期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:133
Discrete spectra and Pisot numbers
Article
Akiyama, Shigeki1  Komornik, Vilmos2 
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3500006, Japan
[2] Univ Strasbourg, Dept Math, F-67084 Strasbourg, France
关键词: Pisot number;    Radix expansion;    Spectrum;   
DOI  :  10.1016/j.jnt.2012.07.015
来源: Elsevier
PDF
【 摘 要 】

By the m-spectrum of a real number q > 1 we mean the set Y-m(q) of values p(q) where p runs over the height m polynomials with integer coefficients. These sets have been extensively investigated during the last fifty years because of their intimate connections with infinite Bernoulli convolutions, spectral properties of substitutive point sets and expansions in noninteger bases. We prove that Y-m(q) has an accumulation point if and only if q < m land q is not a Pisot number. Consequently a number of related results on the distribution of points of this form are improved. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2012_07_015.pdf 225KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次