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a b s t r a c t

We investigate the Hardy space H1
L associated with the Schrödinger operator L = −∆+ V

on Rn, where V =
d

j=1 Vj. We assume that each Vj depends on variables from a linear
subspace Vj of Rn, dimVj ≥ 3, and Vj belongs to Lq(Vj) for certain q. We prove that there
exist two distinct isomorphisms of H1

L with the classical Hardy space. We deduce as a
corollary a specific atomic characterization of H1

L . We also prove that the space H1
L can be

described by means of the Riesz transforms RL,i = ∂iL−1/2.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction and the main results

In the paper we consider a Schrödinger operator on Rn given by

Lf (x) = −∆f (x)+ V (x)f (x),

where∆ denotes the Laplace operator. Throughout the whole paper we assume that the potential V satisfies:

(A1) there exist Vj ≥ 0, Vj ≢ 0 such that

V (x) =

d
j=1

Vj(x),

(A2) for every j ∈ {1, . . . , d} there exists a linear subspace Vj of Rn of dimension nj ≥ 3 such that if ΠVj denotes the
orthogonal projection on Vj then

Vj(x) = Vj(ΠVjx),

(A3) there exists κ > 0 such that for j = 1, . . . , d we have

Vj ∈ Lr(Vj)

for all r satisfying |r − nj/2| ≤ κ .
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Denote by Kt = exp(−tL) and Pt = exp(t∆) the semigroups of linear operators associated with L and∆ respectively. Let
Kt(x, y) and Pt(x − y) denote the integral kernels of these semigroups. The Feynman–Kac formula implies that

0 ≤ Kt(x, y) ≤ Pt(x − y) = (4π t)−n/2 exp

−|x − y|2/4t


. (1.1)

LetML and M∆ be the associated maximal operators, i.e.,

MLf (x) = sup
t>0

|Kt f (x)| M∆f (x) = sup
t>0

|Pt f (x)|.

The Hardy spaces H1
L (R

n) and H1
∆(R

n) are the subspaces of L1(Rn) defined by

f ∈ H1
L (R

n) ⇐⇒ MLf ∈ L1(Rn), f ∈ H1
∆(R

n) ⇐⇒ M∆f ∈ L1(Rn)

with the norms

∥f ∥H1
L (R

n) = ∥MLf ∥L1(Rn), ∥f ∥H1
∆(R

n) = ∥M∆f ∥L1(Rn).

Clearly the spaceH1
∆(R

n) is the classical Hardy spaceH1(Rn) (see [1]). The goal of the paper is to prove some characterizations
of the space H1

L (R
n).

Denote by L−1 and (−∆)−1 the operators with the kernels Γ (x, y) =


∞

0 Kt(x, y) dt and Γ0(x − y) =


∞

0 Pt(x − y) dt .
Clearly,

0 ≤

 t

0
Ks(z, y) ds ≤ Γ (z, y) ≤ Γ0(z − y) = C |z − y|2−n. (1.2)

We shall see that operators I − VL−1 and I − V∆−1 are bounded on L1(Rn) and give the following characterization of the
Hardy space H1

L (R
n).

Theorem 1.3. Assume f ∈ L1(Rn). Then f belongs to H1
L (R

n) if and only if (I − VL−1)f belongs to the classical Hardy space
H1
∆(R

n). Moreover,

∥f ∥H1
L (R

n) ∼ ∥(I − VL−1)f ∥H1
∆(R

n).

We define the weight function ω by

ω(x) = lim
t→∞


Rn

Kt(x, y) dy. (1.4)

The above limit exists because, by (1.1) and the semigroup property, the function t → Kt1(x) is non-increasing and takes
values in [0, 1]. Clearly, the function ω is L-harmonic, because by (1.4) for every t > 0,

ω(x) = Ktω(x) =


Rn

Kt(x, y)ω(y) dy. (1.5)

We shall prove that there exists δ > 0 such that δ ≤ ω(x) ≤ 1 (see Proposition 2.14). Moreover, ω is the unique (up to a
multiplicative constant) bounded L-harmonic function. To see this we can briefly argue as follows. Let w be any bounded
L-harmonic function. It follows from Corollary 2.7 that w = (I − L−1V )(I − ∆−1V )w and h = (I − ∆−1V )w is bounded
and ∆-harmonic. Thus, h(x) = c01(x) and, consequently, w(x) = c0(I − L−1V )1(x). So we see that the space of bounded
L-harmonic functions is one-dimensional.

