely, for a reproducing kernel Hilbert module H over C[z1, . . . , zn] of analytic 
functions on the polydisc in Cn which satisfies certain conditions, we characterize 
the quotient modules Q of H such that Q is of the form Q1⊗· · ·⊗Qn, for some one-
variable quotient modules {Q1, . . . , Qn}. For H the Hardy module over polydisc, 
H2(Dn), this reduces to some recent results by Izuchi, Nakazi and Seto, and the third 
author. This is used to obtain a classification of co-doubly commuting submodules 
for a class of reproducing kernel Hilbert modules over the unit polydisc. These results 
are applied to compute the cross commutators of co-doubly commuting submodules. 
Moreover, this provides further insight into the wandering subspaces and ranks of 
submodules of the Hardy module. Our results include the case of weighted Bergman 
modules over the unit polydisc in Cn.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The question of describing the invariant and co-invariant subspaces of shift operators on various holo-
morphic functions spaces is an old subject that essentially began with the work of A. Beurling [7]. The 
analogous problems for holomorphic function spaces in several variables have been considered in the work 
by Ahern, Douglas, Clark, Yang, Guo, Nakazi, Izuchi, Seto and many more (see [2,1,11,10,13,12,15,21,27]).

In this paper, we will examine certain joint invariant and co-invariant subspaces of the multiplication 
operators by the coordinate functions defined on a class of reproducing kernel Hilbert spaces on the unit 
polydisc Dn = {(z1, . . . , zn) : |zi| < 1, i = 1, . . . , n}. More precisely, our main interest is the class of 
quotient Hilbert modules of reproducing kernel Hilbert modules over C[z1, . . . , zn], the ring of polynomials 
of n commuting variables, that admit a simple tensor product representation of quotient modules of Hilbert 
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modules over C[z]. A related problem also arises in connection with the submodules and quotient modules 
of modules over C[z1, . . . , zn] in commutative algebra:

Let n ∈ N be a fixed positive integer and {Mi}ni=1 be a family of modules over the ring of one-variable
polynomials C[z]. Then the vector space tensor product M := M1 ⊗C · · · ⊗C Mn is a module over C[z] ⊗C

· · · ⊗C C[z] ∼= C[z1, . . . , zn]. Here the module action on M is given by

(p1 ⊗ · · · ⊗ pn) · (f1 ⊗ · · · ⊗ fn) �→ p1 · f1 ⊗ · · · ⊗ pn · fn,

where {pi}ni=1 ⊆ C[z] and fi ∈ Mi (1 ≤ i ≤ n). Furthermore, let Qi ⊆ Mi be a quotient module of Mi for 
each 1 ≤ i ≤ n. Then

Q1 ⊗C · · · ⊗C Qn (1)

is a quotient module of M. Now let Q be a quotient module and S be a submodule of M. The following 
question arises naturally in the context of tensor product of quotient modules:

(A) when is Q of the form (1).

The next natural question is:

(B) when is M/S of the form (1).

To the best of our knowledge, this is a mostly unexplored area at the moment.
Our principal concern in this paper is to provide a complete answer to the above problems by considering 

a natural class of reproducing kernel Hilbert modules over C[z] replacing the modules in the algebraic 
setup. In particular, we prove that a quotient module Q of a standard reproducing kernel Hilbert module
(see Definition 4.5) over C[z1, . . . , zn] is of the form

Q = Q1 ⊗ · · · ⊗ Qn,

for n “one-variable” quotient modules {Qi}ni=1 if and only if Q is doubly commuting (see Definition 2.1).
The study of the doubly commuting quotient modules, restricted to the Hardy module over the bidisc 

H2(D2), was initiated by Douglas and Yang in [11] (also see Berger, Coburn and Lebow [6]). Later in [15]
Izuchi, Nakazi and Seto obtained the above classification result only for quotient modules of the Hardy 
module H2(D2). More recently, the third author extended this result to H2(Dn) for any n ≥ 2 (see [19,18]).

One of the difficulties in extending the above classification result from the Hardy module to the setting of 
a reproducing kernel Hilbert module H is that the module maps {Mz1 , . . . , Mzn} on H, the multiplication 
operators by the coordinate functions, are not isometries. This paper overcomes such a difficulty by exploiting 
the precise geometric and algebraic structure of tensor product of reproducing kernel Hilbert modules. In 
what follows we develop methods which link the tensor product of Hilbert modules over C[z1, . . . , zn] to 
Hilbert modules over C[z].

We also consider the issue of essentially doubly commutativity of co-doubly commuting submodules 
of analytic reproducing kernel Hilbert modules over C[z1, . . . , zn]. We also obtain a wandering subspace 
theorem for some co-doubly commuting submodules of weighed Bergman modules over C[z1, . . . , zn] and 
compute the rank of co-doubly commuting submodules of H2(Dn). Our results in this paper are new even 
in the case of weighted Bergman spaces over Dn.

We now describe the contents of the paper. After recalling the notion of reproducing kernel Hilbert 
modules in Section 2, we introduce the class of standard Hilbert modules over C[z1, . . . , zn] in Section 3. 
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Furthermore, we obtain some basic properties and a useful classification result for the class of standard 
Hilbert modules. In Section 4, we obtain a characterization of doubly commuting quotient modules of an 
analytic Hilbert module over C[z]. In Section 5, we present a characterization result for co-doubly commuting 
submodules and compute the cross commutators of a co-doubly commuting submodule. In Section 6, we 
prove a wandering subspace theorem for co-doubly commuting submodules of the weighted Bergman modules 
over Dn. We also compute the rank of a co-doubly commuting submodule of H2(Dn). The final section is 
reserved for some concluding remarks.

Notations:

• Throughout this paper n ≥ 2 is a fixed natural number.
• For a Hilbert space H, the set of all bounded linear operators on H is denoted by B(H).
• We denote by ⊗ the Hilbert space tensor product and by M ⊗̄ N , the von Neumann algebraic tensor 

product of von Neumann algebras M and N .
• For a von Neumann algebra M ⊆ B(H), we denote by M ′ the commutant of M that is the von Neumann

algebra of all operators in B(H) which commutes with all the operators in M .
• For Hilbert space operators R, T ∈ B(H), we write [R, T ] = RT − TR, the commutator of R and T .
• For any set E, we denote by #E the cardinality of the set E.
• For a closed subspace S of a Hilbert space H, we denote by PS the orthogonal projection of H onto S.
• For a Hilbert space E we shall let O(Dn, E) denote the space of E-valued holomorphic functions on Dn.
• C[z] := C[z1, . . . , zn] denotes the polynomial ring over C in n commuting variables.

2. Preliminaries

In this section we gather together some known results on reproducing kernel Hilbert spaces on product 
domains in Cn. We start by recalling the notion of a Hilbert module over C[z].

Let {T1, . . . , Tn} be a set of n commuting bounded linear operators on a Hilbert space H. Then the 
n-tuple (T1, . . . , Tn) turns H into a module over C[z] in the following sense:

C[z] ×H → H, (p, h) �→ p(T1, . . . , Tn)h,

where p ∈ C[z] and h ∈ H. We say that the module H is a Hilbert module over C[z] (see [9,20]). Denote by 
Mp : H → H the bounded linear operator

Mph = p · h = p(T1, . . . , Tn)h (h ∈ H)

for p ∈ C[z]. In particular, for p = zi ∈ C[z] we obtain the module multiplication operators as follows:

Mzih = zi(T1, . . . , Tn)h = Tih (h ∈ H, 1 ≤ i ≤ n).

