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1. Introduction and the main results

In the paper we consider a Schrédinger operator on R" given by
Lf (x) = —Af(x) + V() (x),
where A denotes the Laplace operator. Throughout the whole paper we assume that the potential V satisfies:

(A1) there exist V; > 0, V; # 0 such that
d
V) =Y Vi),
=1

(Az) foreveryj € {1,...,d} there exists a linear subspace V; of R" of dimension n; > 3 such that if ITy; denotes the
orthogonal projection on V; then

Vi(x) = Vj(ITy;x),
(A3) there exists k > O such thatforj=1,...,dwe have
Vj el (V])

for all r satisfying |r — n;/2| < k.
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Denote by K; = exp(—tL) and P; = exp(tA) the semigroups of linear operators associated with L and A respectively. Let
K:(x,y) and P;(x — y) denote the integral kernels of these semigroups. The Feynman-Kac formula implies that
0 <K(x,y) < P(x—y) = (4mt) "> exp (—|x — y|*/4t) . (1.1)
Let M; and M4 be the associated maximal operators, i.e.,
Mif (x) = sup IKf ()] Maf(x) = sup IPef ()]

The Hardy spaces HL1 (R™) and H}, (R") are the subspaces of L'(R") defined by
feH R < Mf el'(R"), feH\R") < Myf L' (R")
with the norms
”f”H’}(Rﬂ) = ”MLf”U(]R")v ”f”Hi(R”) = ”MAf”L](R”)'

Clearly the space Hi (R™) is the classical Hardy space H! (R™) (see [ 1]). The goal of the paper is to prove some characterizations
of the space H] (R").

Denote by L~" and (—A)~! the operators with the kernels I'(x,y) = [~ K:(x,y)dt and Ip(x —y) = [;° P:(x — y) dt.
Clearly,

t
0< / Ky(z.y)ds < I'(z,y) < To(@ —y) = Clz — yP™ (12)
0

We shall see that operators | — VL™!and I — VA~ are bounded on L' (R") and give the following characterization of the
Hardy space H} (R").

Theorem 1.3. Assume f € L'(R"). Then f belongs to HL1 (R™ if and only if (I — VL™1)f belongs to the classical Hardy space
HL (R™). Moreover,

-1
”f”HLl(R”) ~|ld—-VL )f”HL(R”)'
We define the weight function w by

“’("):tlir?o / Ki(x,y) dy. (1.4)
Rl’l

The above limit exists because, by (1.1) and the semigroup property, the function t — K;1(x) is non-increasing and takes
values in [0, 1]. Clearly, the function w is L-harmonic, because by (1.4) for every t > 0,

o) = KwkX) = / K (x, y)w(y) dy. (1.5)
RTI
We shall prove that there exists § > 0 such that § < w(x) < 1 (see Proposition 2.14). Moreover, w is the unique (up to a
multiplicative constant) bounded L-harmonic function. To see this we can briefly argue as follows. Let w be any bounded
L-harmonic function. It follows from Corollary 2.7 that w = (I — L™'V)(I — A"'V)wand h = (I — A~'V)w is bounded
and A-harmonic. Thus, h(x) = cy1(x) and, consequently, w(x) = co(I — L~'V)1(x). So we see that the space of bounded
L-harmonic functions is one-dimensional.
We are now in a position to state our second main result.

Theorem 1.6. Let f € L'(R"). Then f belongs to H! (R") if and only if «f belongs to H),(R™). Additionally,
”f”HLl(R”) ~ ”wf”Hi(R")'

From Theorem 1.6 we get atomic characterizations of the elements of HL] (R™). We call a function a an w-atom if it satisfies:

e there exists a ball B = B(y, r) such that suppa C B,
e llall < B,
o [ona(X)w(x)dx = 0.

Corollary 1.7. If a function f belongs to Hf (R™) then there exist a sequence ay of w-atoms and a sequence A, € C such that
Yo Ml < 00, f = 332, duay, and

o0
UF g1 gy ~ Z |Al.
k=1
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Fori = 1,..., n denote by d; the derivative in the direction of the ith canonical coordinate of R". For f € L'(R") the
classical Riesz transforms R 4 ; are given by

g1

dt
Raif = lim OiPf —.

A.Lf 0 ), i tf «/E
Similarly we define the Riesz transforms R, ; associated with L by setting

-1

Rpif = lim ‘ 81<fdt

L = e—0 J, e ﬁ ’
We shall see that the last limits are well-defined in the sense of distributions and they characterize HLl (R™) in the following
sense.

Theorem 1.8. An L'(R")-function f belongs to H! (R") if and only if R, if belong to L'(R") for i = 1, ..., n. Additionally,

n
W g my ~ WPl gemy + D MR N ey -
i=1

Hardy spaces associated with semigroups of linear operators and in particular Schrédinger semigroups have attracted
the attention of many authors; see, e.g., [2-10] and references therein. The present paper generalizes the results of [11,12],
where the spaces HLl (R™) were studied under certain assumptions: V > 0, supp V is compact, V € L"(R") for some r > n/2.
Obviously such potentials V satisfy the conditions (A;)-(A3). To prove Theorems 1.3, 1.6 and 1.8 we develop methods of
[11,12].