We are now in a position to state our second main result.

Theorem 1.6. Let f ∈ L1(Rn). Then f belongs to H1
L (R

n) if and only if ωf belongs to H1
∆(R

n). Additionally,

∥f ∥H1
L (R

n) ∼ ∥ωf ∥H1
∆(R

n).

FromTheorem1.6weget atomic characterizations of the elements ofH1
L (R

n).We call a function a anω-atom if it satisfies:

• there exists a ball B = B(y, r) such that supp a ⊆ B,
• ∥a∥∞ ≤ |B|−1,
•


Rn a(x)ω(x) dx = 0.

Corollary 1.7. If a function f belongs to H1
L (R

n) then there exist a sequence ak of ω-atoms and a sequence λk ∈ C such that
∞

k=1 |λk| < ∞, f =


∞

k=1 λkak, and

∥f ∥H1
L (R

n) ∼

∞
k=1

|λk|.
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For i = 1, . . . , n denote by ∂i the derivative in the direction of the ith canonical coordinate of Rn. For f ∈ L1(Rn) the
classical Riesz transforms R∆,i are given by

R∆,if = lim
ε→0

 ε−1

ε

∂iPt f
dt
√
t
.

Similarly we define the Riesz transforms RL,i associated with L by setting

RL,if = lim
ε→0

 ε−1

ε

∂iKt f
dt
√
t
.

We shall see that the last limits are well-defined in the sense of distributions and they characterize H1
L (R

n) in the following
sense.

Theorem 1.8. An L1(Rn)-function f belongs to H1
L (R

n) if and only if RL,if belong to L1(Rn) for i = 1, . . . , n. Additionally,

∥f ∥H1
L (R

n) ∼ ∥f ∥L1(Rn) +

n
i=1

∥RL,if ∥L1(Rn).

Hardy spaces associated with semigroups of linear operators and in particular Schrödinger semigroups have attracted
the attention of many authors; see, e.g., [2–10] and references therein. The present paper generalizes the results of [11,12],
where the spaces H1

L (R
n)were studied under certain assumptions: V ≥ 0, supp V is compact, V ∈ Lr(Rn) for some r > n/2.

Obviously such potentials V satisfy the conditions (A1)–(A3). To prove Theorems 1.3, 1.6 and 1.8 we develop methods of
[11,12].

Let us finally mention some differences that occur in atomic decompositions of Hardy spaces for Schrödinger operators
for various classes of potentials in Rd, d ≥ 1. In the case considered here, each atom a satisfies the cancelation condition
aω = 0. On the other hand, the one-dimensional situation is different and was studied in [4]. The authors considered

there any non-negative locally integrable potential V and defined a special family of intervals {Ij}j that cover R. Then, the
atoms are either classical atoms for H1(R) supported in (1+ δ)Ij or a = |Ij|−1χIj for some j. A similar situation arises, e.g., for
non-negative polynomial potentials or, more generally, for potentials from some non-negative reverse Hölder classes in
higher dimensions. In these cases, the atoms are properly scaled local atoms in the sense of Goldberg [13], which means
that some of them do not need to satisfy cancelation conditions; see [5–8] for details and more examples.

In [10] the authors provide a very general theory of Hardy spaces for Schrödinger operators. They proved the special
atomic decomposition; however their atoms are of a different nature than those considered in [5–8,11,12]. The atoms in [10]
are of the form a = LNb, where b is appropriately localized L-regular function; see Definition 2.1 of [10].

Finally, the reader interested in boundedness of spectral multipliers on Hardy spaces associated with Schrödinger
operators is referred to [14,9], and references therein.

