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We study the precise asymptotic volume of balls in Orlicz spaces and show that 
the volume of the intersection of two Orlicz balls undergoes a phase transition 
when the dimension of the ambient space tends to infinity. This generalizes a 
result of Schechtman and Schmuckenschläger (1991) [32] for �dp-balls. As another 
application, we determine the precise asymptotic volume ratio for 2-concave Orlicz 
spaces �dM . Our method rests on ideas from statistical mechanics and large deviations 
theory, more precisely the maximum entropy or Gibbs principle for non-interacting 
particles, and presents a natural approach and fresh perspective to such geometric 
and volumetric questions. In particular, our approach explains how the p-generalized 
Gaussian distribution occurs in problems related to the geometry of �dp-balls, which 
are Orlicz balls when the Orlicz function is M(t) = |t|p.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article 
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1. Introduction and main results

Let d ∈ �, 1 ≤ r ≤ ∞, and denote by �d
r the volume normalized ball in the space �dr. In [32], Schechtman 

and Schmuckenschläger studied the asymptotic behavior of the volume of the intersection of a volume 
normalized ball �d

p with a t-multiple of a volume normalized ball �d
q as the dimension of the ambient space 

tends to infinity, where 0 < p ≤ ∞ and 0 < q < ∞. What they discovered is a threshold phenomenon which 
says that, for all t > 0,

vold
(
�d

p ∩ t�d
q

) d→∞−→

⎧⎨
⎩0 : tAp,q < 1

1 : tAp,q > 1,
(1)
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where

Ap,q =

⎧⎪⎨
⎪⎩

Γ(1+ 1
p )1+1/q

Γ(1+ 1
q )Γ( q+1

p )1/q e
1/p−1/q (p

q

)1/q : p < ∞

Γ(1 + 1
q )−1( q+1

qe

)1/q : p = ∞.

The proof heavily rests on a probabilistic representation going back independently to Schechtman and Zinn 
[33] and Rachev and Rüschendorf [29]. This representation says that the uniform distribution on an �dr-
ball can be obtained by considering a sequence Z1, . . . , Zd of independent r-generalized Gaussians having 
Lebesgue density

x �→ 1
2r1/rΓ(1 + 1/r)

e−|x|r/r

and letting

X := U1/d (Z1, . . . , Zd)
‖(Z1, . . . , Zd)‖r

(2)

with U uniformly distributed on [0, 1] and independent of the Zi’s. The volume of the intersection of balls 
may be written as the probability that the �q-norm of a point uniformly distributed in �d

p is bounded above 
by trq, where rq := rq(d) is the radius of �d

q . So instead of working with a random vector with dependent 
coordinates (at least when r < ∞) the probabilistic representation of the uniform distribution allows one 
to go over to a random vector with independent ones. The next key ingredients in the proof of the phase 
transition in (1) are the law of large numbers and the knowledge of the precise asymptotic volumes of �dr-balls. 
The latter are known at least since Dirichlet [11]. For a better understanding, let us briefly sketch the proof 
for the simple case where p = ∞ and 0 < q < ∞. Consider a random vector Z = (Z1, . . . , Zd) uniformly 
distributed on [−1/2, 1/2]d, i.e., Z has independent coordinates uniformly distributed on [−1/2, 1/2]. Then 
the volume of the intersection can be rewritten as follows,

vold
(
�d

p ∩ t�d
q

)
= �

[
‖Z‖q ≤ trq

]
= �

[(1
d

d∑
i=1

|Zi|q
)1/q

≤ t
rq
d1/q

]
.

It is then just left to observe that as the dimension tends to infinity, by Stirling’s formula rq/d1/q converges 
to some explicit number while by the strong law of large numbers the empirical average converges to the 
expectation of |Z1|q, which can be computed explicitly.

An inspection of the proof shows that a law of large numbers is however not enough to determine the 
asymptotic behavior in (1) at the threshold tAp,q = 1. This problem remained open for a decade until 
resolved by Schmuckenschläger [34] proving a central limit theorem for �q-norms of points chosen uniformly 
at random in �dp-balls. How a central limit theorem helps to answer this question can be seen rather easily 
in the simple case p = ∞ and 0 < q < ∞, where after a different normalization than above the classical 
central limit theorem gives the answer. More precisely, one sees that when tAp,q = 1 the limit in (1) is 
equal to 1/2. In [16,18], Kabluchko, Prochno, and Thäle extended the previous results in various directions. 
They proved a multivariate central limit theorem for �q-norms of random vectors in �dp-balls and beyond 
those Gaussian fluctuations they also determined the moderate and large deviations behavior. Applications 
of those results include an asymptotic version of a result of Schechtman and Zinn [16, Subsection 2.5], a 
demonstration that in the critical case arbitrary limits in (0, 1) can occur [16, Corollary 2.2], a result on the 
volume of intersections of neighboring and multiple balls [16, Corollary 2.3], where the answer in the critical 
case is not 2−d as may be expected, a comparison of random and non-random projections of �dp-balls to 
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lower-dimensional subspaces [18, Section 2], and several other applications. A non-commutative version of 
the Schechtman-Schmuckenschläger result for unit balls in classical random matrix ensembles was recently 
proved by Kabluchko, Prochno, and Thäle in [15]. We also refer the reader to the recent survey [28].

In this paper, we generalize the result of Schechtman and Schmuckenschläger in a different direction. 
Most of the previously mentioned results are obtained in the setting of �dp-balls, where it was crucial to 
have a probabilistic representation of the form presented in (2) or a more general one from [3] due to 
Barthe, Guédon, Mendelson, and Naor, which is still restricted to �dp-balls. Here we study the more general 
setting of balls in classical, finite-dimensional Orlicz spaces, named after Polish mathematician Władysław 
Orlicz. Those spaces are natural generalizations of �p-spaces and belong to the important class of symmetric 
Banach sequence spaces. Orlicz spaces are intensively studied in the functional analysis literature and we 
refer the reader to [14,19,21,23,27,31,36] and the references cited therein. Here we study the volumetric 
properties of balls in Orlicz spaces and obtain a Schechtman-Schmuckenschläger result in this generalized 
framework. In fact, once we have determined the asymptotic volume of Orlicz balls, we can also compute the 
precise asymptotic volume ratio of (2-concave) Orlicz spaces. This quantity, which will be introduced when 
we present our main results, is deeply rooted in the geometry of Banach spaces and connected to several 
other quantities, such as the cotype-2 constant. In view of what we have explained before, at its core this 
generalized setting requires – modulo other technicalities – dealing with two problems. First, the absence of a 
Schechtman–Zinn-type probabilistic representation. Second, one needs to determine the precise asymptotic 
volume of unit balls in Orlicz spaces. Both problems can be overcome by taking the right perspective. In fact, 
it seems that a natural way to look at this problem is from the statistical mechanics and large deviations 
point of view, using the maximum entropy principle in the framework of non-interacting particles. This 
principle leads to a Gibbs distribution naturally associated with our problem. In particular, this explains 
how the p-generalized Gaussian distribution appears in this type of problems, providing a deeper structural 
insight and fresh perspective that we think will be useful in other geometric problems.