In what follows, we will use the notion of a Hilbert module H over C[z] in place of an n-tuple of commut-
ing operators {T1, . . . , Tn} ⊆ B(H), where the operators are determined by module multiplication by the 
coordinate functions, and vice versa.

A function K : Dn × D
n → C is said to be positive definite kernel (cf. [5,20]) if

k∑
i,j=1

λiλjK(zi, zj) > 0,

for all {λi}ki=1 ⊆ C, {zi}ki=1 ⊆ D
n and k ∈ N. Given a positive definite kernel K on Dn, the scalar-valued re-

producing kernel Hilbert space HK is the Hilbert space completion of span{K(·, w) : w ∈ D
n} corresponding 
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to the inner product 〈
K(·,w),K(·, z)

〉
HK

= K(z,w)
(
z,w ∈ D

n
)
.

The kernel function K has the reproducing property:

f(w) =
〈
f,K(·,w)

〉
HK

(
f ∈ HK , w ∈ D

n
)
.

In particular, for each w ∈ D
n the evaluation operator evw : HK → C defined by evw(f) = 〈f, K(·, w)〉HK

(f ∈ HK) is bounded. We say that HK is the reproducing kernel Hilbert space over Dn with respect to the 
kernel function K.

We assume that the function K is holomorphic in the first variable and anti-holomorphic in the second 
variable. Then HK is a Hilbert space of holomorphic functions on Dn (cf. [20]). Moreover, HK is said to be 
reproducing kernel Hilbert module over C[z] if 1 ∈ HK ⊆ O(Dn, C) and the module multiplication operators 
{Mzi}ni=1 are given by the multiplication by the coordinate functions, that is

Mzif = zif,

and

(zif)(w) = wif(w)
(
f ∈ HK , w ∈ D

n
)

for i = 1, . . . , n. It is easy to verify that

M∗
ziK(·,w) = w̄iK(·,w)

(
w ∈ D

n
)

for i = 1, . . . , n.
Let {HKi

}ni=1 be a collection of reproducing kernel Hilbert modules over D corresponding to the positive 
definite kernel functions Ki : D × D → C, i = 1, . . . , n. Thus

K(z,w) =
n∏

i=1
Ki(zi, wi)

(
z,w ∈ D

n
)

defines a positive definite kernel on Dn (cf. [25,5]). Observe that HK1 ⊗ · · · ⊗ HKn
can be viewed as a 

reproducing kernel Hilbert module over C[z] in the following sense:

C[z] × (HK1 ⊗ · · · ⊗ HKn
) → HK1 ⊗ · · · ⊗ HKn

, (p, f) �→ p(M1, . . . ,Mn)f,

where Mi ∈ B(HK1 ⊗ · · · ⊗ HKn
), and

Mi := IHK1
⊗ · · · ⊗ Mz︸︷︷︸

i-th place

⊗ · · · ⊗ IHKn
(1 ≤ i ≤ n).

Moreover, it also follows immediately from the definition of K that∥∥∥∥∥
m∑
i=1

aiK(·,wi)

∥∥∥∥∥
2

=
m∑
i=1

m∑
j=1

aiājK(wi,wj) =
m∑
i=1

m∑
j=1

aiāj

(
n∏

l=1

Kl

(
(wi)l, (wj)l

))

=
m∑ m∑

aiāj
〈
K1

(
·, (wj)1

)
⊗ · · · ⊗Kn

(
·, (wj)n

)
,K1

(
·, (wi)1

)
⊗ · · · ⊗Kn

(
·, (wi)n

)〉

i=1 j=1
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=

∥∥∥∥∥
m∑
i=1

aiK1
(
·, (wi)1

)
⊗ · · · ⊗Kn

(
·, (wi)n

)∥∥∥∥∥
2

,

where {wi = ((wi)1, . . . , (wi)n) : 1 ≤ i ≤ m} ⊆ D
n and {ai}mi=1 ⊆ C and m ∈ N. Therefore, the map

U : span
{
K(·,w) : w ∈ D

n
}
−→ span

{
K1(·, w1) ⊗ · · · ⊗Kn(·, wn) : w ∈ D

n
}

defined by

UK(·,w) = K1(·, w1) ⊗ · · · ⊗Kn(·, wn)
(
w ∈ D

n
)

extends to a unitary operator from HK onto HK1 ⊗ · · · ⊗ HKn
. We also have

Mzi = U∗MiU (1 ≤ i ≤ n).

This implies that HK
∼= HK1 ⊗ · · · ⊗ HKn

is a reproducing kernel Hilbert module over C[z].
In what follows we identify the Hilbert tensor product of Hilbert modules HK1 ⊗· · ·⊗HKn

with the Hilbert 
module HK over C[z]. It also enables us to identify zk1 ⊗ · · · ⊗ zkn with zk for all k = (k1, · · · , kn) ∈ N

n.
We now recall the definitions of submodules and quotient modules of reproducing kernel Hilbert modules 

over C[z] to be used in this paper:

Let S and Q be a pair of closed subspaces of HK . Then S is a submodule of HK if MziS ⊆ S for all 
i = 1, . . . , n and Q is a quotient module if Q⊥ (∼= HK/Q) is a submodule of HK . The module multiplication 
operators on the submodule S and the quotient module Q of HK are given by restrictions (Rz1 , . . . , Rzn)
and compressions (Cz1 , . . . , Czn) of the module multiplication operators (Mz1 , . . . , Mzn) on HK :

Rzi := Mzi |S and Czi := PQMzi |Q, (2)

for i = 1, . . . , n.

Definition 2.1. A quotient module Q of HK is doubly commuting if for 1 ≤ i < j ≤ n,

CziC
∗
zj = C∗

zjCzi .

A submodule S of HK is doubly commuting if for 1 ≤ i < j ≤ n,

RziR
∗
zj = R∗

zjRzi ,

and it is co-doubly commuting if the quotient module S⊥ (∼= HK/S) is doubly commuting.

The notion of a co-doubly commuting submodule was introduced in [19] and [18] in the context of the 
Hardy module over Dn. However, the interplay between the doubly commuting quotient modules and the 
co-doubly commuting submodules has also been previously used by Izuchi, Nakazi and Seto, and Yang 
[15,26,27].

We end this preliminary section by recalling a result concerning commutant of von Neumann algebras 
(cf. Theorem 5.9, Chapter IV of [24]) which will be used in later sections.

Theorem 2.2. Let M and N be two von Neumann algebras. Then (M ⊗̄N)′ = M ′ ⊗̄N ′.
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3. Standard Hilbert modules

In this section we introduce the notion of a standard reproducing kernel Hilbert module and establish 
some basic properties. A characterization of this class is also obtained which we use throughout this note.

Definition 3.1. A reproducing kernel Hilbert module H ⊆ O(D, C) over C[z] is said to be standard Hilbert 
module over C[z] if there do not exist two non-zero quotient modules of H which are orthogonal to each 
other.