2. Auxiliary lemmas

In the paper we shall use the following notation. For z ∈ Rn and a subspace Vj of Rn we write

z = zj +zj, zj = ΠVj(z), zj = ΠV⊥
j
(z), nj = dimV⊥

j = n − nj.

Notice that if Vj = Rn, then, in fact, there is no V⊥

j .
The relation between Pt and Kt is given by the perturbation formula:

Pt = Kt +

 t

0
Pt−sVKs ds. (2.1)

The following two lemmas state crucial estimates that will be used in many proofs of this paper.

Lemma 2.2. There exists λ > 0 such that

sup
y∈Rn

∥V (·)| · −y|2−n+µ
∥Lr (Rn) ≤ C for r ∈ [1, 1 + λ] and µ ∈ [−λ, λ]. (2.3)

Proof. It suffices to prove (2.3) for V = V1. For fixed y ∈ Rn we have

∥V1(·)| · −y|2−n+µ
∥
r
Lr (Rn) ≤ C


V1


V⊥
1

V1(z1)r

|z1 − y1|−r(2−n+µ) + |z1 −y1|−r(2−n+µ)
dz1 dz1. (2.4)
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Observe that if λ > 0 is sufficiently small, r ∈ [1, 1 + λ], and µ ∈ [−λ, λ] then
V⊥
1


|z1 − y1|−r(2−n+µ)

+ |z1 −y1|−r(2−n+µ)−1
dz1

≤ C


|z1−y1|>|z1−y1| |z1 − y1|r(2−n+µ) dz1 + C


|z1−y1|≤|z1−y1| |z1 −y1|r(2−n+µ) dz1
≤ C |z1 − y1|r(2−n+µ)+n1 . (2.5)

Thus, by (2.5),

∥V1(·)| · −y|2−n+µ
∥
r
Lr (Rn) ≤ C


|z1−y1|≤1

V1(z1)r |z1 − y1|r(2−n+µ)+n1 dz1
+ C


|z1−y1|>1

V1(z1)r |z1 − y1|r(2−n+µ)+n1 dz1. (2.6)

Note that by (A3) there exist t, s > 1 such that V r
1 ∈ Lt(V1) ∩ Ls(V1) and

χ{|z1|≤1}(z1)|z1|r(2−n+µ)+n1 ∈ Lt
′

(V1), χ{|z1|>1}(z1)|z1|r(2−n+µ)+n1 ∈ Ls
′

(V1)

for r ∈ [1, 1 + λ] and µ ∈ [−λ, λ] provided λ > 0 is small enough. Thus (2.3) follows from the Hölder inequality. �

Corollary 2.7. The operators I − V∆−1 and I − VL−1 are bounded on L1(Rn) and

(I − VL−1)(I − V∆−1)f = (I − V∆−1)(I − VL−1)f = f for f ∈ L1(Rn). (2.8)

Lemma 2.9. There exist σ , ε > 0 such that for s ∈ [1, 1 + ε] and R ≥ 1 we have

sup
y∈Rn


|z−y|>R

V (z)s|z − y|s(2−n) dz ≤ CR−σ . (2.10)

Proof. It is enough to prove (2.10) forV = V1. Fix q > 1 and ε > 0 such thatn1/q(1+ε)−2 > 0 andV1 ∈ Lq(1+ε)(V1)∩Lq(V1)
(see (A3)). Set σ = n1/q − 2. For s ∈ [1, 1 + ε] we have

|z−y|>R
V1(z)s|z − y|s(2−n) dz ≤


|z1−y1|≥|z1−y1| χ{|z−y|>R}(z)V1(z)s|z1 − y1|s(2−n) dz

+


|z1−y1|<|z1−y1| χ|z−y|>R(z)V1(z)s|z1 −y1|s(2−n) dz

= T (R)+ S(R). (2.11)

If |z1 − y1| ≥ |z1 −y1| and |z − y| > R ≥ 1, then |z1 − y1| > R/2 ≥ 1/2. Thus,

T (R) ≤ C


|z1−y1|>R/2
|z1 − y1|n−n1V1(z1)s|z1 − y1|s(2−n) dz1

≤ C∥V1∥
s
Lqs(V1)


|z1−y1|>R/2

|z1 − y1|(s(2−n)+n−n1)q′

dz1

1/q′

= CR−σ . (2.12)

