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We would like to analyze a kind of nonlocal reverse-spacetime integrable PT-
symmetric multicomponent modified Korteweg-de Vires (mKdV) equations by 
making a group of nonlocal reductions, and establish their associated Riemann-
Hilbert problems which determine generalized Jost solutions of higher-order 
matrix spectral problems. The Sokhotski-Plemelj formula is used to transform the 
associated Riemann-Hilbert problems into Gelfand-Levitan-Marchenko type integral 
equations. The Riemann-Hilbert problems in the reflectionless case are solved 
explicitly, and the resulting formulation of solutions enables us to present solitons 
to the nonlocal reverse-spacetime integrable PT-symmetric mKdV equations.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Nonlocal integrable equations have received increasing attention in recent years, and they can be classified 
into reverse-space, reverse-time and reverse-spacetime types. Notably, a couple of scalar nonlocal nonlinear 
Schrödinger (NLS) equations and modified Korteweg-de Vires (mKdV) equations have been identified as 
significant models for understanding nonlocal nonlinear physical phenomena [1,3]. On one hand, the inverse 
scattering technique has been successfully used to solve those nonlocal nonlinear equations, under either 
zero or nonzero boundary conditions [2,5,26]. On the other hand, Darboux transformations [18,21,17,36]
and the Hirota bilinear method [14,15] are shown to be powerful in constructing their N -soliton solutions. 
Some multicomponent [26,35] and higher dimensional [8] generalizations of nonlocal integrable equations 
have also been proposed and studied. Such nonlocal nonlinear integrable equations share the PT symmetry 
– the invariance under the parity-time transformation (x → −x, t → −t, i → −i).

* Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.
E-mail address: mawx@cas.usf.edu.
https://doi.org/10.1016/j.jmaa.2021.124980
0022-247X/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2021.124980
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2021.124980&domain=pdf
mailto:mawx@cas.usf.edu
https://doi.org/10.1016/j.jmaa.2021.124980


2 W.X. Ma / J. Math. Anal. Appl. 498 (2021) 124980
Riemann-Hilbert problems have become a pretty hot topic in soliton theory and are used to generate 
soliton solutions to integrable equations, closely connected with the inverse scattering transforms and Dar-
boux transformations. Many integrable equations, both local and nonlocal, have been studied by analyzing 
associated Riemann-Hilbert problems systematically. Among illustrative examples are the multiple wave 
interaction equations [34], the general coupled nonlinear Schrödinger equations [37], the Harry Dym equa-
tion [38], the generalized Sasa-Satsuma equation [11], multicomponent mKdV equations [23], the nonlocal 
reverse-space scalar NLS equation [39] and nonlocal reverse-spacetime multicomponent NLS equations [26].

In this paper, we would like to propose and analyze a class of nonlocal reverse-spacetime integrable PT-
symmetric multicomponent mKdV equations by nonlocal reductions for the multicomponent AKNS spectral 
problems, and develop their associated Riemann-Hilbert problems, which generate soliton solutions. One of 
the nonlocal integrable mKdV equations that will be analyzed is

{
p1,t(x, t) = p1,xxx(x, t) + 3(p2

1)x(x, t)p1(−x,−t) + 3(p1p2)x(x, t)p2(−x,−t),

p2,t(x, t) = p2,xxx(x, t) + 3(p1p2)x(x, t)p1(−x,−t) + 3(p2
2)x(x, t)p2(−x,−t).

(1.1)

The rest of the paper is structured as follows. In Section 2, we generate nonlocal reverse-spacetime PT-
symmetric mKdV equations from the multicomponent AKNS mKdV equations by making a group of 
nonlocal reductions. In Section 3, we establish associated Riemann-Hilbert problems to determine general-
ized Jost solutions by exploring a property of eigenfunctions, and transform the resulting Riemann-Hilbert 
problems into systems of Gelfand-Levitan-Marchenko type integral equations by the Sokhotski-Plemelj for-
mula. In Section 4, we solve the Riemann-Hilbert problems with the identity jump matrix and accordingly 
present N -soliton solutions. The final section gives a few concluding remarks.