Let us finally mention some differences that occur in atomic decompositions of Hardy spaces for Schrédinger operators
for various classes of potentials in R?, d > 1. In the case considered here, each atom a satisfies the cancelation condition
f aw = 0. On the other hand, the one-dimensional situation is different and was studied in [4]. The authors considered
there any non-negative locally integrable potential V and defined a special family of intervals {I;}; that cover R. Then, the
atoms are either classical atoms for H' (R) supported in (14 8)ljora= |Ij|_1XIj for some j. A similar situation arises, e.g., for
non-negative polynomial potentials or, more generally, for potentials from some non-negative reverse Holder classes in
higher dimensions. In these cases, the atoms are properly scaled local atoms in the sense of Goldberg [13], which means
that some of them do not need to satisfy cancelation conditions; see [5-8] for details and more examples.

In [10] the authors provide a very general theory of Hardy spaces for Schrédinger operators. They proved the special
atomic decomposition; however their atoms are of a different nature than those considered in [5-8,11,12]. The atoms in [10]
are of the form a = LNb, where b is appropriately localized L-regular function; see Definition 2.1 of [10].

Finally, the reader interested in boundedness of spectral multipliers on Hardy spaces associated with Schrodinger
operators is referred to [ 14,9], and references therein.

2. Auxiliary lemmas
In the paper we shall use the following notation. For z € R" and a subspace V; of R" we write
z=2z+7, Zj=HVj(Z),E}=anL(Z),  =dimV;" =n—n;.

Notice that if V; = R", then, in fact, there is no V]-L.
The relation between P; and K; is given by the perturbation formula:

t
P =K + / P_VK, ds. (2.1)
0
The following two lemmas state crucial estimates that will be used in many proofs of this paper.

Lemma 2.2. There exists .. > 0 such that

sup [V ()] - —y|> " H lr@m <C forre[l,1+A]land u € [—A, A]. (2.3)

yeRn

Proof. It suffices to prove (2.3) for V = V;. For fixed y € R" we have

_ Vi(zy)'
N . —y|2—ntuyr
W= liramy = € ,/x;l /;fli |zy — yq| 7T 7)) — | TR &2 dz. (24)
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Observe that if A > 0is sufficiently small,r € [1, 1+ A],and i € [—A, A] then

o i I
/l (Izy =y | 7TEM0 4 2 =5y | TTETM) Tz
A%

1
< C/ = —y|"ETM iz +C/ & —JeTm dz
lz1=y11>1z1-y1l lz1=y11=Iz1-y11

< C|Zl - |r(2—n+/t)+'ﬁl .

Thus, by (2.5),

VAL =y N gny < € / Vi(z1) |21 — ya| /@7 dzy

lz1=y11=1
+C / Vi@) |21 — ya /@A g,
|z1=y11>1

Note that by (As3) there exist t, s > 1such that V] € [*(V;) N L*(V;) and

Xizy1<1) @Dz [[EHOT € 10 (vy), Xilzy1>1) @Dz (GO € 5 (vy)

forr € [1,14+ A]and u € [—A, A] provided A > 0 is small enough. Thus (2.3) follows from the Holder inequality.

Corollary 2.7. The operators] — VA~ and I — VL™ are bounded on L' (R") and
I-VLHT=-VA ™ OYf=d-VvA YU -V )f =f forf e L'RY.

Lemma 2.9. There exist o, ¢ > 0 such that for s € [1, 1 + €] and R > 1 we have

sup / V(@)|lz —yf%Mdz < CR°.
YER" J |z—y|>R

(2.5)

(2.6)

O

(2.8)

(2.10)

Proof. Itisenough to prove (2.10)forV = V;.Fixq > 1ande > Osuchthatn;/q(1+¢)—2 > 0and V; € L1048 (y)NLI(V;)

(see (A3)).Seto = ny/q — 2.Fors € [1, 14 ¢] we have

IA

/ Vi@l —yFe dz / Xiiz—=m @V2@)'lz1 = y1 @ dz
l2=yI=R lz1=y11=[Z1 =911

+ / Xiz—y1=R(2)V1 @)z —§1|5(2*'1) dz
lz1=y11<[Z1 =¥

T(R) + S(R).
If|zy —yq| = |Z1 — Y1l and |z — y| > R > 1, then |z; — y;| > R/2 > 1/2. Thus,

T(R) < C / |21 — y1 " " Vi(z1) |z — 1 FE7 dz
|z1=y1|>R/2

1/q
2— - / —
f C”V‘l”iqs(vl) <f |Zl _y1|(3( n)+n n1)q dZ]) — CR (7.
[z1—=y1|>R/2

Similarly, if |z; — y1| < [Z; — Y1l and |z —y| > R > 1,then |Z; — ¥;| > R/2 > 1/2 and

1/q
SR < C / Vil ( / dzl) B T &,
[Z1-Y1I>R/2 lz1=y11<Z1-¥11
= C/ Z) — M/l 7 = R, O
[Z1=Y1I>R/2

(2.11)

(2.12)

(2.13)

We shall need the following properties of the function w, similar to those that hold in the case of compactly supported

potentials (cf. [11, Lemma 2.4]).

