期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:456
A characterization of connected self-affine fractals arising from collinear digits
Article
Leung, King-Shun1  Luo, Jun Jason2 
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Hong Kong, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401391, Peoples R China
关键词: Connectedness;    Self-affine fractal;    Collinear digit;    Radix expansion;   
DOI  :  10.1016/j.jmaa.2017.07.008
来源: Elsevier
PDF
【 摘 要 】

Let A be an expanding integer matrix with characteristic polynomial f(x) = x(2) - + px + q, and let D = {0,1,, vertical bar q vertical bar - 2, vertical bar q vertical bar + m}v be a collinear digit set where m >= 0, v is an element of Z(2). It is well known that there exists a unique self-a.ffine fractal T satisfying AT = T + D. In this paper, we give a complete characterization of connectedness of T. That generalizes the previous result for vertical bar q vertical bar = 3. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_07_008.pdf 1006KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次