2. Nonlocal reductions and nonlocal mKdV equations

Let n be an arbitrary natural number. Assume that λ denotes a spectral parameter, and u, a 2n-
component potential

u = u(x, t) = (p, qT )T , p = (p1, p2, · · · , pn), q = (q1, q2, · · · , qn)T . (2.1)

The multicomponent local mKdV equations are generated from the AKNS matrix spectral problems with 
multiple potentials (see, e.g., [30]):

−iφx = Uφ = U(u, λ)φ, −iφt = V φ = V (u, λ)φ, (2.2)

where the Lax pair reads

U = λΛ + P, V = λ3Ω + Q, Λ = diag(α1, α2In), Ω = diag(β1, β2In), (2.3)

where In is the identity matrix of size n, and α1, α2, β1 and β2 are arbitrary constants. The involved other 
two square matrices of size n + 1 are

P =
[

0 p

q 0

]
, (2.4)

and

Q = β

α
λ2

[
0 p

q 0

]
− β

α2λ

[
pq ipx

−iq −qp

]
− β

α3

[
i(pqx − pxq)) pxx + 2pqp

q + 2qpq i(qp − q p)

]
, (2.5)
x xx x x
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where α = α1 − α2 and β = β1 − β2. Obviously, when there are just a pair of nonzero potentials, e.g., pn
and qn, the matrix spectral problems in (2.2) become the standard AKNS ones [4]. It is direct to see that 
the compatibility condition of the spectral problems in (2.2), i.e., the zero curvature equation

Ut − Vx + i[U, V ] = 0, (2.6)

presents the multicomponent local mKdV equations

{
pt = − β

α3 (pxxx + 3pqpx + 3pxqp),

qt = − β
α3 (qxxx + 3qxpq + 3qpqx),

(2.7)

which is bi-Hamiltonian, and thus, typically integrable [30].
To derive nonlocal integrable counterparts, let us introduce a group of specific nonlocal reductions for 

the spectral matrix U :

UT (−x,−t, λ) = CU(x, t, λ)C−1, (2.8)

in which T stands for the matrix transpose and the constant matrix C is a block matrix

C =
[

1 0
0 Σ

]
, (2.9)

where Σ is an arbitrary invertible and symmetric matrix. By (2.3), each nonlocal reduction means that

PT (−x,−t) = CP (x, t)C−1, (2.10)

thereby leading to the potential reverse-spacetime reduction

q(x, t) = Σ−1pT (−x,−t). (2.11)

It follows directly from this potential reduction that

{
V T (−x,−t, λ) = CV (x, t, λ)C−1,

QT (−x,−t, λ) = CQ(x, t, λ)C−1.

Now, we can see that all those imply that the nonlocal reductions in (2.8) do not cause any conflict in 
the zero curvature equation (2.6). Therefore, the multicomponent local mKdV equations (2.7) reduce to the 
following nonlocal real reverse-spacetime multicomponent mKdV equations:

pt(x, t) = − β

α3 [pxxx(x, t) + 3p(x, t)Σ−1pT (−x,−t)px(x, t) + 3px(x, t)Σ−1pT (−x,−t)p(x, t)], (2.12)

where Σ is an arbitrary invertible and symmetric matrix and p is a vector of potentials defined as in (2.1). 
Two difficulties in solving those nonlinear systems are the reverse-spacetime nonlocality and the higher-
dimension of the systems.