Proposition 2.14. There exist v, § > 0 such that for x, y € R" we have

@) lo(x) — o) < C,Ix—yl",
(b) 8 < w(x) < 1.
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Proof. The property (a) can be proved by a slight modification of the proof of (2.6) in [11]. Indeed, thanks to (1.5) and
0 < w(x) < 1, it suffices to show that there are C, y > 0 such that for |h| < 1 we have

f K3 (x4 h, y) — Ky (e )l dy < CIhP?. (2.15)
Rn

To this purpose, by using (2.1), it is enough to establish that

>

Consider one summand that contains V;. Utilizing the fact that P;(x) = P(x;)Ps(X;), where Ps(x;) and Ps(X;) are the heat
kernels on V; and Vll respectively, we have

= [
RN

1
5/ / |Ps(x+h —z) — Ps(x — 2)|Vi(z) dz ds
o Jrn

dy < C|h|".

1
[ f (Ps(x +h —2) — Ps(x — 2))Vi(2)K1-5(z, y) dz ds
0 R"

dy

1
/ / (Ps(x +h — z) — Ps(x — 2))V1(2)K1_5(z, y) dz ds
0 R

1
< / / Pg(x1 + hy — z1)|Ps(X1 + hy — Z1) — Ps(X1 — Z1)|V1(z1) dz ds
o Jrn

1
+f f Py(X1 — Z1) [Ps(x1 + hy — z1) — Ps(x1 — z1)| V1(21) dz ds. (2.16)
0 RN

By taking g > n;/2 such that V; € L9(V;) and using the Hélder inequality we obtain

1
I < / 1P XD IV @D i / PGy — ) — PG — )] d21 ds
0 v

1 , 1/d
+ f (/ |Py(x1 + 1y — 21) — Pty — 21)| le) IV1(z1) llLaqvy) ds
0 V1

< C(lhi|” + [hy]7), (2.17)

which finishes the proof of (a).
Next we note that

Ki(x,y) >0 fort > 0andx,y € R". (2.18)

The proof of (2.18) is a straightforward adaptation of the proof of [11, Lemma 2.12]. We omit the details.
Our next task is to establish that there exists § > 0 such that

w(x) > 6. (2.19)

The proof of (2.19) goes by induction on d. Assume first that we have only one potential V;, that is, d = 1. Then,
Ki(x,y) = Kt{”(xl,yl)Pt(fq — y1), where Kt“}(xl,yl) is the kernel of the semigroup generated by A — V;(x;) on V; and
P;(X1) is the classical heat semigroup on Vf. Hence w(x) = wo(X1), where wg(x1) = lim;_, o fm I(t{”(xl , ¥1) dy1. Therefore,

there is no loss of generality in proving (2.19) if we assume that V; = R". If we integrate (2.1) over R" and take the limit as
t — oo, then we get

1—wkx) = / V() (x,y)dy, where I'(x,y) < Clx —y|*™". (2.20)
Rﬂ

By (A3) and the Hélder inequality we can find t,s > 1 such that V € L*(R") N L5(R"), xqq<n®)[x[>™" € LY (R"), and
Xix=1) @) [x[2 € L (R™). Thus (2.20) leads to

lim V)lx—y*"dy=0 and lim w(x) = 1. (2.21)
[X|>00 Jpn |x|—00
Eq. (1.5) combined with (2.18) and (2.21) implies that w(x) > O for every x € R". Since w is continuous (see (a)) and
limpy - 00 w(X) = 1, we get (2.19).
Using induction, we assume that (2.19) is true for V being a sum of d — 1 potentials. Take V. = V; + - - - 4+ V4. As in the
case of d = 1, we can assume that lin{Vy, ..., V4} = R". Consider the semigroup {S;};~o generated by —A + V5 + - - - + V.
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Let w1 (X) = lim;_ o fR” S¢(x, y) dy. By the inductive assumption w{(x) > §;. Similarly to (2.20), the perturbation formula

S, =K, + / [ S,_ViK, ds
0
implies
<00 <00 +C [ M@l =y < 00)+C [ ez -l e, (222)
n 1
where the last inequality is proved in (2.5). If y; — oo then the integral on the right hand side of (2.22) goes to zero. Hence,
w(y) > &1/2 provided |y;| > R;. We repeat the argument for each V5, ..., V; instead of V; and deduce that there exist

R, § > Osuch that w(x) > § for |x| > R. Consequently, by using (1.5) and (2.18) and continuity of w we obtain (2.19). O

3. Proof of Theorem 1.3

By (2.1) we get
K —P(I—VL Y =0Q — W, (3.1)

where
t %)
Wi =/ (Pe—s — P) V K ds, Q =f P, V K, ds.
0 t

Let

d . d t
Wi y) =Y Wiy =Y f f (Pe—s(X — 2) — Pr(x — 2))Vj(@)K;(z. y) dz ds,
i=1 j=170 JE

d d 00
Q=Y Q" xy =) / Pi(x, 2) / Vi(2)Ks (2, y) ds dz
j=1 j=1 JR" t

be the integral kernels of W, and Q; respectively. In order to prove Theorem 1.3 it is sufficient to establish that the maximal
operators f +> sup,.o |W.f| and f +> sup,., |Q.f| are bounded on L' (R"). The proofs of these facts are presented in the
following four lemmas.