1.1. Main results

We shall now present the main results of this paper, starting with the asymptotic (logarithmic) volume 
before we present the phase transition for the volume of intersections of Orlicz balls. A function M : � → �

is called an Orlicz function if M(0) = 0, M(t) > 0 for t 	= 0, and M is even and convex. For R ∈ (0, ∞), let 
us denote by Bd

M (dR) the Orlicz ball

Bd
M (dR) =

{
x = (xi)di=1 ∈ �d :

d∑
i=1

M(xi) ≤ dR

}
.

We shall prove both the formula for the asymptotic logarithmic volume of Bd
M (dR) and for its precise 

asymptotic volume. The reason is that the former result follows from an exponential tilting technique 
coupled with the classical central limit theorem and gives some structural insight which is lost in the short 
proof of the precise asymptotic volume in which we use ideas and results from a paper on sharp Cramér 
large deviations by Petrov [26]. In addition, one could prove both results in more general settings requiring 
in each case something weaker than M be an Orlicz function and what is needed can be seen from the 
respective proofs. In what follows, for two sequences (ad)d∈� and (bd)d∈� of real numbers, let us write 
ad ∼ bd if limd→∞

ad

bd
= 1.

Theorem A. Let d ∈ �, R ∈ (0, ∞), and M be an Orlicz function. Then, as d → ∞,

vold
(
Bd

M (dR)
)1/d → eϕ(α∗)−α∗R,
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i.e., on a logarithmic scale, we have

lim
d→∞

1
d

log vold
(
Bd

M (dR)
)

= ϕ(α∗) − α∗R,

and the precise asymptotic volume is given by

vold
(
Bd

M (dR)
)
∼ 1

|α∗|
√

2πdσ2
∗
ed[ϕ(α∗)−α∗R],

where ϕ : (−∞, 0) → � is given by ϕ(α) = log
∫

�
eαM(x) dx, α∗ < 0 is chosen in such a way that ϕ′(α∗) = R, 

and σ2
∗ := ϕ′′(α∗).

The next result determines the asymptotic behavior of the volume of intersections of two Orlicz balls 
when the dimension tends to infinity and generalizes the work of Schechtman and Schmuckenschläger [32]. 
Before we state the result notice that, since M is an Orlicz function, we have, for all a > 0, that∫

�

e−aM(x) dx < +∞. (3)

This follows directly if we let c := M(1) > 0 and observe that M(x) ≥ cx for all x ≥ 1 because of the 
convexity assumption. Moreover, by the Leibniz integral rule, the integral in (3) is infinitely differentiable 
on (0, ∞) as function in the variable a.

Theorem B. Let M1 and M2 be two Orlicz functions and R1, R2 ∈ (0, ∞). Consider

ϕ1 := ϕM1 : (−∞, 0) → �, ϕ1(α) = log
∫
�

eαM1(x) dx

and choose α∗ < 0 such that ϕ′
1(α∗) = R1. Define the Gibbs density

p1(x) := eα∗M1(x)−ϕ1(α∗), x ∈ �.

Then, we have

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

) d→∞−→

⎧⎨
⎩0 :

∫
�
M2(x)p1(x) dx > R2

1 :
∫

�
M2(x)p1(x) dx < R2 and

∫
�
M2

2 (x)p1(x) dx < +∞

and the speed of convergence to 0 is exponential in d.

To obtain the phase transition in the previous theorem it is enough to know the asymptotic logarithmic 
volume of Orlicz balls and their intersections. However, to deal with the critical case at the threshold the 
precise asymptotics would be needed. We conjecture that whenever M1/M2 is different from a constant and ∫

�
M2(x)p1(x) dx = R2, one has

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

) d→∞−→ 1
2 .

The last result of this manuscript concerns the precise asymptotic volume ratio of 2-concave Orlicz spaces, 
i.e., those Orlicz spaces defined by an Orlicz function M for which M ◦

√
| · | is concave. The volume ratio is 
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an important quantity related to the geometry of finite-dimensional Banach spaces and defined as follows. 
Let d ∈ � and K be a d-dimensional convex body. The volume ratio vr(K) of K is defined as

vr(K) := inf
(

vold(K)
vold(E )

)1/d

,

where the infimum is taken over all ellipsoids E which are contained in K. If K is the unit ball of a d-
dimensional normed space X, then one also speaks of the volume ratio of X. The concept of volume ratio 
is a powerful one, having its origin in the works of Szarek [37], and Szarek and Tomczak-Jaegermann [38]. 
It lies at the very heart of a famous result of Kašin on nearly Euclidean decompositions of �n1 and is also 
connected to the so-called Rademacher cotype-2 constant as is known from a deep result of Bourgain and 
Milman [4]. The volume ratio has been determined for various Banach spaces and we refer the reader to, 
e.g., [8,9,13,35]. In particular, we refer to [17] where the precise asymptotic volume ratio of Schatten p-
classes, the non-commutative versions of �p-spaces, has been computed quite recently based on logarithmic 
potential theory, which can be viewed as a subfield of statistical mechanics. This time the route to the 
precise asymptotics is based again on an idea from statistical mechanics, the principle of maximum entropy.