When n = 1, we can obtain two scalar examples (see, e.g., [3,18]):

pt(x, t) = pxxx(x, t) + 6σp(x, t)p(−x,−t)px(x, t), σ = ±1. (2.13)

When n = 2, we can have systems of two equations:
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{
p1,t(x, t) = p1,xxx(x, t) + 3(p2

1)x(x, t)r1(−x,−t) + 3(p1p2)x(x, t)r2(−x,−t),

p2,t(x, t) = p2,xxx(x, t) + 3(p1p2)x(x, t)r1(−x,−t) + 3(p2
2)x(x, t)r2(−x,−t),

(2.14)

where

r1(x, t) = c1p1(x, t) + c2p2(x, t), r2(x, t) = c2p1(x, t) + c3p2(x, t), (2.15)

the ci’s being constants satisfying c22 �= c1c3. Note that a linear transformation of p1 and p2 can remove the 
terms involving c2, but such a general form could describe more nonlinear physical phenomena. All those 
equations share the PT symmetry [6]. That is, if p(x, t) is a solution, so is p∗(−x, −t), where ∗ denotes the 
complex conjugate.

3. Riemann-Hilbert problems

In this section, we analyze a class of Riemann-Hilbert problems associated with the spectral problems in 
(2.2) for the nonlocal reverse-spacetime integrable mKdV equations (2.12) (see, e.g., [34,12,7] for local equa-
tions). Solutions to the Riemann-Hilbert problems with the identity jump matrix generat soliton solutions 
for the nonlocal mKdV equations in the following section.

3.1. Property of eigenfunctions

Suppose that all the potentials rapidly vanish when x or t → ∞ or − ∞ so that we do not have any 
convergence problem. Obviously, an equivalent pair of matrix spectral problems to (2.2) reads

ψx = iλ[Λ, ψ] + P̌ψ, P̌ = iP, (3.1)
ψt = iλ3[Ω, ψ] + Q̌ψ, Q̌ = iQ, (3.2)

which ψ = φ e−iλΛx satisfies if φ solves (2.2). Applying a generalized Liouville’s formula [32], we can have 
(detψ)x = 0, because of tr(P̌ ) = tr(Q̌) = 0. To establish associated Riemann-Hilbert problems, we adopt the 
following adjoint spectral problems, besides the spectral problems. The adjoint counterparts of the x-part 
problem of (2.2) and the spectral problem (3.1) are defined as

iφ̃x = φ̃U, (3.3)

and

iψ̃x = λ[ψ̃,Λ] + ψ̃P, (3.4)

which φ̃ = φ−1 and ψ̃ = ψ−1 satisfies, respectively.
Let ψ(λ) be a matrix eigenfunction of the spatial spectral problem (3.1) associated with an eigenvalue 

λ. First, it is easy to see that Cψ−1(x, t, λ) is a matrix adjoint eigenfunction associated with the same 
eigenvalue λ. Second, under the nonlocal reductions in (2.8), we can compute that

i[ψT (−x,−t, λ)C]x = i[−(ψx)T (−x,−t, λ)C]

= i{−iλ[Λ, ψ(−x,−t, λ)] − P̌ (−x,−t)ψ(−x,−t, λ)}TC

= i{−iλ[ψT (−x,−t, λ),Λ] − ψT (−x,−t, λ)P̌T (−x,−t)}C

= λ[ψT (−x,−t, λ)C,Λ] + ψT (−x,−t, λ)C[C−1PT (−x,−t)C]

= λ[ψT (−x,−t, λ)C,Λ] + ψT (−x,−t, λ)CP (x, t),
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and hence, the matrix function

ψ̃(x, t, λ) := ψT (−x,−t, λ)C,

presents another matrix adjoint eigenfunction associated with the same original eigenvalue λ, i.e., 
ψT (−x, −t, λ)C solves the adjoint spectral problem (3.4).

Now, upon observing the asymptotic conditions for ψ, the uniqueness of solutions shows that

ψT (−x,−t, λ) = Cψ−1(x, t, λ)C−1 (3.5)

holds for a matrix eigenfunction ψ that satisfies ψ → In+1, when x or t → ∞ or −∞. This enables us to 
conclude that the spectral problem (3.1) has the property (3.5) for its eigenfunctions, under the nonlocal 
reductions in (2.8).

