期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:153
Long-time asymptotics of a three-component coupled nonlinear Schrodinger system
Article
Ma, Wen-Xiu1,2,3,4,5,6 
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[5] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[6] North West Univ, Int Inst Symmetry Anal & Math Modeling, Dept Math Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词: Matrix spectral problem;    Oscillatory Riemann-Hilbert problem;    Long-time asymptotics;   
DOI  :  10.1016/j.geomphys.2020.103669
来源: Elsevier
PDF
【 摘 要 】

Starting from a specific example of 4 x 4 matrix spectral problems, an integrable coupled hierarchy, which includes a three-component coupled nonlinear Schrodinger system as the first nonlinear one, is generated, and an associated oscillatory Riemann-Hilbert problem is formulated. With the nonlinear steepest descent method, the leading long-time asymptotics for the Cauchy problem of the three-component coupled nonlinear Schrodinger system is computed, through deforming the oscillatory Riemann-Hilbert problem into a model one which is solvable. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2020_103669.pdf 1327KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次