It follows immediately that a standard Hilbert module H over C[z] is always irreducible, that is, the 
module multiplication operator Mz does not have any non-trivial reducing subspace.

One of the pleasant features of working with a standard Hilbert module over C[z] is that the quotient 
modules of this space have the following useful characterization.

Proposition 3.2. Let H be a reproducing kernel Hilbert module over C[z]. Then H is a standard Hilbert 
module over C[z] if and only if for any non-zero quotient module Q of H, the smallest submodule containing 
Q is H, that is,

∞∨
l=0

zlQ = H.

Proof. Let H be a standard Hilbert module over C[z]. Let Q be a quotient module of H such that

Q̃ :=
∞∨
l=0

zlQ �= H.

It follows that the quotient module Q̃⊥ is non-trivial and Q ⊥ Q̃⊥. This contradicts the assumption that 
H is a standard Hilbert module.

We now turn our attention to the converse part. Let Q1 and Q2 be two non-zero quotient modules of H, 
and Q1 ⊥ Q2. For all f1 ∈ Q1 and f2 ∈ Q2 and l ∈ N,

〈
zlf1, f2

〉
=

〈
M l

zf1, f2
〉

=
〈
f1,M

∗l
z f2

〉
= 0.

This shows that

∞∨
l=0

zlQ1 ⊥ Q2.

On the other hand, 
∨∞

l=0 z
lQ1 = H implies that Q2 = {0}. This is a contradiction. Therefore, Q1 is not 

orthogonal to Q2 as desired. �
Our next result shows that if K−1 : D × D → C is a polynomial in z and w̄, then HK can be realized as 

a standard Hilbert module over C[z].

Theorem 3.3. Let HK be a reproducing kernel Hilbert module over C[z] with reproducing kernel K : D ×D → C

such that K−1(z, w) =
∑k

i,j=0 aijz
iw̄j is a polynomial in z and w̄. Then HK is a standard Hilbert module 

over C[z].
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Proof. Let K−1(z, w) =
∑k

i,j=0 aijz
iw̄j and set K−1(Mz, M∗

z ) :=
∑k

i,j=0 aijM
i
zM

∗j
z . For z, w ∈ D we notice 

that

〈
K−1(Mz,M

∗
z

)
K(·, w),K(·, z)

〉
=

k∑
i,j=0

〈
aijM

i
zM

∗j
z K(·, w),K(·, z)

〉

=
k∑

i,j=0

〈
aijM

∗j
z K(·, w),M∗i

z K(·, z)
〉

=
k∑

i,j=0
ziw̄jaij

〈
K(·, w),K(·, z)

〉
= K−1(z, w)K(z, w)

=
〈
PCK(·, w),K(·, z)

〉
,

where PC is the orthogonal projection of HK onto the subspace of all constant functions. Consequently, it 
follows that

K−1(Mz,M
∗
z

)
= PC.

We now assume that Q is a non-zero quotient module of H and Q̃ =
∨∞

l=0 z
lQ. It readily follows that

PC(Q) = K−1(Mz,M
∗
z

)
(Q) ⊆ Q̃.

Now if PC(Q) = {0}, then Q⊥ contains the constant function 1 and so Q = {0} contradicting the fact that 
Q �= {0}.

On the other hand, if PC(Q) �= {0}, then 1 ∈ Q̃ and hence Q̃ = H. The theorem now follows from 
Proposition 3.2. �
Remark. We remark that the assumptions of the above theorem include implicitly the additional hypothesis 
that one can define a functional calculus so that 1

K (Mz, M∗
z ) makes sense for the kernel function K. It was 

pointed out in the paper by Arazy and Englis [4] that for many reproducing kernel Hilbert spaces, one 
can define such a 1

K -calculus. In particular, examples of standard Hilbert modules over C[z] include the 
weighted Bergman spaces L2

a,α(D), α > −1, with kernel functions

Ka,α(z, w) = 1
(1 − zw̄)α+2 (z, w ∈ D).

We will make repeated use of the following lemma concerning commutant of Cz = PQMz|Q in B(Q)
where Q is a quotient module of a standard Hilbert module HK .

Lemma 3.4. Let H be a standard Hilbert module over C[z] and Q be a non-trivial quotient module of H. Let 
P be a non-zero orthogonal projection in B(Q). Then

PCz = CzP,

if and only if P = IQ.

Proof. Let S be a non-zero closed subspace of Q such that

PSCz = CzPS ,
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or equivalently, PSC∗
z = C∗

zPS . Hence

PSM
∗
z

∣∣
Q = M∗

z

∣∣
QPS = M∗

zPS .

By multiplying both sides of

PSM
∗
z

∣∣
Q = M∗

zPS ,

to the right with PS we get PSM
∗
zPS = M∗

zPS . Hence S is a quotient module of H.
On the other hand, using PSM

∗
zPS = PSM

∗
zPQ along with the fact that Q is a quotient module we have

PQ�SM
∗
zPQ�S = PQM

∗
zPQ − PQM

∗
zPS − PSM

∗
zPQ + PSM

∗
zPS

= M∗
zPQ −M∗

zPS = M∗
zPQ�S .

Thus Q and Q �S are two orthogonal quotient modules of H. This contradicts the fact that H is a standard 
Hilbert module over C[z]. Consequently, Q � S = {0}, that is, Q = S. This completes the proof. �

Let Q be a quotient module of a Hilbert module H over C[z] and S be a non-trivial closed subspace of Q. 
Let

PSCz = CzPS .

The above proof shows that both S and Q �S are quotient modules of H. One can show that the converse 
is also true. Hence this is an equivalent condition.

It is of interest to know whether an irreducible reproducing kernel Hilbert module over C[z] is necessarily 
standard Hilbert module over C[z]. However, this question is not relevant in the context of the present 
paper.

4. Doubly commuting quotient module

In this section we introduce the notion of a standard Hilbert module in several variables. We present 
a characterization result for quotient modules of standard Hilbert modules over C[z], which are doubly 
commuting as well as satisfy an additional natural condition. We also obtain a characterization result for 
doubly commuting quotient modules of the weighted Bergman modules over Dn.

We begin by defining the notion of a standard Hilbert module over C[z].

Definition 4.1. A reproducing kernel Hilbert module H ⊆ O(Dn, C) over C[z] is said to be a standard Hilbert 
module over C[z] if

H = H1 ⊗ · · · ⊗ Hn,

for some standard Hilbert modules {Hi}ni=1 over C[z].

Here, as well as in the rest of this paper we specialize to the class of standard Hilbert modules over C[z].
The following illuminating example makes clear the connection between the tensor product of quotient 

modules of standard Hilbert modules over C[z] and doubly commuting quotient modules of standard Hilbert 
modules over C[z]:

Let H = H1 ⊗ · · · ⊗Hn be a standard Hilbert module over C[z], and let Qj ⊆ Hj be a quotient module for 
each j = 1, . . . , n. Then
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Q = Q1 ⊗ · · · ⊗ Qn,

is a doubly commuting quotient module of H1 ⊗ · · · ⊗ Hn with the module multiplication operators

IQ1 ⊗ · · · ⊗ PQi
Mz|Qi︸ ︷︷ ︸
i-th

⊗ · · · ⊗ IQn
(i = 1, . . . , n).