Theorem C. Let M be a 2-concave Orlicz function. Then, as d → ∞, we have

lim
d→∞

vr
(
Bd

M (d)
)

= 1√
2πeM−1(1)

eϕ(α∗)−α∗ ,

where ϕ : (−∞, 0) → � is given by ϕ(α) = log
∫

�
eαM(x) dx and α∗ < 0 is chosen in such a way that 

ϕ′(α∗) = 1.

1.2. The maximum entropy principle & Gibbs measures

Let us explain here how the distribution p1(x) that plays a central role in Theorems A, B, and C
naturally appears through what is known as the maximum entropy principle. Although the argumentation 
is not mathematically rigorous, it shows how distributions of Gibbs-type appear. We follow the exposition 
in [30] and also refer the reader to [10, Section 7.3] and [12, Section III] for detailed expositions regarding 
micro-canonical and canonical ensembles.

Consider a sequence of independent and identically distributed random variables Y1, Y2, . . . taking values 
in some Polish space E and having distribution λ ∈ M1(E), where M1(E) is the space of probability 
measures on E which we equip with the weak topology. With this topology, M1(E) becomes a Polish space 
itself. For d ∈ �, we denote by Ld := LY

d ∈ M1(E) the empirical measure associated with the Yi’s, i.e.,

Ld := 1
d

d∑
i=1

δYi
.

This measure is obviously a random probability measure. In the setting of Sanov’s theorem (see, e.g., [30, 
Section 5.2]) we know that, as d tends to infinity, Ld → λ almost surely at an exponential rate. If we consider 
a set C of probability measures whose closure does not contain the measure λ, then by the law of large 
numbers, �[Ld ∈ C] → 0 as d → ∞. The maximum entropy principle helps us to understand the case, where 
we condition on the rare event that Ld remains in C. Roughly speaking and under certain assumptions, Ld

converges to the element in the set C that minimizes the relative entropy (or Kullback-Leibler divergence) 
H(·|λ), and so maximizes thermodynamic entropy. Recall that for probability measures ν, μ ∈ M1(E),
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H(ν|μ) :=

⎧⎨
⎩
∫
E
p log p dμ : p = dν

dμ exists

+∞ otherwise.

Being a bit more formal, the maximum entropy principle states that if C ⊂ M1(E) is closed, convex and 
satisfies

inf
ν∈C

H(ν|λ) = inf
ν∈C◦

H(ν|λ) < +∞,

where C◦ denotes the interior of C, then there is a unique measure ν∗ ∈ C minimizing H(·|λ) over the set 
C. Moreover, the conditional distributions of Ld converge weakly, as d → ∞, to δν∗ , i.e.,

lim
d→∞

�[Ld ∈ · |Ld ∈ C] = δν∗(·)

in the weak topology on M1(M1(E)) generated by Cb(M1(E)), which is the space of bounded continuous and 
real-valued functions on M1(E). Furthermore, one can show that for any k ∈ � the conditional distribution 
of Yk (conditioned on Ld being in C) converges weakly to the relative entropy minimizing measure ν∗. An 
application of the maximum entropy principle now shows how a Gibbs measure arises as limiting distribution, 
which is exactly what happens in the case of Orlicz balls.

So let H : E → � be a function (often referred to as Hamiltonian or energy) and consider H d :=
1
d

∑d
i=1 H (Yi), an average energy. Moreover, define for R < �λ[H ] a set

C :=
{
ν ∈ M1(E) : �ν [H ] ≤ R

}
.

If the set C satisfies the assumptions of the maximum entropy principle, then there exists a unique proba-
bility measure μ∗ ∈ C minimizing the relative entropy H(·|λ) over C. Explicitly, it is given as the following 
Gibbs measure at inverse temperature α∗:

μ∗(dx) = e−α∗H (x)∫
E
e−α∗H (x) λ(dx)

λ(dx),

where α∗ > 0 is such that �μ∗ [H ] = R. So wrapping everything up, the maximum entropy principle says 
in this case that for each k ∈ � fixed,

lim
d→∞

�

[
Yk ∈ ·

∣∣∣H d ≤ R
]

= μ∗.

Now let us explain how this relates to our situation. Please note that this derivation is not mathematically 
rigorous, one of the reasons being that in our setting λ is the Lebesgue measure, which is infinite. Let M
be an Orlicz function and consider, for large d, random “variables” Y1, Y2, . . . , Yd uniformly “distributed” 
according to the infinite Lebesgue measure λ. We are interested in the volume of the Orlicz ball

Bd
M (d) =

{
(x1, . . . , xd) ∈ �d :

d∑
i=1

M(xi) ≤ d

}
.

Conditioning on Y = (Y1, . . . , Yd) being in Bd
M (d) yields the uniform distribution on Bd

M (d), because for 
any measurable subset A of �d,

�

[
Y ∈ A

∣∣∣Y ∈ Bd
M (d)

]
= �[Y ∈ A ∩Bd

M (d)]
d

= vold(A ∩Bd
M (d))

d
.

�[Y ∈ BM (d)] vold(BM (d))
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Coming back to the maximum entropy principle, where E = �, the Hamiltonian is given by the Orlicz 
function M , and R = 1 (which is smaller than �λ[M ] = +∞), we have, roughly speaking, for any fixed 
k ∈ {1, . . . , d} that

�

[
Yk ∈ ·

∣∣∣H d ≤ 1
]

= �

[
Yk ∈ ·

∣∣∣ d∑
i=1

M(Yi) ≤ d
]
≈ μ∗,

where α∗ > 0 is chosen such that �μ∗ [M ] = 1. So, under the “energy constraint” that Y lies in an Orlicz ball, 
asymptotically the coordinates of Y follow a Gibbs distribution μ∗. So when studying random vectors in 
Orlicz balls or volumetric properties of Orlicz balls, then those Gibbs distributions provide the right prob-
abilistic set-up for investigations. Let us remark that a version of Sanov’s theorem with infinite underlying 
measure λ has been obtained in [2].

The rest of the paper is organized as follows. In Section 2, we present notions and notation as well as some 
background material on Orlicz spaces and sharp Cramér large deviations. Then, in Section 3, we present the 
computation of the asymptotic (log-)volume of Orlicz balls. After having computed asymptotic volumes, in 
Section 4, we can deal with the case of the asymptotic volume of the intersection of two Orlicz balls. Last 
but not least, in Section 5, we present the proof for the asymptotic formula of the volume ratio of 2-concave 
Orlicz spaces.