Lemma 3.2. The operator f > sup,., |W.f| is bounded on L' (R").

Proof. It suffices to prove that

sup/ sup W, (x, y)| dx < oo.
YER™ JRM t>2

Without loss of generality we can consider only Wt(i) (x,y).For 0 < B < 1, which will be fixed later on, we write
t
W) = [ [ @2 - - @K ) deds
0 JRM

-,

To estimate F; observe that for t > 2 and s < t# < t there exists ¢ € $(R") such that

I t
~~+/ﬁ o =Fxy; ) + BK,y; D).
t

IPe_s(x — 2) — Pi(x — 2)] < C;qbt(x ~2). (3.3)
Here and subsequently, f; (x) = t~"2f (x/+/t) and & denotes the Schwartz class of functions. From (1.2) and (3.3), we get
IFi(x,y: )] < Ce71F f $(x = DV1i(@)|z — y*"dz.
RN
Since sup,., t 7P ¢. (x —2) < C(1 + |x — z|)"""**?#, we have that
sup/ sup [Fi(x, y; 0)]dx < Cf Vi@@)lz —yPP"dz < C,
R RP

yeR® JRN t>2

where the last inequality comes from Lemma 2.2.
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To deal with F, we write

Fx,y;t) = /; /n Pi_s(x —2)V1(2)K(z,y) dz ds — /: /n Pi(x — 2)V1(2)Ks(z, y) dz ds
= sz(x,ﬂ;; £) — Fy(x.y; 0). o
Observe that for s € [t#, t] we have
Ki(z,y) < Ct P exp (—|z — y|*/4t) .
Also

t t
/ Pr_(x —2)ds = / Py(x —z)ds < Clx —z|* "exp (—|x — z|*/ct) .
0 0
As a consequence of (3.4) and (3.5) we obtain
Fy(x,y;t) < Cf £ |x — z* " exp (—|x — z|* /ct) Vi(z1) exp (—|z — y|*/4t) dz

RN

Then, for e > 0,

sup t P2 exp (—|x — z|2/ct) exp (—|Z - y|2/4t)

t>2

< Csupt™'""“exp (—|x — z|*/ct) - supt P"/*T1*¢ exp (—|z — y|?/4t)
t>2 t>2

< C(1+ [x —z|) 72|z — yPH2efn,

Consequently,

x —z>™" 242e—pn
sup/ supF,(x,y; t)dx < Csup/ / 1z — Y7 TPV (2) dx dz
yeR" JR1 t>2 2 yeRr" Jrn JRN (14 |x —z|)>+2

IA

Csup | |z =yl PV, (z)) dz.
yeR! JRN

If we choose 8 < 1 close to 1 and e small, then we can apply Lemma 2.2 and get
sup/ supF,(x,y; t)dx < C.
yeR JRN t>2

We now turn to estimating F; (x, y; t). Observe that for ¢ > 0 we have

t [e’e}
/ Ki(z,y)ds < C/ t7PesT2 exp (—|z — yI?/(4s)) ds < Ct™Felz — y|P 2,
tB tB
Then from Lemma 2.2 we conclude that

sup[ supFy (x,y; )dx < C sup/ / supt PP (x — 2)V1(2)|z — y)> "% dx dz
R JR

yeR JRN t>2 eR" not>2

< Csup / 1+ |x =z 2PV, (2) |z — y|> "% dx dz
yeR! Jrn JRN

< Csup / Vi@)lz -y dz < C.
Rn

yeRN

provided ¢ > 0O is small enough. O

Lemma 3.6. The operator f +— sup,., |W.f| is bounded on LY(RM).
Proof. It is enough to prove that

sup/ sup|Wt<1>(x, y)|dx < oo.

yeRM JRN t<2
We have

t t/2 t
/ / (P—s(x — 2) — P(x — 2))V1(2)Ks(z, y) dzds:/ +/ o =Fxy;t) + Fa(x, y; 0).
0 JRr" 0 t/2
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To deal with F3 observe that for t < 2,s < t/2 we have
|Pe—s(x —2) — Pe(x — 2)| < Cor(x — 2),
where ¢ € §(R"), ¢ > 0. Therefore

sup [F3(x,y; )] < Csup | ¢ (x —2)V1(2)|z — y|* "dz.

t<2 t<2 JRM

Denote by Mg the classical local maximal operator associated with ¢, that is,
MOf (x) = sup |¢; % f (x)].
t<2

Then
sup |F3(x. y: )] < CM (&) (x).
t<

where §,(z) = V1(2)|z — y12~". We claim that
sup/ sup |F3(x, y)|dx < C sup Mg(éy)(x) dx <C. (3.7)
yeR! JRN t<2 yeR! JRrn