Similarly, if |z1 − y1| < |z1 −y1| and |z − y| > R ≥ 1, then |z1 −y1| > R/2 ≥ 1/2 and

S(R) ≤ C


|z1−y1|>R/2
∥V1∥

s
Lsq(V1)


|z1−y1|<|z1−y1| dz1

1/q′

|z1 −y1|s(2−n) dz1
≤ C


|z1−y1|>R/2

|z1 −y1|s(2−n)+n1/q′

dz1 = CR−σ . � (2.13)

We shall need the following properties of the function ω, similar to those that hold in the case of compactly supported
potentials (cf. [11, Lemma 2.4]).

Proposition 2.14. There exist γ , δ > 0 such that for x, y ∈ Rn we have
(a) |ω(x)− ω(y)| ≤ Cγ |x − y|γ ,
(b) δ ≤ ω(x) ≤ 1.
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Proof. The property (a) can be proved by a slight modification of the proof of (2.6) in [11]. Indeed, thanks to (1.5) and
0 ≤ ω(x) ≤ 1, it suffices to show that there are C, γ > 0 such that for |h| < 1 we have

Rn
|K1(x + h, y)− K1(x, y)| dy ≤ C |h|γ . (2.15)

To this purpose, by using (2.1), it is enough to establish that

d
j=1


Rn

 1

0


Rn
(Ps(x + h − z)− Ps(x − z))Vj(z)K1−s(z, y) dz ds

 dy ≤ C |h|γ .

Consider one summand that contains V1. Utilizing the fact that Ps(x) = Ps(x1)Ps(x̃1), where Ps(x1) and Ps(x̃1) are the heat
kernels on V1 and V⊥

1 respectively, we have

I =


Rn

 1

0


Rn
(Ps(x + h − z)− Ps(x − z))V1(z)K1−s(z, y) dz ds

 dy

≤

 1

0


Rn

|Ps(x + h − z)− Ps(x − z)|V1(z) dz ds

≤

 1

0


Rn

Ps(x1 + h1 − z1)|Ps(x̃1 + h̃1 − z̃1)− Ps(x̃1 − z̃1)|V1(z1) dz ds

+

 1

0


Rn

Ps(x̃1 − z̃1) |Ps(x1 + h1 − z1)− Ps(x1 − z1)| V1(z1) dz ds. (2.16)

By taking q > n1/2 such that V1 ∈ Lq(V1) and using the Hölder inequality we obtain

I ≤

 1

0
∥Ps(x1)∥Lq′ (V1)

∥V1(z1)∥Lq(V1)


V⊥
1

|Ps(x̃1 + h̃1 − z̃1)− Ps(x̃1 − z̃1)| dz̃1 ds

+

 1

0


V1

Ps(x1 + h1 − z1)− Ps(x1 − z1)
q′

dz1

1/q′

∥V1(z1)∥Lq(V1) ds

≤ C(|h̃1|
γ

+ |h1|
γ ), (2.17)

which finishes the proof of (a).
Next we note that

Kt(x, y) > 0 for t > 0 and x, y ∈ Rn. (2.18)

The proof of (2.18) is a straightforward adaptation of the proof of [11, Lemma 2.12]. We omit the details.
Our next task is to establish that there exists δ > 0 such that

ω(x) ≥ δ. (2.19)

The proof of (2.19) goes by induction on d. Assume first that we have only one potential V1, that is, d = 1. Then,
Kt(x, y) = K {1}

t (x1, y1)Pt(x̃1 − ỹ1), where K {1}
t (x1, y1) is the kernel of the semigroup generated by ∆ − V1(x1) on V1 and

Pt(x̃1) is the classical heat semigroup on V⊥

1 . Hence ω(x) = ω0(x1), where ω0(x1) = limt→∞


V1

K {1}
t (x1, y1) dy1. Therefore,

there is no loss of generality in proving (2.19) if we assume that V1 = Rn. If we integrate (2.1) over Rn and take the limit as
t → ∞, then we get