2. Preliminaries

In this section, we present some notation and background material needed throughout the paper.

2.1. Notation

We shall denote by �d the d-dimensional Euclidean space. The interior of a set A ⊂ �d shall be denoted 
by A◦ and its closure by A. When we speak of volume in d-dimensional space, denoted by vold, then we 
simply mean the d-dimensional Lebesgue measure. For two sequences (ad)d∈� and (bd)d∈� of real numbers, 
we write ad ∼ bd if limd→∞

ad

bd
= 1.

2.2. Orlicz spaces

Let us recall that a convex function M : � → � is said to be an Orlicz function if M(t) = M(−t), 
M(0) = 0, and M(t) > 0 for t 	= 0. The functional

‖(x1, . . . , xd)‖M := inf
{
ρ > 0 :

d∑
i=1

M
( |xi|

ρ

)
≤ 1

}

is a norm on �d, known as Luxemburg norm, named after W. A. J. Luxemburg [25]. We now define the 
Orlicz space �dM to be �d equipped with this norm and denote by

�d
M :=

{
x = (xi)di=1 ∈ �d : ‖x‖M ≤ 1

}
the unit ball in this space. Those spaces naturally generalize the classical �dp-spaces and belong to the class 
of 1-symmetric Banach spaces. One commonly just speaks of Orlicz functions, Orlicz norms, and Orlicz 
spaces. An introduction to the theory of Orlicz spaces can be found in [22].
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In the next lemma, we collect the simple observation that �d
M coincides with the set

Bd
M :=

{
x = (xi)di=1 ∈ �d :

d∑
i=1

M(xi) ≤ 1
}
,

which simplifies some computations because we do not need to work with the infimum. For the sake of 
completeness, we provide a proof of this fact.

Lemma 2.1. Let d ∈ � and M be an Orlicz function. Then �d
M = Bd

M .

Proof. Obviously the 0-vector is contained in both sets and we may assume from now on that x 	= 0.
First assume that x = (xi)di=1 ∈ �d

M . Then

1 ≥ ‖x‖M = inf
{
ρ > 0 :

d∑
i=1

M(xi/ρ) ≤ 1
}
.

Assume that 
∑d

i=1 M(xi) > 1. Then, because of the continuity of M , there exists ε = ε(x) ∈ (0, ∞) such 
that 

∑d
i=1 M(xi/(1 + ε)) > 1. On the other hand, for this ε ∈ (0, ∞) there exists ρ0 ∈ (0, ∞) such that 

ρ0 < ‖x‖M +ε ≤ 1 +ε and 
∑d

i=1 M(xi/ρ0) ≤ 1. But then, since M is increasing, we obtain the contradiction

1 <
d∑

i=1
M(xi/(1 + ε)) ≤

d∑
i=1

M(xi/ρ0) ≤ 1.

So 
∑d

i=1 M(xi) ≤ 1, which means that x ∈ Bd
M .

Now let x = (xi)di=1 ∈ Bd
M , i.e., 

∑d
i=1 M(xi) ≤ 1. We consider two cases. First assume that ∑d

i=1 M(xi) < 1. Then, because of the continuity of M , there exists ε = ε(x) ∈ (0, ∞) such that

d∑
i=1

M(xi/(1 − ε)) ≤ 1.

This means ‖x‖M ≤ 1 − ε ≤ 1 and so x ∈ �d
M . Now let 

∑d
i=1 M(xi) = 1 and assume that ‖x‖M < 1. Then 

there exists some ε = ε(x) ∈ (0, ∞) such that ‖x‖M + ε < 1. For this ε ∈ (0, ∞) there exists ρ0 ∈ (0, ∞)
such that ρ0 < ‖x‖M + ε < 1 and 

∑d
i=1 M(xi/ρ0) ≤ 1. But then, because ρ0 < 1 and since M in increasing, 

we obtain the contradiction

1 =
d∑

i=1
M(xi) <

d∑
i=1

M(xi/ρ0) ≤ 1.

Hence, we must have ‖xM‖ ≥ 1. Last but not least, we want to exclude that ‖x‖M > 1, thereby establishing 
‖x‖M = 1. So assume that ‖x‖M > 1. Then

1 =
d∑

i=1
M(xi) >

d∑
i=1

M(xi/‖x‖M ).

But then, because of continuity of M , there exists ε = ε(x) ∈ (0, ∞) such that ‖x‖M − ε > 1 and

1 >
d∑

M(xi/(‖x‖M − ε)).

i=1
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This contradicts that ‖x‖M is the infimum and so we must have ‖x‖M = 1, which means x ∈ �d
M . �

As explained in the introduction, for our purposes it is crucial to understand the asymptotic volume of 
balls in Orlicz spaces. From a non-asymptotic point of view and for a fixed radius independent of the dimen-
sion, those volumes are known and follow from a more general result of Schütt [35] who obtained, among 
other things, simple formulas (up to absolute constants) for the volume of unit balls in finite-dimensional 
Banach spaces with a 1-symmetric basis. More precisely, he proved that if X is a finite-dimensional Banach 
space with a 1-symmetric basis e1, . . . , en and norm ‖ · ‖X , then

vold

({
a ∈ �d :

∥∥∥ d∑
i=1

aiei

∥∥∥
X

≤ 1
})

≈ 2d
∥∥∥ d∑

i=1
ei

∥∥∥−d

X
,

where ≈ refers to equivalence up to absolute positive constants. The standard unit vectors in �d form such 
a basis for the Orlicz spaces �dM and therefore,

vold
(
�d
M

)
≈ 2d‖(1)di=1‖−d

M = 2dM−1(1/d)d.

However, first of all such a bound is not sufficient for our purposes as it only provides estimates up to 
absolute constants and second, the natural setting to study the intersection of Orlicz balls (cf. [32,34]) is to 
look at the volume of balls of dimension-dependent radius dR, i.e.,

Bd
M (dR) :=

{
x = (xi)di=1 ∈ �d :

d∑
i=1

M(xi) ≤ dR

}
,

where R ∈ (0, ∞). Note that for R = 1 this is essentially the dimensional normalization considered in [32]
as we may swallow the constant terms in the Orlicz function M . In the next section we present our result 
on the asymptotic (logarithmic) volume of Orlicz balls.