3.2. Riemann-Hilbert problems

Let us now formulate a class of associated Riemann-Hilbert problems with the space variable x. The 
whole procedure is in actual fact the same as the one for the local case [23], since the nonlocal reductions in 
(2.8) do not present any problem in reducing the associated Riemann-Hilbert problems. However, we still 
present it below for ease of reference.

In order to facilitate the expression below, we assume that

α = α1 − α2 < 0, β = β1 − β2 < 0, (3.6)

as usual. To present the scattering problem, we take the two matrix eigenfunctions ψ±(x, λ) of (3.1) with 
the asymptotic conditions

ψ± → In+1, when x → ±∞, (3.7)

respectively. From (detψ)x = 0, we obtain that detψ± = 1 for all x ∈ R. Note that

φ± = ψ±E, E = eiλΛx, (3.8)

are both matrix eigenfunctions of the spectral problems (2.2). Thus, they must be linearly dependent, and 
accordingly, we can state

ψ−E = ψ+ES(λ), λ ∈ R. (3.9)

This matrix S(λ) = (sjl)(n+1)×(n+1) is traditionally called the scattering matrix. Moreover, we have 
detS(λ) = 1 due to detψ± = 1.

It is known that the matrix eigenfunctions ψ± need to satisfy the following Volterra integral equations:

ψ−(λ, x) = In+1 +
x∫

−∞

eiλΛ(x−y)P̌ (y)ψ−(λ, y)eiλΛ(y−x) dy, (3.10)

ψ+(λ, x) = In+1 −
∞∫

eiλΛ(x−y)P̌ (y)ψ+(λ, y)eiλΛ(y−x) dy, (3.11)

x
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where the asymptotic conditions (3.7) have been imposed. It then follows from the theory of Volterra integral 
equations that the eigenfunctions ψ± can exist and allow analytical continuations off the real line λ ∈ R

provided that the integrals on the right hand sides converge.
Precisely from the diagonal form of Λ, we can observe that the integral equation for the last n columns 

of ψ+ contains only the exponential factor eiαλ(x−y), which also decays exponentially because of y > x in 
the integral, when λ takes values in the upper half-plane C+, and the integral equation for the first column 
of ψ− contains only the exponential factor e−iαλ(x−y), which decays exponentially because of y < x in the 
integral, if λ takes values in the upper half-plane C+. It thus follows that those n +1 columns are analytical 
in the upper half-plane C+ and continuous in the closed upper half-plane C̄+. By a similar argument, we 
can show that the last n columns of ψ− and the first column of ψ+ are analytical in the lower half-plane 
C− and continuous in the closed lower half-plane C̄−.

In order to determine two generalized matrix Jost solutions, denoted by T+ and T−, which are analytic 
in C+ and C− and continuous in C̄+ and C̄−, respectively, we express

ψ± = (ψ±
1 , ψ±

2 , · · · , ψ±
n+1), (3.12)

where ψ±
j denotes the jth column of φ± (1 ≤ j ≤ n + 1), and

ψ̃± = (ψ̃±,1, ψ̃±,2, · · · , ψ̃±,n+1)T , (3.13)

where ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ n + 1), and we denote

H1 = diag(1, 0, · · · , 0︸ ︷︷ ︸
n

), H2 = diag(0, 1, · · · , 1︸ ︷︷ ︸
n

). (3.14)

Then, we can take the generalized matrix Jost solution T+ as

T+ = T+(x, λ) = (ψ−
1 , ψ+

2 , · · · , ψ+
n+1) = ψ−H1 + ψ+H2, (3.15)

which is analytic in λ ∈ C+ and continuous in λ ∈ C̄+. To determine the other generalized matrix Jost 
solution T−, i.e., the analytic counterpart of T+ in the lower half-plane C−, we adopt the adjoint matrix 
spectral problems. Note that when φ and ψ solve the two spectral problems, the inverse matrices φ̃ = φ−1

and ψ̃ = ψ−1 solve the corresponding two adjoint spectral problems, respectively. We can take the other 
generalized matrix Jost solution T− as the adjoint matrix solution of (3.4), i.e.,