The purpose of this section is to prove that under a rather natural condition a doubly commuting quotient 
module of a standard Hilbert module over C[z] is always represented in the above form.

The key ingredient in our approach will be the following propositions concerning reducing subspaces of 
standard Hilbert modules.

Proposition 4.2. Let H = H1 ⊗ · · · ⊗Hn be a standard Hilbert module over C[z]. Let Q be a closed subspace 
of H and let k ∈ {1, . . . , n}. Then Q is Mzi-reducing for i = k, k + 1, . . . , n, if and only if

Q = E ⊗Hk ⊗ · · · ⊗ Hn,

for some closed subspace E ⊆ H1 ⊗ · · · ⊗ Hk−1.

Proof. For k ≤ i ≤ n, let Ni be the von Neumann algebra generated by {IHi
, Mz}, where Mz is the module 

multiplication operator on Hi. It follows immediately that the von Neumann algebra generated by

{IH,Mzi : i = k, k + 1, . . . , n} ⊆ B(H1 ⊗ · · · ⊗ Hn),

is given by

CIH1⊗···⊗Hk−1 ⊗̄ Nk ⊗̄ · · · ⊗̄ Nn.

By virtue of Lemma 3.4 we have

N ′
i = CIHi

(k ≤ i ≤ n).

On account of Theorem 2.2 we have then

(CIH1⊗···⊗Hk−1 ⊗̄ Nk ⊗̄ · · · ⊗̄ Nn)′ = B(H1 ⊗ · · · ⊗ Hk−1) ⊗̄ CIHk⊗···⊗Hn
,

and hence Q is Mzi -reducing subspace for all i = k, k + 1, . . . , n, if and only if

PQ ∈ (CIH1⊗···⊗Hk−1 ⊗̄ Nk ⊗̄ · · · ⊗̄ Nn)′ = B(H1 ⊗ · · · ⊗ Hk−1) ⊗̄ CIHk⊗···⊗Hn
.

On the other hand, since PQ is a projection in B(H1 ⊗ · · · ⊗ Hk−1) ⊗̄ CIHk⊗···⊗Hn
, there exists a closed 

subspace E of H1 ⊗ · · · ⊗ Hk−1 such that

PQ = PE ⊗ IHk⊗···⊗Hn
.

Hence it follows that

Q = E ⊗Hk ⊗ · · · ⊗ Hn.

This completes the proof. �
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Proposition 4.3. Let H = H1 ⊗ · · · ⊗ Hn be a standard Hilbert module over C[z] and let Q1 be a quotient 
module of H1. Then a closed subspace M of Q := Q1 ⊗H2 ⊗ · · · ⊗ Hn is PQMz1 |Q-reducing if and only if 
there exists a closed subspace E of H2 ⊗ · · · ⊗ Hn such that

M = Q1 ⊗ E .

Proof. Suppose Q1 is a quotient module of H1. We observe that

PQMz1 |Q = (PQ1Mz|Q1 ⊗ IH2⊗···⊗Hn
).

We also note that a closed subspace M of Q is PQMz1 |Q-reducing if and only if

PM ∈ (N ⊗̄ IH2⊗···⊗Hn
)′,

where N ⊆ B(Q1) is the von Neumann algebra generated by {IQ1 , PQ1Mz|Q1}. Now

(N ⊗̄ IH2⊗···⊗Hn
)′ = N ′ ⊗̄ B(H2 ⊗ · · · ⊗ Hn).

By Lemma 3.4 we have N ′ = CIQ1 and hence

(N ⊗̄ IH2⊗···⊗Hn
)′ = CIQ1 ⊗̄ B(H2 ⊗ · · · ⊗ Hn).

Therefore, PM ∈ (N ⊗̄ IH2⊗···⊗Hn
)′ if and only if

PM = IQ1 ⊗ PE ,

that is, M = Q1 ⊗ E , for some closed subspace E of H2 ⊗ · · · ⊗ Hn. This completes the proof. �
Let Q be a quotient module of a standard Hilbert module over C[z]. For 1 ≤ k ≤ n, let [Q]zk,zk+1,...,zn

denote the smallest joint (Mzk , . . . , Mzn)-invariant subspace containing Q. That is,

[Q]zk,zk+1,...,zn :=
∨

(lk,lk+1,...,ln)∈N(n−k+1)

M lk
zk

·M lk+1
zk+1

· · ·M ln
znQ. (3)

We are now ready to prove the characterization result concerning tensor product of quotient modules of 
standard Hilbert modules over C[z].

Theorem 4.4. Let Q be a quotient module of a standard Hilbert module H = H1 ⊗ · · · ⊗Hn over C[z]. Then

Q = Q1 ⊗ · · · ⊗ Qn,

for some quotient module Qi of Hi, i = 1, . . . , n, if and only if

(i) Q is doubly commuting, and
(ii) [Q]zk,zk+1,...,zn is a joint (Mzk , Mzk+1 , . . . , Mzn)-reducing subspace of H1 ⊗ · · · ⊗ Hn for k = 1, . . . , n.

Proof. Let Q be a doubly commuting quotient module of H and [Q]zk,zk+1,...,zn be a joint (Mzk , Mzk+1 , . . . ,
Mzn)-reducing subspace for k = 1, . . . , n. In particular, for k = 2,

Q̃ := [Q]z2,z3,...,zn
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is a joint (Mz2 , Mz3 , . . . , Mzn)-reducing subspace of H1 ⊗ · · · ⊗ Hn. By virtue of Proposition 4.2 we have

Q̃ = Q1 ⊗H2 ⊗ · · · ⊗ Hn,

for some closed subspace Q1 of H1. Also since Q is a quotient module and M∗
zi commutes with Mzj for 

i �= j, it follows that Q̃ is an M∗
z1-invariant subspace. Hence Q1 is a quotient module of H1. Now we claim 

that Q is a PQ̃Mz1 |Q̃-reducing subspace of Q̃. To this end, since Q ⊆ Q̃, it is enough to show that

PQM
∗
z1

∣∣
Q̃ = M∗

z1

∣∣
Q.

Using the fact that Q is doubly commuting it follows that

C∗
z1C

l
zi = Cl

ziC
∗
z1 ,

for l ≥ 0 and 2 ≤ i ≤ n, and hence

C∗
z1C

l2
z2 · · ·C

ln
zn = Cl2

z2 · · ·C
ln
znC

∗
z1 ,

for l2, l3, . . . , ln ≥ 0. Therefore

M∗
z1PQM

l2
z2 · · ·M

ln
znPQ = PQM

l2
z2 · · ·M

ln
znM

∗
z1PQ (l2, l3, . . . , ln ≥ 0).

This implies that

M∗
z1PQ

(
M l2

z2 · · ·M
ln
znPQ

)
= PQM

∗
z1

(
M l2

z2 · · ·M
ln
znPQ

)
,

for l2, l3, . . . , ln ≥ 0. This proves the claim.
Now applying Proposition 4.3, we obtain a closed subspace E1 of H2 ⊗ · · · ⊗ Hn such that

Q = Q1 ⊗ E1.

