期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:498
Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations
Article
Ma, Wen-Xiu1,2,3,4 
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词: Matrix spectral problem;    Nonlocal reverse-spacetime integrable equation;    Riemann-Hilbert problem;    Inverse scattering transform;    Soliton solution;    Parity-time symmetry;   
DOI  :  10.1016/j.jmaa.2021.124980
来源: Elsevier
PDF
【 摘 要 】

We would like to analyze a kind of nonlocal reverse-spacetime integrable PT-symmetric multicomponent modified Korteweg-de Vires (mKdV) equations by making a group of nonlocal reductions, and establish their associated Riemann-Hilbert problems which determine generalized Jost solutions of higher-order matrix spectral problems. The Sokhotski-Plemelj formula is used to transform the associated Riemann-Hilbert problems into Gelfand-Levitan-Marchenko type integral equations. The Riemann-Hilbert problems in the reflectionless case are solved explicitly, and the resulting formulation of solutions enables us to present solitons to the nonlocal reverse-spacetime integrable PT-symmetric mKdV equations. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2021_124980.pdf 367KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次