T− = (ψ̃−,1, ψ̃+,2, · · · , ψ̃+,n+1)T = H1ψ̃
− + H2ψ̃

+ = H1(ψ−)−1 + H2(ψ+)−1, (3.16)

which is analytic for λ ∈ C− and continuous for λ ∈ C̄−.
It now follows from detψ± = 1, the definitions of T±, and the scattering relation (3.9) between ψ+ and 

ψ− that

detT+(x, λ) = s11(λ), detT−(x, λ) = ŝ11(λ), (3.17)

where S−1(λ) = (S(λ))−1 = (ŝjl)(n+1)×(n+1). This implies that

lim
x→∞

T+(x, λ) =
[
s11(λ) 0

0 In

]
, λ ∈ C̄+; lim

x→∞
T−(x, λ) =

[
ŝ11(λ) 0

0 In

]
, λ ∈ C̄−. (3.18)

Now taking advantage of T+ and T−, we can introduce the following two unimodular generalized matrix 
Jost solutions:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G+(x, λ) = T+(x, λ)
[
s−1
11 (λ) 0

0 In

]
, λ ∈ C̄+;

(G−)−1(x, λ) =
[
ŝ−1
11 (λ) 0

0 In

]
T−(x, λ), λ ∈ C̄−.

(3.19)

Those two generalized matrix Jost solutions yield the required matrix Riemann-Hilbert problems on the 
real line for the nonlocal reverse-spacetime mKdV equations (2.12):

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R, (3.20)

where based on (3.9), the jump matrix G0 reads

G0(x, λ) = E

[
ŝ−1
11 (λ) 0

0 In

]
S̃(λ)

[
s−1
11 (λ) 0

0 In

]
E−1. (3.21)

The matrix S̃(λ) has the factorization:

S̃(λ) = (H1 + H2S(λ))(H1 + S−1(λ)H2), (3.22)

which can be simplified into

S̃(λ) = (s̃jl)(n+1)×(n+1) =

⎡
⎢⎢⎢⎢⎢⎣

1 ŝ1,2 · · · ŝ1,n+1
s2,1 1 0
...

. . .
sn+1,1 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (3.23)

Moreover, on one hand, directly from the Volterra integral equations (3.10) and (3.11), we get the 
canonical normalization conditions for the associated Riemann-Hilbert problems:

G±(x, λ) → In+1, when λ ∈ C̄± → ∞. (3.24)

On the other hand, based on the property (3.5), we can directly show that

(G+)T (−x,−t, λ) = C(G−)−1(x, t, λ)C−1, (3.25)

and thus, the jump matrix satisfies

GT
0 (−x,−t, λ) = CG0(x, t, λ)C−1. (3.26)

It is also worth mentioning that the jump matrix G0, defined by (3.21) and (3.22), carries all basic scattering 
data from the scattering matrix S(λ) that one needs to formulate the inverse scattering transforms.

3.3. Evolution of the scattering data

To develop the direct scattering transforms, we calculate the derivative of the equation (3.9) with the 
time variable t, and utilize the temporal spectral problem (3.2) for ψ±.
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It thus follows that the scattering matrix S has to obey a matrix evolution law:

St = iλ3[Ω, S], (3.27)

where Ω is defined as in (2.3). This precisely yields the time dependence of the scattering coefficients:

⎧⎨
⎩ s12 = s12(0, λ)eiβλ3t, s13 = s13(0, λ)eiβλ3t, · · · , s1,n+1 = s1,n+1(0, λ)eiβλ3t,

s21 = s21(0, λ)e−iβλ3t, s31 = s31(0, λ)e−iβλ3t, · · · , sn+1,1 = sn+1,1(0, λ)e−iβλ3t,
(3.28)

and tells that all other scattering coefficients do not depend on the time variable t.