Finally note that since Q is doubly commuting, E1 is also doubly commuting quotient module of H2⊗· · ·⊗Hn

and it satisfies the condition (ii) in the statement of this theorem. Repeating the argument above for E1, we 
conclude that

E1 = Q2 ⊗ E2,

for some quotient module Q2 of H2 and doubly commuting quotient module E2 of H3⊗· · ·⊗Hn. Continuing 
in this way we obtain quotient modules Qi ⊆ Hi, for i = 1, . . . , n, such that

Q = Q1 ⊗Q2 ⊗ · · · ⊗ Qn.

This proves the sufficient part.
To prove the necessary part, let Q = Q1 ⊗Q2 ⊗ · · · ⊗ Qn be a quotient module of H. Clearly

(IQ1 ⊗ IQ2 ⊗ · · · ⊗ PQi
Mz|Qi︸ ︷︷ ︸

i-th place

⊗ · · · ⊗ IQn
)ni=1

is a doubly commuting tuple, that is, Q is doubly commuting. Finally, using the fact that Hi is a standard 
Hilbert module over C[z] for all i = 1, . . . , n, we have
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[Q]zk,...,zn = Q1 ⊗ · · · ⊗ Qk−1 ⊗ [Qk]z ⊗ · · · ⊗ [Qn]z
= Q1 ⊗ · · · ⊗ Qk−1 ⊗Hk ⊗ · · · ⊗ Hn,

for 1 ≤ k ≤ n. Now the result follows from Proposition 4.2. �
Remark. Let Hi be a Hilbert module over C[z] with module multiplication operator Ti, i = 1, . . . , n. 
Moreover, assume that Hi is a standard Hilbert module over C[z], that is, there does not exist a pair of 
non-zero quotient modules Q1 and Q2 such that Q1 ⊥ Q2. In this case, the above theorem still remains 
true for the Hilbert module H = H1 ⊗ · · · ⊗ Hn over C[z] with module multiplication operators

{IH1 ⊗ · · · ⊗ IHi−1 ⊗ Ti ⊗ IHi+1 ⊗ · · · ⊗ IHn
}ni=1.

Let Hi be a reproducing kernel Hilbert module over C[z] with kernel Ki such that K−1
i is a polynomial 

for all i = 1, . . . , n. Then by Theorem 3.3 we know that Hi’s are standard Hilbert modules over C[z] (see 
also the remark following Theorem 3.3). Thus H = H1 ⊗ · · · ⊗ Hn is a standard Hilbert module over C[z]. 
This subclass of standard Hilbert modules over C[z] plays the central role in the rest of this paper. So we 
make the following definition to refer this subclass.

Definition 4.5. A standard Hilbert module H = HK1 ⊗ · · · ⊗ HKn
over C[z] is said to be analytic Hilbert 

module if K−1
i is a polynomial in two variables z and w̄ for all i = 1, . . . , n.

The notion of analytic Hilbert module is closely related to the 1
K -calculus introduced by Arazy and 

Englis [4]. Our result is true in the generality of Arazy–Englis. However, to avoid technical complications 
we restrict our attention to the analytic Hilbert modules.

Let H be a standard Hilbert module over C[z]. Then H is an analytic Hilbert module if and only if 
K−1(z, w) is a polynomial in z1, . . . , zn, w̄1, . . . , w̄n.

Now we show that the condition (ii) in Theorem 4.4 holds for any quotient module of an analytic Hilbert 
module over C[z]. After the proof of the proposition we will give some examples in order.

Proposition 4.6. Let Q be a non-zero quotient module of an analytic Hilbert module H = H1 ⊗· · ·⊗Hn over 
C[z]. Then [Q]zk,...,zn is (Mzk , Mzk+1 , . . . , Mzn)-reducing subspace for k = 1, . . . , n.

Proof. Let 1 ≤ k ≤ n be fixed. Set

n∏
i=k

K−1
i (zi, wi) =

∑
l,m∈N(n−k+1)

al,mzlw̄m,

where zl = zlkk · · · zlnn and w̄m = w̄mk

k · · · w̄mn
n and l = (lk, . . . , ln) and m = (mk, . . . , mn) are in N(n−k+1). 

Likewise, if l = (lk, . . . , ln) ∈ N
(n−k+1), then define M l

z = M lk
zk

· · ·M ln
zn . Notice first that

IH1⊗···⊗Hk−1 ⊗ P
⊗(n−k+1)
C

=
n∏

i=k

K−1
i

(
Mzi ,M

∗
zi

)
=

∑
l,m∈N(n−k+1)

al,mM l
zM

∗m
z . (4)

In the last equality we used the fact that MziM
∗
zj = M∗

zjMzi for i �= j. This implies

(IH1⊗···⊗Hk−1 ⊗ PC⊗(n−k+1))(Q) ⊆ [Q]zk,...,zn .

By a similar argument as in the proof of Theorem 3.3, we have

(IH1⊗···⊗Hk−1 ⊗ PC⊗(n−k+1))(Q) �= {0}.



A. Chattopadhyay et al. / J. Math. Anal. Appl. 424 (2015) 727–747 739
Setting

(IH1⊗···⊗Hk−1 ⊗ PC⊗(n−k+1))(Q) := Q1 ⊗ C
⊗(n−k+1),

for some closed subspace Q1 of H1 ⊗ · · · ⊗ Hk−1, we obtain

Q1 ⊗Hk ⊗ · · · ⊗ Hn ⊆ [Q]zk,...,zn .

To see [Q]zk,...,zn ⊆ Q1 ⊗Hk ⊗· · ·⊗Hn, it is enough to prove that Q ⊆ Q1 ⊗Hk ⊗· · ·⊗Hn, or equivalently,

Q⊥
1 ⊗Hk ⊗ · · · ⊗ Hn ⊆ Q⊥.

Since Q⊥ is a submodule the last containment will follow if we show that f ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(n−k+1)-times

∈ Q⊥ for any 

f ∈ Q⊥
1 . Now for f ∈ Q⊥

1 and g ∈ Q, we have

〈f ⊗ 1 ⊗ · · · ⊗ 1, g〉 =
〈
(IH1⊗···⊗Hk−1 ⊗ PC⊗(n−k+1))(f ⊗ 1 ⊗ · · · ⊗ 1), g

〉
=

〈
f ⊗ 1 ⊗ · · · ⊗ 1, (IH1⊗···⊗Hk−1 ⊗ PC⊗(n−k+1))g

〉
= 0,

where the last equality follows from the fact that (IH1⊗···⊗Hk−1 ⊗PC⊗(n−k+1))g ∈ Q1⊗C
⊗(n−k+1). Therefore,

for any 1 ≤ k ≤ n,

[Q]zk,...,zn = Q1 ⊗Hk ⊗ · · · ⊗ Hn,

for some closed subspace Q1 of H1 ⊗ · · · ⊗ Hk−1. The result now follows from Proposition 4.2. �
Combining above proposition, Theorems 3.3 and 4.4 we have the following result.

Theorem 4.7. Let Q be a quotient module of an analytic Hilbert module H = H1 ⊗· · ·⊗Hn over C[z]. Then 
the following conditions are equivalent:

(i) Q is doubly commuting.
(ii) Q = Q1 ⊗ · · · ⊗ Qn for some quotient module Qi of Hi, i = 1, . . . , n.