To obtain (3.7) we write
5@ =) &),
k=1

where
£1@0) =Vi@Iz =y " x862@).  Ex@ =Vi@D|z — YI*  Kpy2sp.2e-1 (@), k> 1.
From Lemma 2.2 it follows that there exists s > 1 such that
suppéy 1 S B(y.2) and ||&.1lls@ny < C < CIB(y, )|~ (38)
Consider &,y for k > 1.Set g < ny/2 such that V; € L9(V;). Then
supp &, € B(y, 2%
1€y kllany < C2C7™Vy [l1agy,) 2" "/9 < C|B(y, 2|71 F1/9277K, (3.9)

where p = ny/q — 2. Now, our claim (3.7) follows from (3.8) and (3.9), and the classical theory of local maximal operators.
It remains to analyze F, = F5 — Fg, where

t
Fs(x,y;t) = / f Pi_s(x — 2)V1(2)Ks(z, y) dz ds,
t/2 JRM

t
Fo(x,y: ) = / / P (x — V1 (2)Ke(z, y) dz ds.
¢/2 Jrn

Clearly,

sup Ki(z,y) < Ct™"/?

selt/2.t]

exp (—|z —y|*/ct).
Therefore, for0 <t <2and 0 < y < 1close to 1 we get
t/2
Fs(x,y; t) < C/ / 77 Py(x — 2)Vy ()t 17 exp (—|z — y|*/ct) dzds
0 R7

<C | x—zP "t exp(—|x —z*/ct) Vi(2)|z — y| " dz
Rn

< C/ Ix — 2> exp (—|x — z*/¢') Vi(2) |z — y| " dz.
Rﬂ
Thus, by using Lemma 2.2, we get

sup/ sup Fs(x,y; t)dx <C.

yeRM JRN 0<t<2
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To deal with Fg we observe thatfor0 <t <2and0 < y < 1close to 1 we have

Fs(x,y;t) < C/ tP(x — 2)Vi(z)t " exp (—|z — y|*Jct) dz
RYI

IA

/ x— 2P exp (—|x — 22/c') Va(2)lz — y| " dz
Rn
and, consequently,

sup/ supFs(x,y; t)dx < C. O

YeRM JRN t<2

Lemma 3.10. The operator f + sup,., |Q.f| is bounded on L' (R").

Proof. Notice that fore > 0andt > 2 we have

Oo OO 2 ly —z|? 2-n+2
/ K(z,y)ds < C/ sTesTM e exp | — e ds < Ct~°|y — z|>7 "+, (3.11)
t t

It causes no loss of generality to consider only th (x,y).1Ift > 2, then

0<o"xy < C/

Pi(x — )V (D)t~ |y — z|> "2 dz.
Rﬂ

Since sup;., t P, (x — z) < C(1 + |x — z|)~"%¢, we find that

supf supQ " (x,y)dx < C sup/ 1+ |x —z)™" 2V, @)y — z|> "% dz dx
Rn Rn

yeRT JRN t>2 yeRN

<C sup/ Vi)ly —z|* "% dz < C. (3.12)
Rn

yERN

The last inequality follows from Lemma 2.2. O

Lemma 3.13. The operator f + sup,, |Q.f| is bounded on LY(R™).

Proof. The estimate [ K;(z, y) ds < C|z — y|>~" implies

sup Qi (x,y) < C Sup/ Pi(x — 2)V(2)|z — y|* " dz.
tfz RH

t<2

We claim that for fixed y € R" the foregoing function (of variable x) belongs to L' (R") and

sup/ sup Q;(x,y) dx < oo.
R

yERN nt<2
The claim follows by arguments identical to the one that we used to prove (3.7). O
Now, Theorem 1.3 follows directly from Lemmas 3.2, 3.6, 3.10 and 3.13.

4. Proof of Theorem 1.6

Proof. Thanks to (2.20) and Proposition 2.14, for g € L' (R"), we obtain

/(I—VL‘l)(g/w)(x)dx:/ @dx—f f V(x)r(x,y)@dydx
RN RN a)(x) RN JRN a)(y)

g(x) /g(y) gW) )
= (| Lay-wyLd
/Rn o " (Rn ATt
=/ g(y)dy. (4.1)
]Rn

First, we are going to prove that

leof g1 @ny < I Nl eny- (4.2)
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Theorem 1.3 combined with (2.8) implies that (4.2) is equivalent to
lo( — VAil)f”Hi(]Rn) =< C”f”HZ(]R”)‘ (4.3)
Assume that a is a classical (1, co)-atom associated with B = B(yy, 1), i.e.,

suppa C B, lalleo < 1B, / a(x) dx = 0. (4.4)
B

By the atomic characterization of HL (R™) the inequality (4.3) will be obtained if we have established that b = w(I —
VA~a € Hi(R") and

”b”HL(R”) < C (45)

with a constant C > 0 independent of a.
By (2.8),a = (I — VL™ 1)(b/w). Hence, using (4.1) we get