3.4. Gelfand-Levitan-Marchenko type equations

To derive Gelfand-Levitan-Marchenko type integral equations for the generalized matrix Jost solutions, 
let us transform the Riemann-Hilbert problems in (3.20) as follows:

{
G+ −G− = G−v, v = G0 − In+1, on R,

G± → In+1 as λ ∈ C̄± → ∞,
(3.29)

where G0 is determined by (3.21) and (3.22). Let G(λ) = G±(λ) if λ ∈ C±. Assume that G has R simple 
poles: {μj}Rj=1, where R is an arbitrary natural number, and the poles are off the real line R to avoid spectral 
singularities. Define

G̃±(λ) = G±(λ) −
R∑

j=1

Gj

λ− μj
, λ ∈ C̄±; G̃(λ) = G̃±(λ), λ ∈ C±, (3.30)

where Gj is the residue of G(λ) at λ = μj , i.e.,

Gj = res(G(λ), μj) = lim
λ→μj

(λ− μj)G(λ). (3.31)

This way, we obtain
{

G̃+ − G̃− = G+ −G− = G−v, on R,

G̃± → In+1 as λ ∈ C̄± → ∞.
(3.32)

Now, through applying the Sokhotski-Plemelj formula [10], we get the solution

G̃(λ) = In+1 + 1
2πi

∞∫
−∞

(G−v)(ξ)
ξ − λ

dξ. (3.33)

Further, taking the limit as λ → λl, we obtain

lhs = lim
λ→λl

G̃ = Fl −
R∑
j �=l

Gj

μl − μj
, rhs = In+1 + 1

2πi

∞∫
−∞

(G−v)(ξ)
ξ − μl

dξ,

where
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Fl = lim
λ→μl

(λ− μl)G(λ) −Gl

λ− μl
, 1 ≤ l ≤ R. (3.34)

As a result, we finally obtain the following Gelfand-Levitan-Marchenko type equations:

In+1 − Fl +
R∑
j �=l

Gj

μl − μj
+ 1

2πi

∞∫
−∞

(G−G0)(ξ)
ξ − μl

dξ − 1
2πi

∞∫
−∞

G−(ξ)
ξ − μl

dξ = 0, 1 ≤ l ≤ R. (3.35)

These equations are used to determine solutions to the associated Riemann-Hilbert problems by (3.30), and 
hence, produce the generalized matrix Jost solutions. The general theory of existence and uniqueness of 
solutions has yet to be developed. Nevertheless, a specific formulation of solutions in the case of identity 
jump matrices will be explicitly presented in the next section.

3.5. Recovery of the potential

To recover the potential matrix P from the generalized matrix Jost solutions, we make an asymptotic 
expansion for the generalized matrix Jost solution G+:

G+(x, t, λ) = In+1 + 1
λ
G+

1 (x, t) + O( 1
λ2 ), λ → ∞. (3.36)

Then plugging the asymptotic expansion into the matrix spectral problem (3.1), all O(1) terms engender

P = lim
λ→∞

λ[G+(λ),Λ] = −[Λ, G+
1 ]. (3.37)

To get the potential for the nonlocal equations, one needs to check an involution property (2.10) for P or 
equivalently an involution property for G+

1 :

(G+
1 )T (−x,−t) = −CG+

1 (x, t)C−1. (3.38)

Then if so, we obtain the solutions to the nonlocal reverse-spacetime integrable mKdV equations (2.12):

pj = −α(G+
1 )1,j+1, 1 ≤ j ≤ n, (3.39)

where we denote G+
1 = ((G+

1 )jl)(n+1)×(n+1).
Once the solutions {G+(λ), G−(λ)} to the associated Riemann-Hilbert problems are determined, the 

potential matrix P defined by (3.39), provides solutions to the nonlocal reverse-spacetime integrable PT-
symmetric mKdV equations (2.12), like the inverse scattering transforms.

4. Soliton solutions

In this section, we would like to construct soliton solutions to the nonlocal reverse-spacetime integrable 
mKdV equations (2.12). As usual, we avoid solving Gelfand-Levitan-Marchenko type integral equations, 
and instead, we utilize the Riemann-Hilbert technique directly.