Now we pass to discuss some examples of analytic Hilbert modules and applications of Theorem 4.7. First 
consider the case of the Hardy module H2(Dn) over the unit polydisc Dn. The kernel function of H2(D) is 
given by

S(z, w) = 1
1 − zw̄

(z, w ∈ D).

In particular, S−1(z, w) is a polynomial. On account of the Hilbert module isomorphism

H2(
D

n
) ∼= H2(D) ⊗ · · · ⊗H2(D)︸ ︷︷ ︸

n-times

,

we recover the following result of [18] (Theorem 3.2) and [15].
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Theorem 4.8. Let Q be a quotient module of H2(Dn). Then Q is doubly commuting if and only if Q =
Q1 ⊗ · · · ⊗ Qn for some quotient modules Q1, . . . , Qn of H2(D).

Next we consider the case of weighted Bergman spaces over Dn. The weighted Bergman space over the 
unit disc is denoted by L2

a,α(D), with α > −1, and is defined by

L2
a,α(D) :=

{
f ∈ O(D) :

∫
D

∣∣f(z)
∣∣2 dAα(z) < ∞

}
,

where dAα(z) = (a + 1)(1 − |z|2)adA(z) and dA refers the normalized area measure on D. The weighted 
Bergman modules are reproducing kernel Hilbert modules with kernel functions

Kα(z, w) = 1
(1 − zw̄)α+2 (z, w ∈ D).

It is evident that K−1
α is a polynomial if α ∈ N. Let α ∈ Z

n with αi > −1 for i = 1, . . . , n. The weighted 
Bergman space L2

a,α(Dn) over Dn with weight α is a standard Hilbert module over C[z] with kernel function

Kα(z,w) :=
n∏

i=1
Kαi

(zi, wi) =
n∏

i=1

1
(1 − ziw̄i)αi+2

(
z,w ∈ D

n
)
.

Thus we have the following theorem.

Theorem 4.9. Let α = (α1, . . . , αn) ∈ Z
n with αi > −1 for i = 1, . . . , n. Then a quotient module Q of 

L2
a,α(Dn) is doubly commuting if and only if Q = Q1 ⊗ · · · ⊗Qn for some quotient modules Qi of L2

a,αi
(D), 

i = 1, . . . , n.

Note that by the remark after Theorem 3.3 the above characterization result also holds for α =
(α1, . . . , αn) ∈ R

n with αi > −1, i = 1, . . . , n.

5. Co-doubly commuting submodules

The purpose of this section is twofold. First, we explicitly compute the cross commutators of a co-doubly 
commuting submodule (see Definition 2.1) of analytic Hilbert modules over C[z]. Second, we investigate 
a variety of issues related to essential doubly commutativity of co-doubly commuting submodules. In par-
ticular, we completely classify the class of co-doubly commuting submodules which are essentially doubly 
commuting for n ≥ 3.

We start with a well-known result (cf. [18]) concerning sum of a family of commuting orthogonal projec-
tions on Hilbert spaces.

Lemma 5.1. Let {Pi}ni=1 be a collection of commuting orthogonal projections on a Hilbert space H. Then 
L :=

∑n
i=1 ran Pi is closed and the orthogonal projection of H onto L is given by

PL = IH −
n∏

i=1
(IH − Pi).

Now we are ready to present a characterization of co-doubly commuting submodules of an analytic Hilbert 
module C[z]. Recall that a submodule S of an analytic Hilbert module H over C[z] is co-doubly commuting 
if Q = S⊥ (∼= H/S) is doubly commuting.
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Theorem 5.2. Let H = H1 ⊗ · · · ⊗ Hn be an analytic Hilbert module over C[z] and S be a submodule of H. 
Then S is co-doubly commuting if and only if

S = (Q1 ⊗ · · · ⊗ Qn)⊥ =
n∑

i=1
H1 ⊗ · · · ⊗ Hi−1 ⊗Q⊥

i ⊗Hi+1 ⊗ · · · ⊗ Hn,

for some quotient module Qi of Hi and i = 1, . . . , n.

Proof. Let S be a co-doubly commuting submodule of H. Applying Theorem 4.7 to S we have

S = (Q1 ⊗ · · · ⊗ Qn)⊥,

for some quotient module Qi of Hi and i = 1, . . . , n. Now let Pi be the orthogonal projection of H onto 
H1 ⊗ · · · ⊗ Hi−1 ⊗Q⊥

i ⊗Hi+1 ⊗ · · · ⊗ Hn. Then {Pi}ni=1 satisfies the hypothesis of Lemma 5.1. Also note 
that Q1 ⊗ · · · ⊗ Qn is the range of the orthogonal projection 

∏n
i=1(IH − Pi), that is,

PQ1⊗···⊗Qn
=

n∏
i=1

(IH − Pi).

From this and Lemma 5.1 we readily obtain

S =
n∑

i=1
H1 ⊗ · · · ⊗ Hi−1 ⊗Q⊥

i ⊗Hi+1 ⊗ · · · ⊗ Hn.

This completes the proof. �
In the sequel we will make use of the following notation.
Let Q = Q1 ⊗ · · · ⊗ Qn be a doubly commuting quotient module of an analytic Hilbert module H =

H1 ⊗ · · · ⊗ Hn over C[z], where Qi is a quotient module of Hi, i = 1, . . . , n. Let λ = {λ1, . . . , λk} be a 
non-empty subset of {1, . . . , n}. The subspace Q⊥

λ of H is defined by

Q⊥
λ := Q1 ⊗ · · · ⊗ Q⊥

λ1︸︷︷︸
λ1-th

⊗ · · · ⊗ Q⊥
λk︸︷︷︸

λk-th

⊗ · · · ⊗ Qn. (5)

Notice that

Q⊥
λ ⊥ Q⊥

λ′ ,

for each non-empty λ, λ′ ⊆ {1, . . . , n} and λ �= λ′. This implies that

(Q1 ⊗ · · · ⊗ Qn)⊥ =
⊕

∅
=λ⊆{1,...,n}
Q⊥

λ .

The following theorem provides us with an easy way to calculate the cross commutators of co-doubly 
commuting submodules of analytic Hilbert modules over C[z].

Theorem 5.3. Let H = H1 ⊗ · · · ⊗ Hn be an analytic Hilbert module over C[z] and S = (Q1 ⊗ · · · ⊗ Qn)⊥
be a co-doubly commuting submodule of H. Then for all 1 ≤ i < j ≤ n,
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[
R∗

zi , Rzj

]
= PQ1 ⊗ · · · ⊗ PQi

M∗
zPQ⊥

i︸ ︷︷ ︸
i-th

⊗ · · · ⊗ PQ⊥
j
MzPQj︸ ︷︷ ︸
j-th

⊗ · · · ⊗ PQn
,

where Rzj = Mzj |S for 1 ≤ j ≤ n.

Proof. Let S = (Q1 ⊗ · · · ⊗ Qn)⊥ be a co-doubly commuting submodule of H. By definition Rzl = Mzl |S
and hence R∗

zl
= PSM∗

zl
|S for l = 1, . . . , n. Let 1 ≤ i < j ≤ n. Then

[
R∗

zi , Rzj

]
= R∗

ziRzj −RzjR
∗
zi

= PSM
∗
ziMzj |S − PSMzjPSM

∗
zi

∣∣
S

= PSM
∗
ziMzj |S − PSMzj (I − PS⊥)M∗

zi

∣∣
S

= PSMzjPS⊥M∗
zi

∣∣
S

= PSMzjPQ1⊗···⊗Qn
M∗

ziPS .