/ b(x) dx = 0. (4.6)
Rn

The proof of (4.5) is divided into two cases.
Case 1: 1 > 1. Set

b(0) = (b(X) — c1)xa5(X) + Y (b Xarp k=100 + 1 Xat-15(X) — Cexarp(®) = D bi(),
k=2 k=1

where
= —|2"B|_1/ b(x)dx, k=1,2,....
(2kB)¢

Here and throughout, pB = B(yq, pr) for B = B(yo, ).
We claim that

o0
D Bl eny < € (47)
k=1

From Lemma 2.9 and Proposition 2.14 we conclude that there exists o > 0 such that

o < |2"B|*1/I VlA~ a0 dx < 28] /V(x> x — yP"a(y)] dy dx
(2¥B)¢ B

(sz)c

IA

Cl2*B™! / la(y)] / V(x) [x — yol* " dxdy < C|2*B|71(2"r) ™. (4.8)
B (2kB)c

Note that supp b, € 2¥B and fR” by (x) dx = 0. Therefore (4.7) follows if we have verified that there exists g > 1 such that

o0
> Ublliaceny 2B < C, (4.9)
k=1

where C does not depend on a.
If k = 1, then

1) < le1lxas() + 1a@)] + V)1 A™ ()] x25(x)

and

1/q
lIb1]l1aany < C|2B7'14 + < / V<x>"|A—1a(x)|qu> .
2B

Notice that

1/q d 1/q
(/ V(x)q|A_]a(x)|qu> < Cr2|B|_1Z</ \/j(x)‘de> )
2B 2B

j=1
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We can consider only the summand with V;. By the Holder inequality,

1/q
r?|B|! (/ Vi (x)qu)
2B

Choosing g, s > 1 such that V; € [¥(V;) and 2 — n;/(gs) < 0 we get

IA

r? |B|—1rﬁl/q IV, ”LqS(Vl)rn](l—l/S)/q

— C|B|—1+1/qr2—"1/(SQ).

1B+ llaany < C|2B| 714, (4.10)
For k > 1, by the definition of by, we get that
Ibillaeny < lei—11257 BV + [cill2BIY? + 11Dl ja okp 2k-15)-

From (4.8) we see that first two summands can be estimated by C|2¥B|~'*1/927%* Then it remains to deal with the last
summand. By using Lemma 2.9 there exists ¢’ > 0 such that for q € (1, 1 + £] we have

q 1/q
Ibllagokgaitp) < C ( f ( f V(x>|x—y|2*”|a(y)|dy> dx)
2kp\2k=1p \JB

1/q
C ( f V@Tlx —YO|q(2_")dX> <c@n™
(zk—13>c

IA

— C|2k3|71+1/q(2kr)7<7’+n7n/q < C|2k3|—1+1/q24«3 (4.11)

provided that§ = —o’ +n —n/q > 0.
The estimate (4.9) follows from (4.10) and (4.11). This ends Case 1.
Case2: 7 < 1.Fix N € NU {0} such that 1/2 < 2"r < 1. Then

N
b(x) = (@Xw®) — coxs®)) + ¥ _ colBI (127'BI ™ xa-15() — 2Bl xpi(x))
i=1

N
+ (b0 — a@oX) + ¢olB [| 2VBI ™ xomp(®) = do(0) + Y di(x) + b (%),
i=1

where
co = |B|”! /a(x)a)(x) dx.
B
By using fB a = 0 and property (a) from Proposition 2.14, we obtain
lcol < IBI™ / la() Il @(x) — @(yo)ldx < r°[B|~". (4.12)
B

Observe that suppdy < B, deo = 0, and ||do|loc < C|B|™". Similarly, fori = 1,...,N, suppd; < 2'B, [ d; = 0 and
ldillo < Cr®|2'B|~1. Therefore

N
> ldillyy e < €+ NP < C = Crlogy 7 < C.
i=0
Define B' = 2VB. Obviously |B’| ~ 1. To deal with b’(x) we apply the method from Case 1 with respect to B, i.e.,

o0 o0
b= (b'(X) — ) xap ) + Y (B'(X) Kok a1y (%) + €y Xako1p (X) — Gty (X)) = Y bj
k=2 k=1

where
c,;=—|2’<B’|*1f b (x) dx.
(sz/)C

The arguments that we used in Case 1 also give

o0
)| < C|2*B 7127 fork=1,2,... and ZIIbLIIH;\w)fC- (4.13)
k=2
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It remains to obtain that
”b’]”H}\(Rn) <C. (4.14)

It is immediate that supp b} € 2B"and [,,, b} = 0. Also,

1/q
16}l ragny < </ V(X)q|A7]a(X)|q> + Clcol|BlI12B' |79 + Clc) || 2B|'9. (4.15)
28’

By (4.12) and (4.13) only the first summand needs to be estimated. Observe that

i if [x — yo| < 2r

< _ 2—n
st ithoe = ] =P

A7 a(x)| < flx—ylz‘"lacv)ldy < {
B
Therefore, by using Lemma 2.2, we get
16} lla@my < C

and (4.14) follows, which finishes Case 2 and the proof of (4.2).
In order to finish the proof of Theorem 1.6 it remains to prove that

”f”HL](]R{”) < C”wf”HL(Rn)- (416)
By virtue of Theorem 1.3, the inequality (4.16) is equivalent to
-1
[ =vi™) (/) |1 ny = Clig s ey (4.17)
Assume thatais an HZ (R™)-atom (see (4.4)).Set b = (I — VL™!)(a/w). The proof will be finished if we have obtained that
||b||Hi(Rn) <C (4.18)

with C independent of atom a. By (4.1), we have

/ b(x) dx=/ a(x)dx = 0.
]er Rn

Note that the proof of (4.5) only relies on estimates of I;(x, y) from above by C|x — y|>~". The same estimates hold for
I'(x,y). Moreover, the weight 1/w has the same properties as w, that is, boundedness from above and below by positive
constants and the Hoélder condition. Therefore the proof of (4.18) follows by the same arguments. Details are omitted. O

