Proceedings Mathematical Sciences | |
Generalized Unitaries and the Picard Group | |
Michael Skeide1  | |
[1] Dipartimento S.E.G.e S., Università degli Studi del Molise, Via de Sanctis, 00 Campobasso, Italy$$ | |
关键词: Hilbert modules; automorphisms; representations.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
After discussing some basic facts about generalized module maps, we use the representation theory of the algebra $mathscr{B}^a(E)$ of adjointable operators on a Hilbert $mathcal{B}$-module ð¸ to show that the quotient of the group of generalized unitaries on ð¸ and its normal subgroup of unitaries on ð¸ is a subgroup of the group of automorphisms of the range ideal $mathcal{B}_E$ of ð¸ in $mathcal{B}$. We determine the kernel of the canonical mapping into the Picard group of $mathcal{B}_E$ in terms of the group of quasi inner automorphisms of $mathcal{B}_E$. As a by-product we identify the group of bistrict automorphisms of the algebra of adjointable operators on ð¸ modulo inner automorphisms as a subgroup of the (opposite of the) Picard group.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506748ZK.pdf | 308KB | download |