2.3. Sharp Cramér large deviations & integral asymptotics

In this subsection we shall briefly present the result of Petrov [26] who proved a sharp version of Cramér’s 
theorem (see, e.g., [5,10]). We also wish to refer the reader to the recent work [24], where sharp large 
deviations have been obtained in the geometric setting of �dp-spheres.

Consider a sequence X1, . . . , Xd of independent and identically distributed random variables with distri-
bution �X not concentrated on a lattice. Define the set

B+ :=
{
h ≥ 0 :

∫
�≥0

ehx �X(dx) < +∞
}
.

This set is non-empty, because we always have 0 ∈ B+. We let B = supB+ ∈ [0, +∞] and define for all 
0 < h < B the quantities

R(h) :=
∫
�

ehx �X(dx)

and

m(h) := 1
R(h)

∫
xehx �X(dx).
�
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Assume in the following that B > 0. Then one can show (see [26, Lemma, pp. 287]) the following limit 
exists,

A0 := lim
h↑B

m(h).

Moreover, if �[X1] > −∞ and A0 < +∞, then [26, Theorem 1] states that, as d → ∞,

�

[
1
d

d∑
i=1

Xi ≥ x

]
= 1

h∗
√

2πdσ2(h∗)
ed logR(h∗)−dh∗x(1 + o(1))

where the convergence is uniform on

�[X1] + ε ≤ x ≤ A0 − ε, ε ∈ (0,∞)

and h∗ is the unique real solution to m(h∗) = x while σ2(h∗) = d
dhm(h)|h=h∗ . In the proof, after a suitable 

measure tilting guaranteeing the existence of all exponential moments, Petrov uses the Berry-Esseen theorem 
to determine the asymptotic of the integral (see [26, Equation (4.11)])

I :=
∞∫
0

e−h∗tσ(h∗)
√
d dF d(t), (4)

where F d is the distribution function of the random variables

∑d
i=1 Xi − dm(h∗)

σ(h∗)
√
d

,

with X1 having distribution function

x �→ 1
R(h∗)

x∫
−∞

eh∗y �X(dy).

What Petrov obtains (see [26, Equation (4.19)]) is that

I = 1
h∗σ(h∗)

√
2πd

(1 + o(1)). (5)

Exactly such an integral is what appears in the computation of the precise asymptotic volume of Orlicz 
balls and we can therefore use the asymptotic in (5).

3. The asymptotic volume of Orlicz balls

We shall now present the computation of the volume of Orlicz balls Bd
M(dR), R ∈ (0, ∞). In fact, we 

start with the asymptotic logarithmic volume. The proof of this result is based on an exponential tilting 
technique known, for instance, from large deviations theory, which is then coupled with the classical central 
limit theorem. Independently, this result was obtained in the updated version of [20] in the context of the 
asymptotic thin-shell condition for Orlicz balls using a large deviations approach, while the authors finalized 
this manuscript.
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Proposition 3.1. Let d ∈ �, R ∈ (0, ∞), and M be an Orlicz function. Then, as d → ∞,

vold
(
Bd

M (dR)
)1/d → eϕ(α∗)−α∗R,

that is, on a logarithmic scale, we have

lim
d→∞

1
d

log vold
(
Bd

M (dR)
)

= ϕ(α∗) − α∗R,

where ϕ : (−∞, 0) → � is given by ϕ(α) = log
∫

�
eαM(x) dx and α∗ < 0 is chosen in such a way that 

ϕ′(α∗) = R.

Proof. Let us define for α < 0 the function

ϕ(α) := log
∫
�

eαM(x) dx,

which is finite because M is an Orlicz function (see (3)). Moreover, ϕ is twice continuously differentiable on 
(−∞, 0) with

ϕ′(α) =
∫

�
∂αe

αM(x) dx∫
�
eαM(x) dx

=
∫

�
M(x)eαM(x) dx∫

�
eαM(x) dx

. (6)

Let α∗ := α∗(R) < 0 be such that ϕ′(α∗) = R. To see that such α∗ exists uniquely, one can check that 
ϕ′′(α) > 0 for all α < 0, limα→−∞ ϕ′(α) = 0, and limα↑0 ϕ′(α) = +∞; a proof of the latter two facts will be 
provided in the arXiv-version of this paper. Similar results can be found, for instance, in [26, Lemma (IV)]
and [6, Theorem 6.2]. Now we consider independent and identically distributed random variables Z1, Z2, . . .
with Lebesgue-density given by

p(x) = eα∗M(x)−ϕ(α∗), x ∈ �.

This is indeed a density because of the definition of ϕ, since∫
�

eα∗M(x)−ϕ(α∗) dx = e−ϕ(α∗)
∫
�

eα∗M(x) dx = e−ϕ(α∗)eϕ(α∗) = 1.

We now show that �[M(Z1)] = R and Var[M(Z1)] = ϕ′′(α∗) > 0. For this consider the function

(−∞, 0) � α �→ eϕ(α) =
∫
�

eαM(x) dx.

Then, using (6), we find that

d

dα
eϕ(α) = ϕ′(α)eϕ(α) =

∫
�

M(x)eαM(x) dx. (7)

Similarly, we obtain

d2

dα2 e
ϕ(α) = eϕ(α)ϕ′′(α) + eϕ(α)(ϕ′(α))2 =

∫
M(x)2eαM(x) dx. (8)
�
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Therefore,

�[M(Z1)] =
∫
�

M(x)eα∗M(x)−ϕ(α∗) dx = e−ϕ(α∗)
∫
�

M(x)eα∗M(x) dx (7)= e−ϕ(α∗)ϕ′(α∗)eϕ(α∗) = ϕ′(α∗) = R

and

�[M(Z1)2] =
∫
�

eα∗M(x)−ϕ(α∗)M(x)2 dx = e−ϕ(α∗)
∫
�

eα∗M(x)M(x)2 dx (8)= ϕ′′(α∗) + ϕ′(α∗)2.

Hence, we find

Var[M(Z1)] = ϕ′′(α∗).

