期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:396
Hardy spaces related to Schrodinger operators with potentials which are sums of Lp-functions
Article
Dziubanski, Jacek1  Preisner, Marcin1 
[1] Uniwersytet Wroclawski, Inst Matematyczny, PL-50384 Wroclaw, Poland
关键词: Schrodinger operator;    Hardy space;    Maximal function;    Atomic decomposition;    Riesz transform;   
DOI  :  10.1016/j.jmaa.2012.06.012
来源: Elsevier
PDF
【 摘 要 】

We investigate the Hardy space H-L(1) associated with the Schrodinger operator L = -Delta + V on R-n, where V = Sigma(d)(j=1) V-j. We assume that each Vj depends on variables from a linear subspace V-j of R-n, dim V-j >= 3, and V-j belongs to L-q (V-j) for certain q. We prove that there exist two distinct isomorphisms of H-L(1) with the classical Hardy space. We deduce as a corollary a specific atomic characterization of H-L(1). We also prove that the space H-L(1) can be described by means of the Riesz transforms R-L.i = partial derivative L-i(-1/2). (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_06_012.pdf 282KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次