期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:456 |
A characterization of connected self-affine fractals arising from collinear digits | |
Article | |
Leung, King-Shun1  Luo, Jun Jason2  | |
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Hong Kong, Peoples R China | |
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401391, Peoples R China | |
关键词: Connectedness; Self-affine fractal; Collinear digit; Radix expansion; | |
DOI : 10.1016/j.jmaa.2017.07.008 | |
来源: Elsevier | |
【 摘 要 】
Let A be an expanding integer matrix with characteristic polynomial f(x) = x(2) - + px + q, and let D = {0,1,, vertical bar q vertical bar - 2, vertical bar q vertical bar + m}v be a collinear digit set where m >= 0, v is an element of Z(2). It is well known that there exists a unique self-a.ffine fractal T satisfying AT = T + D. In this paper, we give a complete characterization of connectedness of T. That generalizes the previous result for vertical bar q vertical bar = 3. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_07_008.pdf | 1006KB | download |