Now we consider the independent and identically distributed random variables Yi := M(Zi) − R, i ∈ �

with �[Y1] = 0 and Var[Y1] = Var[M(Z1)] = ϕ′′(α∗) =: σ2
∗. Then

vold
(
Bd

M (dR)
)

=
∫

�d

1Bd
M (dR)(x1, . . . , xd) dλd(x1 . . . , xd)

=
∫

�d

1Bd
M (dR)(x1, . . . , xd) e−α∗

∑d
i=1 M(xi)+dϕ(α∗)

d∏
i=1

p(xi)︸ ︷︷ ︸
=1

dλ(x1) . . . dλ(xd)

= �

[
1Bd

M (dR)(Z1, . . . , Zd)e−α∗
∑d

i=1 M(Zi)+dϕ(α∗)
]

= �

[
1{

∑d
i=1 Yi≤0}e

−α∗
∑d

i=1 Yi−dα∗R+dϕ(α∗)
]

= ed
(
ϕ(α∗)−α∗R

)
�

[
1{

∑d
i=1 Yi≤0}e

−α∗
∑d

i=1 Yi

]
.

Let us continue with a lower and an upper bound. We have, for every c ∈ (0, ∞),

�

[
1{∑d

i=1 Yi≤0
}e−α∗

∑d
i=1 Yi

]
≥ �

[
1{

−c
√
d≤

∑d
i=1 Yi≤0

}e−α∗
∑d

i=1 Yi

]
≥ �

[
1{

−c
√
d≤

∑d
i=1 Yi≤0

}ecα∗
√
d
]
, (9)

where we used that −α∗ > 0. For the last expression, we have

�

[
1{

−c
√
d≤

∑d
i=1 Yi≤0

}ecα∗
√
d
]

= ecα∗
√
d�

[ 1√
d

d∑
i=1

Yi ∈ [−c, 0]
]

and so

vold
(
Bd

M (dR)
)
≥ ed

(
ϕ(α∗)−α∗R

)
ecα∗

√
d�

[ 1√
d

d∑
i=1

Yi ∈ [−c, 0]
]
. (10)

Note that by the central limit theorem,

�

[ 1√
d

d∑
i=1

Yi ∈ [−c, 0]
]

d→∞−→ N (0, σ2
∗)([0, c]),

which is a strictly positive constant. Similar to the lower bound, we can obtain an upper one. We have
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�

[
1{∑d

i=1 Yi≤0
}e−α∗

∑d
i=1 Yi

]
= �

[
1{ 1√

d

∑d
i=1 Yi≤0

}e−α∗
∑d

i=1 Yi

]
≤ �

[ 1√
d

d∑
i=1

Yi ∈ (−∞, 0]
]

and therefore,

vold
(
Bd

M (dR)
)
≤ ed

(
ϕ(α∗)−α∗R

)
�

[ 1√
d

d∑
i=1

Yi ∈ (−∞, 0]
]
.

Again, the central limit theorem implies that

�

[ 1√
d

d∑
i=1

Yi ∈ (−∞, 0]
]

d→∞−→ N (0, σ2
∗)((−∞, 0]) = 1

2 .

Collecting what we obtained above, we see that, for any c ∈ (0, ∞),

ed
(
ϕ(α∗)−α∗R

)
ecα∗

√
d�

[ 1√
d

d∑
i=1

Yi ∈ [−c, 0]
]
≤ vold

(
Bd

M (dR)
)
≤ ed

(
ϕ(α∗)−α∗R

)
�

[ 1√
d

d∑
i=1

Yi ∈ (−∞, 0]
]
.

Now, taking the dth root and letting d → ∞, the central limit theorem shows that

vold
(
Bd

M (dR)
)1/d → eϕ(α∗)−α∗R,

which completes the proof. �
The next result provides the exact asymptotics for the volume. Its proof is more delicate and based on 

ideas that can be found in a paper on large deviations for sums of independent and identically distributed 
random variables by Petrov [26], more precisely, in the proof of Theorem 1 there. Theorem 1 is a version of 
Cramér’s theorem [5] (see also [10]), but not just on a logarithmic scale, providing the precise asymptotics. 
We shall use parts of his result as outlined in Section 2.3. Let us also remark that some of the results in 
[26] can be found in the earlier work [1] of Bahadur and Rao of which Petrov was unaware.

Proposition 3.2. Let d ∈ �, R ∈ (0, ∞), and M be an Orlicz function. Then, as d → ∞,

vold
(
Bd

M (dR)
)
∼ 1

|α∗|
√

2πdσ2
∗
ed[ϕ(α∗)−α∗R],

where ϕ : (−∞, 0) → � is given by ϕ(α) = log
∫

�
eαM(x) dx, α∗ < 0 is chosen in such a way that ϕ′(α∗) = R, 

and σ2
∗ := ϕ′′(α∗).

Proof. We use the notation as introduced in the proof of Proposition 3.1. As shown there, we have

vold
(
Bd

M (dR)
)

= ed
(
ϕ(α∗)−α∗R

)
�

[
1{

∑d
i=1 Yi≤0}e

−α∗
∑d

i=1 Yi

]
, (11)

where Yi := M(Zi) − R, i ∈ {1, . . . , d} with Z1, . . . , Zd independent and having Lebesgue density p(x) =
exp(α∗M(x) − ϕ(α∗)), x ∈ �. In particular, the distribution of Y1 is not concentrated on a lattice. Recall 
also that �[Y1] = 0 and Var[Y1] = ϕ′′(α∗) =: σ2

∗. Let us denote by μd the distribution of 
∑d

i=1 Yi. Then we 
have

�

[
1{

∑d
i=1 Yi≤0}e

−α∗
∑d

i=1 Yi

]
=

0∫
e−α∗y μd(dy).
−∞
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Now it is left to understand the integral on the right-hand side. Here we observe that it is exactly the 
integral I that appears in [26, Equation 4.11] (see also (4)), just with a different sign. As is demonstrated 
in Petrov’s proof via a Berry–Esseen argument, for d → ∞ this integral can be evaluated (see [26, Equation 
4.19] and (5)) as follows,

0∫
−∞

e−α∗y μd(dy) ∼
1

|α∗|
√

2πdσ2
∗
.