Let N be another arbitrary natural number. Suppose that s11(λ) has N simple zeros {λk ∈ C, 1 ≤ k ≤
N}, and ŝ11(λ) has N simple zeros {λ̂k ∈ C, 1 ≤ k ≤ N}. Then, each of kerT+(λk), 1 ≤ k ≤ N , contains 
only a single basis column vector, denoted by vk, 1 ≤ k ≤ N ; and each of kerT−(λ̂k), 1 ≤ k ≤ N , a single 
basis row vector, denoted by v̂k, 1 ≤ k ≤ N . All this tells

T+(λk)vk = 0, v̂kT
−(λ̂k) = 0, 1 ≤ k ≤ N. (4.1)



10 W.X. Ma / J. Math. Anal. Appl. 498 (2021) 124980
Beginning with these two equations, we can determine the kernel vectors vk, ̂vk, 1 ≤ k ≤ N , by taking 
advantage of the associated spectral problems that T+ and T− satisfy (see, e.g., [23] for the local case).

It is known that the Riemann-Hilbert problems, by (3.20) and (3.21), with the canonical normalization 
conditions in (3.24) and the zero structures given in (4.1), can be solved explicitly [34,19,20], and then, we 
can determine the potential matrix P that provides solutions to the nonlocal integrable mKdV equations.

4.1. Solving special Riemann-Hilbert problems

As usual, soliton solutions are constructed from the Riemann-Hilbert problems in (3.20) with the identity 
jump matrix G0 = In+1, which can be achieved if we assume the zero reflection coefficient conditions

si1 = ŝ1i = 0, 2 ≤ i ≤ n + 1, (4.2)

in the scattering problem. However, in the case of nonlocal integrable equations, we often see that we do 
not have the condition

{λk|1 ≤ k ≤ N} ∩ {λ̂k|1 ≤ k ≤ N} = Ø, (4.3)

and thus, we have to establish a new formulation of solutions, which should generalize the one in the 
literature [34,19,20]. Direct computations show us that we can determine solutions to a kind of special 
Riemann-Hilbert problems without the condition (4.3) as follows.

Let us introduce G+ and G− by

G+(λ) = In+1 −
N∑

k,l=1

vk(M−1)klv̂l
λ− λ̂l

, (G−)−1(λ) = In+1 +
N∑

k,l=1

vk(M−1)klv̂l
λ− λk

, (4.4)

where M = (mkl)N×N is a square matrix whose entries are defined by

mkl =

⎧⎪⎨
⎪⎩

v̂kvl

λl − λ̂k

, when λl �= λ̂k,

0, when λl = λ̂k,

1 ≤ k, l ≤ N. (4.5)

This M -matrix is different from the traditional one in the literature, since we included the case of λl = λ̂k, 
which often occurs in the case of nonlocal integrable equations. We can now see that the properties in (4.1)
hold. Moreover, G+ and G− satisfy

(G−)−1(λ)G+(λ) = In+1, (4.6)

if we additionally require an orthogonal condition

v̂kvl = 0, when λl = λ̂k, 1 ≤ k, l ≤ N. (4.7)

Obviously, if the condition (4.3) holds, then the above result reduces to the one presented in [34,19,20]. If 
λk ∈ C+ and λ̂k ∈ C−, 1 ≤ k ≤ N , then the above two matrices G+ and G− are meromorphic in the upper 
and lower half-planes, respectively, and thus, they solve the Riemann-Hilbert problems with the identity 
jump matrix on the real line.
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4.2. Soliton solutions

In order to generate soliton solutions to the nonlocal reverse-spacetime integrable mKdV equations (2.12), 
we have to check that the involution property (2.10) or (3.38) holds. To achieve this, motivated by the 
previous property of eigenfunctions in Subsection 3.1, we can assume [23] that kerT+(λk) and kerT−(λk), 
1 ≤ k ≤ N , are spanned by

vk(x, t) = vk(x, t, λk) = eiλkΛx+iλ3
kΩtwk, 1 ≤ k ≤ N, (4.8)

and

v̂k(x, t) = v̂k(x, t, λ̂k) = ŵke−iλ̂kΛx−iλ̂3
kΩtC, 1 ≤ k ≤ N, (4.9)

respectively. Here wk and ŵk1, ≤ k ≤ N , are arbitrary column and row vectors, but the orthogonal condition 
(4.7) requires