5. Proof of Theorem 1.8

By (2.1) we get a formula similar to (3.1):

K —P(I—VLY) =0Q/ —W,, (5.1)
where
t [ee]
W, = f P VKids, Q = / P, VK ds.
0 0
Recall that fori = 1, ..., n we denote by 9; the derivative in the direction of ith standard coordinate. For f € L'(R"),

from (3.1) and (5.1) we get

-1 -1
¢ dt ¢ i dt , ,
/E ks 5 - f AR~ VL T = WS @S+ Wl . (5.2)

-1

¢ dt , 2 dt
Qi = 5 3in$, Q.= i 3iQ¢$,

-1

¢ dt , 2o dt
Wi,8 = — . aiwtﬁ, Wi,& = — ] aiwtﬁ.

All the operators above are well-defined and bounded on L!(R"). By the theory of the classical Hardy spaces, R if =
-1
lim, o [ aiP[f% € L'(R") foreveryi = 1, ..., n, exactly when f € H (R"). Moreover,

n
U M gy ~ I Mg emy + D IR aiF s my- (5.3)
i=1
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The subsequent four lemmas prove that the operators @; ., @l’g
L'(R™)-bounded operators.

Wi, W/, converge strongly as ¢ — 0 in the space of

Lemma 5.4. Foreveryi =1, ..., nthe operators Q; . converge as ¢ — 0 in norm-operator topology.

Proof. The operators @; . have the integral kernels

5*1 o0
Qi (x,y) = / / / 0iP (x — 2)V(2)Ks(z, y) dz ds E.
2 t R! ﬁ

The lemma will be proved when we have obtained

sup/ QP (x, y)dx < C,
Rn

yeERM

where

@?)(x,y)zfz /[ /Rn|3iPt(x_Z)|‘/j(z)Ks(zv}’)dZd5$-

Since |3;P; (x — z)| < Ct~"2¢;(x — z) for some ¢ € S(R™) we get

/ QP (x, y)dx < C/ / f / t712¢.(x — 2)Vi(2)K; (2, y) dzdsgdx
RN R J2 t R \/E

§C/ / /t‘lvj(z)Ks(z,y)dzdsdt
2 t R

IA

IA

o0 o0
C / / / £ Vi(2)s T2 exp(—|z — y|?/4s) dz ds dt
2 t R

C (/w t—Hdc) . (/ Vi(z)|z — y> "% dz) <C, (5.5)
2 R"

where in the last inequality we used Lemma 2.2, and C does not dependony € R". O

Lemma 5.6. Foreveryi =1, ..., nthe operators W; . converge as ¢ — 0 in norm-operator topology.

Proof. The operators W; . have the integral kernels

g1 t
Wie(x,y) = / / / 0; (P—s(x — 2) — Py(x — 2)) V(2)Ks(z, y) dz ds E-
2 0o Jrn ﬁ

Set

. oo pt
WO(x,y) = / / / 105 (Pe_s(x — 2) — P(x — 20)] ;@)K (z, y) dz ds
2 0 R"

The lemma will be proved when we have obtained that

sup Wi(i) (x,y)dx < C.
yeRM JRn

t
ﬁ.

(5.7)

For fixedy € R"and 0 < 8 < 1, B will be determined later on; we write

[ee] t
/ W (x, y)dx < f / / / |8 (Pe—s(x — 2) — Pe(x — 2)) |V;(2)Ks(z, y) dz ds d dx
R" R J2 0 R" \/E

N

<)

t
ds+/ﬁds:]l+]2
t
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Observe that there exist ¥ € $(R"), ¥ > 0 such that for s € (0, t#yand t > 2 we have
10 (Pe—s(®) — Pe(0))| < st 9 (x).

Thus by using Lemma 2.2 we get

oo ptf
115// / fst‘zw[(x—z)Vj(z)IQ(z,y)dzdsdtdx
R J2 0 R
o0

< c/ t=28 dt / Vi(2)|z —y[*"dz < (. (5.8)
2 R

Note thatif t > 2 ands € [t#,t] then K;(z) < Ct=#"/2 exp(—|z|?/ct). Choosing 0 < B < 1, B close to 1, and applying
Lemma 2.2 we obtain

[t Yios(x—2)  Yelx — Z)) dt
Vi(2)Ks(z,y)dzds — d
]25/11@"/2 /tﬁ[R"< NG + NG /i(2) (Zy)Zsﬁx

] t
= C/ / / (((t =)™+ t7) Vi)t P2 exp(—|z — y|? /ct) dz ds dt
2 0 R"

o0
< C/ f Vi)t P2 exp(—|z — y[*/ct) dz dt < C/ Vi)lz —y*P"dz < G,. (5.9)
2 R" R
Notice that the constants C; and C; in (5.8) and (5.9) respectively do not depend ony € R". Thus (5.7) follows. O

Lemma 5.10. For i = 1, ..., n the operators W/ converge as ¢ — 0 in norm-operator topology.