In combination with (11), we obtain for d → ∞ that

vold
(
Bd

M (dR)
)
∼ 1

|α∗|
√

2πdσ2
∗
ed[ϕ(α∗)−α∗R],

which completes the proof. �
Remark 3.3. Let us note again that the result of Proposition 3.2 holds in a more general setting than the 
one for Orlicz functions presented here. In fact, we only need that the random variables Y1, . . . , Yd which are 
defined in terms of M do not have a distribution concentrated on some lattice together with the assumption 
that for M the integral in (3) is finite (for some a > 0) and that we can find α∗ < 0 such that ϕ′(α∗) = R.

4. The volume of intersections of Orlicz balls

Equipped with the asymptotics of the (log-)volume of Orlicz balls, we can now study the volume of 
the intersection of two such balls as the dimension of the ambient space tends to infinity. In fact, we shall 
see what the precise threshold for the change in convergence behavior is and obtain the corresponding 
dichotomy previously known for �dp-balls through the work of Schechtman and Schmuckenschläger [32]. The 
precise quantity of interest is

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

) , d ∈ �,

where M1 and M2 are Orlicz functions and R1, R2 ∈ (0, ∞). This is indeed a canonical way of generalizing 
the framework studied in [32] as it resembles the uniform distribution on Bd

M1
(dR1).

4.1. Volume of intersections – non-critical case

The general idea of proof is to proceed in a similar way to when we determined the log-asymptotic 
volume of Orlicz balls Bd

M (dR). However, one needs to consider two appropriate sets of random variables and 
complement the argument by Cramér’s large deviation theorem for independent and identically distributed 
random variables.

Proof of Theorem B. Let Z1, . . . , Zd be independent random variables each with distribution given by the 
Lebesgue-density

p1(x) := eα∗M1(x)−ϕ1(α∗), x ∈ �,

where for α < 0, we have
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ϕ1(α) := log
∫
�

eαM1(x) dx

and where α∗ < 0 is now chosen such that ϕ′
1(α∗) = R1. Then, we find that

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
=

∫
�d

1Bd
M1

(dR1)(x1, . . . , xd)1Bd
M2

(dR2)(x1, . . . , xd) dλd(x1 . . . , xd)

=
∫

�d

1Bd
M1

(dR1)(x1, . . . , xd)1Bd
M2

(dR2)(x1, . . . , xd)e−α∗
∑d

i=1 M1(xi)+dϕ1(α∗)
d∏

i=1
p1(xi) dλ(x1) . . . dλ(xd)

= �

[
1Bd

M1
(dR1)(Z1, . . . , Zd)1Bd

M2
(dR2)(Z1, . . . , Zd)e−α∗

∑d
i=1 M1(Zi)+dϕ1(α∗)

]
.

Now we need to modify the probabilistic argument seen before. Let us define random variables Y (1)
1 , . . . , Y (1)

d

and Y (2)
1 , . . . , Y (2)

d via

Y
(1)
i := M1(Zi) −R1 and Y

(2)
i := M2(Zi) −

∫
�

M2(x)p1(x) dx

for i ∈ {1, . . . , d}. Then Y (1)
1 , . . . , Y (1)

d are independent and also Y (2)
1 , . . . , Y (2)

d are independent. Moreover, 
�[Y (1)

1 ] = 0 = �[Y (2)
1 ] and Var[Y (1)

1 ] = ϕ′′
1(α∗) while Var[Y (2)

1 ] = �[(Y (2)
1 )2] = Var[M2(Z1)]. Using those 

transformations of the original random variables, we may write

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
= �

[
1{∑d

i=1 Y
(1)
i ≤0

}1{∑d
i=1 Y

(2)
i ≤d[R2−

∫
�
M2(x)p1(x) dx]

}e−α∗
∑d

i=1 Y
(1)
i −dα∗R1+dϕ1(α∗)

]

= ed[ϕ1(α∗)−α∗R1]�

[
1{∑d

i=1 Y
(1)
i ≤0

}1{∑d
i=1 Y

(2)
i ≤d[R2−

∫
�
M2(x)p1(x) dx]

}e−α∗
∑d

i=1 Y
(1)
i

]
.

The idea is that by the (strong) law of large numbers,

1
d

d∑
i=1

Y
(2)
i

a.s.−→ 0 as d → ∞.

Hence, we see that for d → ∞ the event

{
d∑

i=1
Y

(2)
i ≤ d

[
R2 −

∫
�

M2(x)p1(x) dx
]}

occurs with probability converging to 0 – even exponentially fast – if 
∫

�
M2(x)p1(x) dx > R2 and probability 

approaching 1 if 
∫

�
M2(x)p1(x) dx < R2.

Consider the case 
∫

�
M2(x)p1(x) dx > R2. To obtain an upper bound for the volume of the intersection, 

observe that
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�

[
1{∑d

i=1 Y
(1)
i ≤0

}1{∑d
i=1 Y

(2)
i ≤d[R2−

∫
�
M2(x)p1(x) dx]

}e−α∗
∑d

i=1 Y
(1)
i

]

≤ �

[
d∑

i=1
Y

(2)
i ≤ d

[
R2 −

∫
�

M2(x)p1(x) dx
]]
,

which goes to 0 exponentially fast by Cramér’s theorem (see [10]) since �[Y (2)
1 ] = 0 and the negative 

exponential moments are finite for Y (2)
1 . It follows from the lower bound (10) for vold

(
Bd

M1
(dR1)

)
in the 

proof of Theorem A that

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

)
goes to 0 exponentially fast by Cramér’s theorem as d → ∞. This is so, because the Cramér bound gives 
a decay of e−c1d, while in the lower bound on the volume we get something of the form eα∗c2

√
d (note that 

α∗ < 0) for constants c1, c2 ∈ (0, ∞).
Now consider the case 

∫
�
M2(x)p1(x) dx < R2. We have

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

) = 1 −
�

[
1{∑d

i=1 Y
(1)
i ≤0

}1{∑d
i=1 Y

(2)
i >d[R2−

∫
�
M2(x)p1(x) dx]

}e−α∗
∑d

i=1 Y
(1)
i

]

�

[
1{∑d

i=1 Y
(1)
i ≤0

}e−α∗
∑d

i=1 Y
(1)
i

] .

