期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:473
The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions
Article
Colorado, Eduardo1,2  Ortega, Alejandro1 
[1] Univ Carlos III Madrid, Dept Matemat, Avda Univ 30, Leganes 28911, Madrid, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,ICMAT,CSIC, C Nicolas Cabrera 15, Madrid 28049, Spain
关键词: Fractional Laplacian;    Mixed boundary conditions;    Critical points;    Critical problems;    Semilinear problems;   
DOI  :  10.1016/j.jmaa.2019.01.006
来源: Elsevier
PDF
【 摘 要 】

In this work we study the existence of solutions to the critical Brezis-Nirenberg problem when one deals with the spectral fractional Laplace operator and mixed Dirichlet-Neumann boundary conditions, i.e., {(-Delta)(s)u = lambda u+u(2:-1), u > 0 in Omega, u = 0 on Sigma D; partial derivative u/partial derivative v = 0 on Sigma(N), where Omega C R-N is a regular bounded domain, 1/2 < s < 1, 2(s)(*); is the critical fractional Sobolev exponent, 0 <= lambda epsilon R, v is the outwards normal to partial derivative Omega, Sigma(D), Sigma(N) are smooth (N - 1)-dimensional submanifolds of partial derivative Omega such that Sigma(D) U Sigma(N) = partial derivative Omega , Sigma(D) boolean AND Sigma(N) = 0, and ED fl EAr = F is a smooth (N- 2)-dimensional submanifold of 812. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_01_006.pdf 518KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次