期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:495
The maximum entropy principle and volumetric properties of Orlicz balls
Article
Kabluchko, Zakhar1  Prochno, Joscha2 
[1] Univ Munster, Fac Math, Orleans Ring 10, D-48149 Munster, Germany
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
关键词: Central limit theorem;    Gibbs measures;    Maximum entropy principle;    Orlicz spaces;    Sharp large deviations;    Threshold phenomenon;    Volume ratio;   
DOI  :  10.1016/j.jmaa.2020.124687
来源: Elsevier
PDF
【 摘 要 】

We study the precise asymptotic volume of balls in Orlicz spaces and show that the volume of the intersection of two Orlicz balls undergoes a phase transition when the dimension of the ambient space tends to infinity. This generalizes a result of Schechtman and Schmuckenschlager (1991) [32] for l(p)(d)-balls. As another application, we determine the precise asymptotic volume ratio for 2-concave Orlicz spaces l(M)(d). Our method rests on ideas from statistical mechanics and large deviations theory, more precisely the maximum entropy or Gibbs principle for non-interacting particles, and presents a natural approach and fresh perspective to such geometric and volumetric questions. In particular, our approach explains how the p-generalized Gaussian distribution occurs in problems related to the geometry of l(p)(d)-balls, which are Orlicz balls when the Orlicz function is M(t) = vertical bar t vertical bar(p). (C) 2020 The Author(s). Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124687.pdf 454KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次