We have to show that the quotient of expectations on the right-hand side goes to 0. To this end, observe 
that the expectation in the numerator can be estimated as follows:

�

[
1{∑d

i=1 Y
(1)
i ≤0

}1{∑d
i=1 Y

(2)
i >d[R2−

∫
�
M2(x)p1(x) dx]

}e−α∗
∑d

i=1 Y
(1)
i

]

≤ �

[
d∑

i=1
Y

(2)
i > d[R2 −

∫
�

M2(x)p1(x) dx]
]
,

which can be estimated above by O(1/d) via Chebyshev’s inequality, using that 
∫

�
M2

2 (x)p1(x) dx < +∞. 
On the other hand, the proof of Proposition 3.2 shows that

�

[
1{∑d

i=1 Y
(1)
i ≤0

}e−α∗
∑d

i=1 Y
(1)
i

]
∼ 1

|α∗|
√

2πdσ2
∗
,

where σ2
∗ := ϕ′′(α∗). Therefore, we obtain that

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

)
goes to 1 as d → ∞.

Overall, the above yields the dichotomy

vold
(
Bd

M1
(dR1) ∩Bd

M2
(dR2)

)
vold

(
Bd

M1
(dR1)

) d→∞−→

⎧⎨
⎩0 :

∫
�
M2(x)p1(x) dx > R2

1 :
∫

�
M2(x)p1(x) dx < R2 and

∫
�
M2

2 (x)p1(x) dx < +∞,

which completes the proof. �



Z. Kabluchko, J. Prochno / J. Math. Anal. Appl. 495 (2021) 124687 17
5. The asymptotic volume ratio of 2-concave Orlicz spaces

We are now going to determine the asymptotic volume ratio of 2-concave Orlicz spaces, i.e., those defined 
by Orlicz functions where M ◦

√
| · | is a concave function on �. This is, for instance, the case when 

M(t) = |t|p for 1 ≤ p ≤ 2. Since we already obtained the precise asymptotic volume of Orlicz balls, we 
merely need to determine the John ellipsoid, i.e., the maximum volume ellipsoid in Bd

M(d). To do this, we 
recall from [39, Section 16] that a Banach space X is said to have enough symmetries if the only linear 
operators that commute with every isometry of X are multiples of the identity. If X is d-dimensional and 
has enough symmetries, it is known that EX is a suitable multiple of the Euclidean unit ball of the same 
dimension. More precisely,

EX =
∥∥id : �d2 → X

∥∥−1
�d

2, (12)

where �d2 is the d-dimensional Euclidean space with the Euclidean unit ball �d
2 and id : �d2 → X stands 

for the identity operator from �d2 to X with the standard operator norm ‖id : �d2 → X‖ (see, e.g., [7] and 
[8]). Orlicz sequence spaces are Banach spaces with a 1-symmetric basis (where the norm is invariant under 
permutations and signs) and have enough symmetries [8,39].

Observe that by Lemma 2.1 the Banach space �dM/d has unit ball

Bd
M (d) =

{
x = (x1, . . . , xd) ∈ �d : 1

d

d∑
i=1

M(xi) ≤ 1
}
.

The following result contains the precise asymptotic volume ratio of the space �dM/d, when the defining 
Orlicz function M is 2-concave.

Proposition 5.1. Let M be a 2-concave Orlicz function. Then, as d → ∞, we have

vr
(
Bd

M (d)
)
∼ 1√

2πeM−1(1)
eϕ(α∗)−α∗ ,

where ϕ : (−∞, 0) → � is given by ϕ(α) = log
∫

�
eαM(x) dx and α∗ < 0 is chosen in such a way that 

ϕ′(α∗) = 1.

Proof. In view of (12), Proposition 3.2, and the fact that, as d → ∞,

vold
(
�d

2
)

=
√
π
d

Γ(1 + d/2) ∼ 1√
dπ

(
2πe
d

)d/2

,

we merely need to compute the operator norm of the natural embedding of �d2 into �dM/d. Note that

‖ id : �d2 → �dM/d‖ = sup
(x1,...,xd)∈�

d−1
2

‖(x1, . . . , xd)‖M/d = sup
(x1,...,xd)∈�

d−1
2

inf
{
ρ ∈ (0,∞) :

d∑
i=1

1
d
M

(xi

ρ

)
≤ 1

}
.

Now let us assume that (x1, . . . , xd) ∈ �d−1
2 . Then it follows from the concavity of M ◦

√
| · | : � → [0, ∞)

that

d∑ 1
d
M

(xi

ρ

)
=

d∑ 1
d
(M ◦

√
| · |)

(x2
i

ρ2

)
≤ (M ◦

√
| · |)

(
d∑ x2

i

dρ2

)
= (M ◦

√
| · |)

( 1
dρ2

)
= M

( 1√
dρ

)
.

i=1 i=1 i=1
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This means that

‖ id : �d2 → �dM/d‖ ≤ sup
(x1,...,xd)∈�

d−1
2

inf
{
ρ ∈ (0,∞) : M

( 1√
dρ

)
≤ 1

}
= 1√

dM−1(1)
.

The lower bound follows from considering the vector x0 = (1/
√
d, . . . , 1/

√
d) ∈ �d, namely

‖ id : �d2 → �dM/d‖ ≥
∥∥(1/

√
d, . . . , 1/

√
d)

∥∥
M/d

= 1√
d
‖(1, . . . , 1)‖M/d = 1√

dM−1(1)
.

Therefore, we have ‖ id : �d2 → �dM/d‖−1 =
√
dM−1(1) and the John ellipsoid in �dM/d is hence given by

EM :=
√
dM−1(1) �d

2.

This means that, as d → ∞,

vr
(
Bd

M (d)
)

= 1√
dM−1(1)

vold
(
Bd

M (d)
)1/d

vold
(
�d

2
)1/d ∼ 1√

dM−1(1)

(
1

|α∗|
√

2πd σ2
∗
ed[ϕ(α∗)−α∗]

)1/d

(
1√
dπ

(
2πe
d

)d/2)1/d

∼
√
d√

2πe
√
dM−1(1)

eϕ(α∗)−α∗ = 1√
2πeM−1(1)

eϕ(α∗)−α∗ ,

which completes the proof. �
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