Combining this with (5), we have

[
R∗

zi , Rzj

]
=

( ∑
∅
=λ⊆{1,...,n}

PQ⊥
λ

)
MzjPQ1⊗···⊗Qn

M∗
zi

( ∑
∅
=λ′⊆{1,...,n}

PQ⊥
λ′

)
.

Observe that for each λ �= {l} and l ∈ {1, . . . , n},

PQ1⊗···⊗Qn
M∗

zl
PQ⊥

λ
= 0,

and therefore

[
R∗

zi , Rzj

]
=

( ∑
∅
=λ⊆{1,...,n}

PQ⊥
λ

)
MzjPQ1⊗···⊗Qn

M∗
zi

( ∑
∅
=λ′⊆{1,...,n}

PQ⊥
λ′

)

=
∑

∅
=λ,λ′⊆{1,...,n}
PQ⊥

λ
MzjPQ1⊗···⊗Qn

M∗
ziPQ⊥

λ′

= PQ⊥
{j}

MzjPQ1⊗···⊗Qn
M∗

ziPQ⊥
{i}

= PQ1 ⊗ · · · ⊗
(
PQi

M∗
zPQ⊥

i

)︸ ︷︷ ︸
i-th

⊗ · · · ⊗ (PQ⊥
j
MzPQj

)︸ ︷︷ ︸
j-th

⊗ · · · ⊗ PQn
.

This completes the proof. �
We still need a few more definitions about “small commutators” on Hilbert spaces.
Let H be a Hilbert module over C[z]. Let S and Q be submodule and quotient module of H, respectively. 

Then S is said to be essentially doubly commuting if

[
R∗

zi , Rzj

]
∈ K(S),

for 1 ≤ i < j ≤ n. Here K(S) denotes the algebra of all compact operators on S. Moreover, it is essentially 
normal if [R∗

zi , Rzj ] ∈ K(S) for 1 ≤ i, j ≤ n. Similarly Q is essentially doubly commuting if

[
C∗

z , Czj

]
∈ K(Q),
i



A. Chattopadhyay et al. / J. Math. Anal. Appl. 424 (2015) 727–747 743
for all 1 ≤ i < j ≤ n, and it is essentially normal if [C∗
zi , Czj ] ∈ K(Q) for 1 ≤ i, j ≤ n (see [19]). Here Rzi

and Czi are as in (2).
Now we provide a characterization of essentially doubly commuting co-doubly commuting submodules of 

an analytic Hilbert module over C[z].

Theorem 5.4. Let S = (Q1 ⊗ · · · ⊗Qn)⊥ be a co-doubly commuting submodule of an analytic Hilbert module 
H = H1 ⊗ · · · ⊗ Hn over C[z], where Qi is a quotient module of Hi, i = 1, . . . , n. Then:

(i) For n = 2, S is essentially doubly commuting if and only if PQj
M∗

zPQ⊥
j

is compact for all j = 1, 2.
(ii) For n > 2, S is essentially doubly commuting if and only if S is of finite co-dimension.

Proof. The proof follows from the above lemma. �
If the analytic Hilbert module H in the above theorem is H2(Dn), then PQj

M∗
zPQ⊥

j
is a rank one 

operator for all quotient modules Qi of H2(D) and i = 1, . . . , n (see Proposition 2.3 in [19]). In particular, 
for H = H2(D2), the submodule S = (Q1 ⊗ Q2)⊥ is always essentially doubly commuting. This result is 
due to Yang [26]. For the Hardy space H2(Dn), part (ii) was obtained by the third author in [19].

The next two results become a useful variant of the above theorem.

Corollary 5.5. For n > 2, let S be a co-doubly commuting submodule of an analytic Hilbert module H =
H1 ⊗ · · · ⊗ Hn and Q = S⊥ (∼= H/S). Then the following are equivalent.

(i) S is essentially doubly commuting.
(ii) S is of finite co-dimension.
(iii) Q is essentially normal.

Corollary 5.6. Let S be an essentially normal co-doubly commuting submodule of an analytic Hilbert module 
H = H1 ⊗ · · · ⊗ Hn. If S is of infinite co-dimension, then n = 2.

In the case H = H2(Dn), both Corollaries 5.5 and 5.6 were obtained by the third author in [19].
We end the section by the following remark.

Remark. In view of Theorems 5.3 and 5.4 one is tempted to consider the issue of compactness (or Hilbert–
Schmidt class, trace class) of products of cross-commutators of co-doubly commuting submodules. However, 
we observe as an easy consequence of Theorem 5.3 that

[
R∗

zi , Rzj

][
R∗

zl
, Rzm

]
= 0,

for any 1 ≤ i < j ≤ n and 1 ≤ l < m ≤ n.
Nevertheless, it is interesting to observe that for a co-doubly commuting submodule S = (Q1⊗· · ·⊗Qn)⊥, 

the “repeated commutator”

[
Rzn ,

[
Rzn−1 , · · ·

[
Rz3 ,

[
R∗

z1 , Rz2

]]
· · ·

]]
= PQ1M

∗
zPQ⊥

1
⊗ PQ⊥

2
MzPQ2 ⊗ · · · ⊗ PQ⊥

n
MzPQn

is a non-zero rank one operator. Let us verify this fact in case n = 3 (the general case follows by in-
duction on n): Let S = (Q1 ⊗ Q2 ⊗ Q3)⊥ be a co-doubly commuting submodule of H2(D3). Then by 
Theorem 5.3,
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[
Rz3 ,

[
R∗

z1 , Rz2

]]
= Mz3PS

(
PQ1M

∗
zPQ⊥

1
⊗ PQ⊥

2
MzPQ2 ⊗ PQ3

)
−
(
PQ1M

∗
zPQ⊥

1
⊗ PQ⊥

2
MzPQ2 ⊗ PQ3

)
Mz3PS

= (PQ1 ⊗ PQ⊥
2
⊗MzPQ3)

(
PQ1M

∗
zPQ⊥

1
⊗ PQ⊥

2
MzPQ2 ⊗ PQ3

)
−
(
PQ1M

∗
zPQ⊥

1
⊗ PQ⊥

2
MzPQ2 ⊗ PQ3

)
(PQ⊥

1
⊗ PQ2 ⊗MzPQ3)

= PQ1M
∗
zPQ⊥

1
⊗ PQ⊥

2
MzPQ2 ⊗ PQ⊥

3
MzPQ3 .

We do not know any module theoretic interpretations of the above fact. These issues will be addressed in a 
future paper.

6. Wandering subspaces and ranks of submodules

In this section we investigate the existence of wandering subspace, in the sense of Halmos [14], of a 
co-doubly commuting submodule of L2

a,α(Dn), and compute the rank of a co-doubly commuting submodule 
of H2(Dn). In particular, we explicitly compute the rank of a co-doubly commuting submodule S of H2(Dn)
and prove that the rank of S is not greater than n.

We begin with the definition of wandering subspaces for submodules of analytic Hilbert modules over 
C[z].

