期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:482
Orlicz-Lorentz Hardy martingale spaces
Article
Hao, Zhiwei1  Li, Libo1 
[1] Hunan Univ Sci & Technol, Coll Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
关键词: Martingale;    Orlicz-Lorentz space;    Atomic decomposition;    Duality;    Generalized fractional integral;   
DOI  :  10.1016/j.jmaa.2019.123520
来源: Elsevier
PDF
【 摘 要 】

Martingale Hardy spaces are widely studied in the field of mathematical physics and probability. In this paper, we develop the theory of Orlicz-Lorentz Hardy martingale spaces, which are much more wider than the classical Lorentz Hardy martingale spaces. More precisely, we first investigate several basic properties of Orlicz-Lorentz spaces, and then construct the atomic decomposition theorems of these martingale function spaces. Also, we establish the dual theorem of Orlicz-Lorentz Hardy spaces for martingales. Furthermore, we study the boundedness of generalized fractional integral operators 14, in this new framework, where ck is a non-negative concave function. The results partially extend the very recent results Jiao et al. (2017) [21]. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123520.pdf 465KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次