Proof. The operators 'Wl-’, . have the integral kernel

2 t dt
WXy = / / / 0iPr_s(x — 2)V(2)Ks(z, y) dzds —.
& 0 JRM ﬁ

The lemma will be proved if we have shown that

sup W,-(")/(x,y) dx < C, (5.11)
yeERM JRN
where
2 t dt
04
W (x,y) 2[ f f |0iPe—s(x — 2)|Vj(2)Ks(z, y) dz ds —.
o Jo Jrn Jt

Fix y € R". Observe that

o 2t dt
/ WY (x, y)dx < / / / |:Pe_s(x — 2)|Vj(2)Ks(z, y) dz ds —= dx
RN R JO 0 R \/E

t/2 t
Sf d5+/ ...d5=_]3+]4.
0 t/2

There exist ¥ € $(R"), ¥ > 0, such that

2 t/2
b < / f / / (£t — )2y — 2V, @Kz, y) dz ds d dx
R" JO 0 R"

2 t
< cf f / t~Wi(2)Ks(z, y) dz ds dt
0 0 RN

2
C/ / t7'Vj(2)|z — yI* " exp (—lz — y|*/ct) dz dt
0 R

IA

scf y@i-yrras [ vz -y gk -y 1z <G
lz—yl>1/2 lz—yl<1/2
and

2 -1/2 —n/2 2 —yP?
Ja<C (t(t —s)) Yr_s(x — 2)Vj(2)t exp| ————— | dzdsdt dx
R Jo Jt/2 Jrr ct
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2 t/2 |Z _y|2
C/ / / (ts)"2Vi(2)t ™" exp (— ) dz ds dt
0 0 RN ct

e 2 |Z _'y|2 2
c/ vj(z)/ t™"2exp( — dtdz < c/ Vi(z)|z — y[*"dz < C4
RN 0 ct RN

with constants C3 and C4 independent of y € R"™. So we have obtained (5.11). O

IA

IA

Lemma 5.12. Fori =1, ..., n the operators (Q,f’s converge strongly as ¢ — 0.

Proof. The kernels of @;, are given by

2 oo
Qi (x,y) = / / / 0P (x — 2)V(2)Ks(z,y) dz ds %
e 0 R"

For f e L'(R") we have
@S0 = [ al.xnrma.
Rn
Note that (,‘Zlf"9 (x,y) = Hi ¢ * ¢y(x), where ¢ (z) = V(2)I'(z,y) and H; . (x) = f; 0;P; (x)%.

It follows from the theory of singular integrals operators that forg € L"(R"), r > 1, the limits lim,_,¢ H;  *g(x) = Hig(x)
exist for a.e. x and in L" (R") norm. Obviously, H; are L" (R")-bounded operators. Moreover,

sup |Hje * g|

O<e<2

< Cligllr@n)- (5.13)
L' (RM)

Notice that for |z| > 1/2 we have

sup |Hie(2)| < Cylz| ™. (5.14)

O<e<2

From (5.13) and (5.14) we deduce that if a is a function supported in a ball B(yo, R), R > 1/2, and ||a||r @) < T|B|~1HT,
r > 1,then

sup |H; . *al
O0<e<2

<Ct. (5.15)
L1(R™)

Using Lemma 2.2 we get that for every y € R" the limit lim, .o Q/, (x, y) = Q/(x, y) exists for a.e. x € R". The lemma will
be proved by using Lebesgue’s dominated convergence theorem if we have established that

supf sup @, (x,y)|dx <C and (5.16)
yeRM JRN 0<e<2 ’

lirr(l) |Q; ,(x,y) — Qj(x,y)|dx =0 foreveryy. (5.17)
E—> RN

For fixed y € R" let
$12) = Sy xpy.2) (@), B2 = DY@ Xy 24y, 2k-1)(2), k> 2.

Then ¢, = > 2, ¢ where the series converges in LY(R™) and L"(R") norm for r slightly bigger than 1. Notice that
supp ¢k < B(y, 25), l|¢1llir@ny < C,and

— k(2—
el gn) 2/ Vi@)'lz —y|® " dz < 2@ ””[ Vi(2)" dz
B(y.26)\B(y,2k1) B(y,2%)

< CACTIIREID Vi, 2T = €A, (5.18)
Therefore, for ¢ < ny/2r such that V; € L'%(V;), we get

l@rllir ny < CIB(y, 2%)| 711270k, (5.19)
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where o = n;/(qr) — 2 > 0. By using (5.15) combined with (5.19) we obtain

/ sup 1@}, (x, )| dx = / sup [Hyedhy (0 dx
R 2 R 2

n0<e< n0<e<

<[ s IH 0

k=1 n0<e<2

IA

o0
cy 2% =<c, (5.20)
k=1

which implies (5.16), since the last constant C does not depend on y. Additionally (5.17) is a consequence of (5.16) and
Lebesgue’s dominated convergence theorem. O

Now, Theorem 1.8 follows directly by applying (5.2) and (5.3), and Theorem 1.3.
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