Let S be a submodule of an analytic Hilbert module H over C[z] and W ⊆ S be a closed subspace. Then 
W is a wandering subspace of S if

W ⊥ Mk
zW,

for all k ∈ N
n \ {0} and

S =
∨

k∈Nn

Mk
z W.

Let S be a submodule of H2(D), or L2
a(D). Then W = S�zS is the wandering subspace of S. Moreover, the 

dimension of W is always one for H = H2(D) [7], and any value in the range 1, 2, . . . , ∞, for H = L2
a(D) [3]. 

For a general n, the existence of wandering subspaces of doubly commuting submodules of L2
a(Dn) is obtained 

in [16] and [8].
Now let S = (Q1 ⊗ · · · ⊗ Qn)⊥ be a co-doubly commuting submodule of L2

a,α(Dn), where α =
(α1, . . . , αn) ∈ N

n, and Qi is a quotient module of L2
a,αi

(D), i = 1, . . . , n. Let

Wi =
(
Q⊥

i � zQ⊥
i

)
be the wandering subspace of Q⊥

i for i = 1, . . . , n. Consider the set

W =
n∨

i=1
1 ⊗ · · · ⊗ 1 ⊗Wi ⊗ 1 ⊗ · · · ⊗ 1 ⊆ S.

By virtue of Theorem 5.2, it then follows easily that

S =
∨

k∈Nn

Mk
z W.

There is, however, no guarantee that W ⊥ Mk
z W for all k ∈ N

n \ {0}. For instance, it is not necessarily 
true that
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〈1 ⊗ f2 ⊗ 1 ⊗ · · · ⊗ 1, f1 ⊗Mz1 ⊗ 1 ⊗ · · · ⊗ 1〉 = 0,

for all f1 ∈ W1 and f2 ∈ W2.
However, if we further assume that 1 ∈ Qi for all i = 1, . . . , n, it then easily follows that W is a 

wandering subspace of S. Thus we have the following result on the existence of wandering subspaces of a 
class of co-doubly commuting submodules of L2

a,α(Dn).

Theorem 6.1. Let α = (α1, . . . , αn) ∈ N
n and Qi be a quotient module of L2

a,αi
(D) and 1 ∈ Qi, i = 1, . . . , n. 

Then

W =
n∨

i=1
1 ⊗ · · · ⊗ 1 ⊗Wi ⊗ 1 ⊗ · · · ⊗ 1

is a wandering subspace of the co-doubly commuting submodule S = (Q1 ⊗ · · · ⊗ Qn)⊥, where

Wi =
(
Q⊥

i � zQ⊥
i

)
,

for all i = 1, . . . , n.

We now study the rank of a co-doubly commuting submodule of an analytic Hilbert module over C[z]. 
Recall that the rank of a Hilbert module H over C[z] is the smallest cardinality of its generating sets [9]. 
More precisely,

rank(H) = min
E∈G(H)

#E,

where

G(H) =
{
E ⊆ H :

∨
k∈Nn

Mk
z E = H

}
.

Let S = θH2(D) be a submodule of H2(D) for some inner function θ ∈ H∞(D) [7]. Then

S = θH2(D) =
∨
m≥0

zmE,

where E = {θ}. Consequently, S is of rank one. This is no longer true for the Hardy space over Dn and 
n ≥ 2. As pointed out by Rudin [17], there exists a submodule S of H2(D) such that the rank of S is not 
finite (see also [22,23]). We now consider the class of co-doubly commuting submodules of H2(Dn).

Let S be a non-trivial proper co-doubly commuting submodule of H2(Dn). Theorem 5.2 implies that 
there exist non-zero quotient modules Q1, . . . , Qn of H2(D) such that

S = (Q1 ⊗ · · · ⊗ Qn)⊥ =
n∑

i=1
H2(

D
i−1)⊗Q⊥

i ⊗H2(
D

n−i
)
.

Then there exists a natural number 1 ≤ m ≤ n such that

Qlj �= H2(D) (j = 1, . . . ,m).

Let θlj be the inner function corresponding to the non-zero submodule Q⊥
lj

, that is,

Q⊥
l = θljH

2(D) (j = 1, . . . ,m).

j
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Let E be the set of one-variable inner functions corresponding to {θlj}mj=1 over Dn, that is,

E := {Θlj ∈ S : Θlj = 1 ⊗ · · · ⊗ 1 ⊗ θlj︸︷︷︸
lj-th

⊗1 ⊗ · · · ⊗ 1, j = 1, . . . ,m}.

Then invoking again Theorem 5.2 we conclude that

∨
k∈Nn

Mk
z E = S.

Consequently,

rank(S) ≤ m.

If, in addition, we assume that 1 ∈ Qi, for 1 ≤ i ≤ n then

Θlj ∈ kerPSM
∗k
z (1 ≤ j ≤ m)

for any non-zero k ∈ N
n. Then with a standard argument we obtain rank(S) ≥ m and hence rank(S) = m.

We summarize the results given above as follows.

Theorem 6.2. Let S = (Q1 ⊗ · · · ⊗ Qn)⊥ be a co-doubly commuting submodule of H2(Dn). Then the rank 
of S is less than or equal to the number of quotient modules Qi which are different from H2(D). Moreover, 
equality holds if 1 ∈ Qi for all 1 ≤ i ≤ n.

7. Concluding remarks

It is worth stressing here that the results of this paper are based on three essential assumptions on the 
Hilbert module H:

(1) H is a reproducing kernel Hilbert module over Dn. Moreover, the kernel function KH of H is a product 
of one-variable kernel functions over the unit disc D. That is,

KH(z,w) =
n∏

i=1
Ki(zi, wi)

(
z,w ∈ D

n
)
.

(2) H is a standard reproducing kernel Hilbert module, that is, there does not exist a pair of non-zero 
orthogonal quotient modules of HKi

⊆ O(D, C), where HKi
is the reproducing kernel Hilbert module 

corresponding to the kernel Ki and i = 1, . . . , n.
(3) K−1

H is a polynomial, or, that H admits a 1
K -calculus, in the sense of Arazy and Englis.

The purpose of the following example is to show that the conclusion of Theorem 4.7 is false if we drop 
the assumption that H is standard.

Let H = H1 ⊗ · · ·⊗Hn be a reproducing kernel Hilbert module over C[z] such that H1 is not a standard 
reproducing kernel Hilbert module over C[z]. This implies that H1 has two orthogonal quotient modules Q1
and Q′

1. Now consider the following quotient module of H

Q = (Q1 ⊗Q2 ⊗Q3 ⊗ · · · ⊗ Qn) ⊕
(
Q′

1 ⊗Q′
2 ⊗Q3 ⊗ · · · ⊗ Qn

)
,



A. Chattopadhyay et al. / J. Math. Anal. Appl. 424 (2015) 727–747 747
for two different quotient modules Q2 and Q′
2 of H2 and some quotient modules Qi of Hi, i = 3, . . . , n. 

Then it is evident that Q is a doubly commuting quotient module of H but it cannot be represented in 
the form of tensor product of n one-variable quotient modules. Therefore one may ask the following general 
question.

Is every doubly commuting quotient module of a Hilbert module over C[z] orthogonal sum of quotient 
modules each of which is Hilbert tensor product of one-variable quotient modules?
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