ŵkCwl = 0, if λl = λ̂k, 1 ≤ k, l ≤ N. (4.10)

Now, based on the above construction, we can readily see under (4.10) that if G+
1 satisfies the involution 

property (3.38), i.e., the solution to the special Riemann-Hilbert problem, determined by (4.4) and (4.5), 
satisfies (3.25), then the potential defined by (3.39) provides soliton solutions to the nonlocal reverse-
spacetime integrable PT-symmetric mKdV equations (2.12):

pj = α
N∑

k,l=1

vk,1(M−1)klv̂l,j+1, 1 ≤ j ≤ n, (4.11)

where M is defined by (4.5), and vk = (vk,1, vk,2, · · · , vk,n+1)T and v̂k = (v̂k,1, ̂vk,2, · · · , ̂vk,n+1) are deter-
mined by (4.8) and (4.9), respectively.

Let us denote w1 = (w1,1, w1,2, · · · , w1,n+1)T and ŵ1 = (ŵ1,1, ŵ1,2, ŵ1,n+1) and set Σ =
diag(γ1, γ2, · · · , γn). When N = 1, a direct computation tells the following one-soliton solution to the 
nonlocal real reverse-spacetime integrable mKdV equations (2.12):

pj = α(λ1 − λ̂1)w1,1ŵ1,j+1γj

w1,1ŵ1,1 e−iαλ̂1x−iβλ̂3
1t + w1,2ŵ1,2γ1 e−iαλ1x−iβλ3

1t + · · · + w1,n+1ŵ1,n+1γn e−iαλ1x−iβλ3
1t
, (4.12)

where 1 ≤ j ≤ n, and λ1 and λ̂1 are arbitrary but the vectors w1 and ŵ1 need to satisfy

⎧⎪⎪⎨
⎪⎪⎩

w2
1,1 + γ1w

2
1,2 + · · · + γnw

2
1,n+1 = 0,

ŵ2
1,1 + γ1ŵ

2
1,2 + · · · + γnŵ

2
1,n+1 = 0,

w1,1ŵ1,1 + γ1w1,2ŵ1,2 + · · · + γnw1,n+1ŵ1,n+1 = 0,

which represents three orthogonal conditions, corresponding to the involution property.

5. Concluding remarks

Nonlocal reverse-spacetime integrable PT-symmetric multicomponent modified Korteweg-de Vires 
(mKdV) equations were presented from a group of nonlocal group reductions, and their associated Riemann-
Hilbert problems were formulated via matrix spectral problems and adjoint matrix spectral problems. The 
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Sokhotski-Plemelj formula was used to transform the associated Riemann-Hilbert problems into systems 
of Gelfand-Levitan-Marchenko type integral equations. Soliton solutions to the nonlocal reverse-spacetime 
integrable mKdV equations were generated from the Riemann-Hilbert problems with the identity jump 
matrix (or equivalently the reflectionless inverse scattering transforms).

It is also worth mentioning that it would be particularly interesting to find a certain kind of connections 
among different solution approaches, including the Hirota direct method [16], the Wronskian technique 
[9,28] and the Darboux transformation [33]. Moreover, various recent studies have exhibited great richness 
of other kinds of solutions to nonlinear dispersive wave integrable equations, such as lump and rogue 
wave solutions and their interaction solutions [31,40,24,29], Rossby wave solutions [42,41], algebro-geometric 
solutions [13,22] and solitonless solutions [25,27]. Definitely, it would be very interesting to understand how 
to construct those exact solutions, for example, lump solutions and rogue wave solutions, through the 
Riemann-Hilbert perspective or a generalized Riemann-Hilbert perspective.
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