1 − ω(x) =


Rn

V (y)Γ (x, y) dy, where Γ (x, y) ≤ C |x − y|2−n. (2.20)

By (A3) and the Hölder inequality we can find t, s > 1 such that V ∈ Lt(Rn) ∩ Ls(Rn), χ{|x|≤1}(x)|x|2−n
∈ Lt

′

(Rn), and
χ{|x|>1}(x)|x|2−n

∈ Ls
′

(Rn). Thus (2.20) leads to

lim
|x|→∞


Rn

V (y)|x − y|2−n dy = 0 and lim
|x|→∞

ω(x) = 1. (2.21)

Eq. (1.5) combined with (2.18) and (2.21) implies that w(x) > 0 for every x ∈ Rn. Since ω is continuous (see (a)) and
lim|x|→∞ ω(x) = 1, we get (2.19).

Using induction, we assume that (2.19) is true for V being a sum of d − 1 potentials. Take V = V1 + · · · + Vd. As in the
case of d = 1, we can assume that lin{V1, . . . ,Vd} = Rn. Consider the semigroup {St}t>0 generated by −∆+ V2 + · · · + Vd.
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Let ω1(x) = limt→∞


Rn St(x, y) dy. By the inductive assumption ω1(x) ≥ δ1. Similarly to (2.20), the perturbation formula

St = Kt +

 t

0
St−sV1Ks ds

implies

δ1 ≤ ω1(y) ≤ ω(y)+ C


Rn
V1(z)|z − y|2−n dz ≤ ω(y)+ C


V1

V1(z1)|z1 − y1|2−n1 dz1, (2.22)

where the last inequality is proved in (2.5). If y1 → ∞ then the integral on the right hand side of (2.22) goes to zero. Hence,
ω(y) > δ1/2 provided |y1| > R1. We repeat the argument for each V2, . . . , Vd instead of V1 and deduce that there exist
R, δ > 0 such that ω(x) > δ for |x| > R. Consequently, by using (1.5) and (2.18) and continuity of ω we obtain (2.19). �

3. Proof of Theorem 1.3

By (2.1) we get

Kt − Pt(I − VL−1) = Qt − Wt , (3.1)

where

Wt =

 t

0
(Pt−s − Pt) V Ks ds, Qt =


∞

t
Pt V Ks ds.

Let

Wt(x, y) =

d
j=1

W ⟨j⟩
t (x, y) =

d
j=1

 t

0


Rn
(Pt−s(x − z)− Pt(x − z))Vj(z)Ks(z, y) dz ds,

Qt(x, y) =

d
j=1

Q ⟨j⟩
t (x, y) =

d
j=1


Rn

Pt(x, z)


∞

t
Vj(z)Ks(z, y) ds dz

be the integral kernels ofWt and Qt respectively. In order to prove Theorem 1.3 it is sufficient to establish that the maximal
operators f → supt>0 |Wt f | and f → supt>0 |Qt f | are bounded on L1(Rn). The proofs of these facts are presented in the
following four lemmas.

Lemma 3.2. The operator f → supt>2 |Wt f | is bounded on L1(Rn).

Proof. It suffices to prove that

sup
y∈Rn


Rn

sup
t>2

|Wt(x, y)| dx < ∞.

Without loss of generality we can consider onlyW ⟨j⟩
t (x, y). For 0 < β < 1, which will be fixed later on, we write

W ⟨1⟩
t (x, y) =

 t

0


Rn
(Pt−s(x − z)− Pt(x − z))V1(z)Ks(z, y) dz ds

=

 tβ

0
· · · +

 t

tβ
· · · = F1(x, y; t)+ F2(x, y; t).

To estimate F1 observe that for t > 2 and s ≤ tβ < t there exists φ ∈ S(Rn) such that

|Pt−s(x − z)− Pt(x − z)| ≤ C
s
t
φt(x − z). (3.3)

Here and subsequently, ft(x) = t−n/2f (x/
√
t) and S denotes the Schwartz class of functions. From (1.2) and (3.3), we get

|F1(x, y; t)| ≤ Ct−1+β


Rn
φt(x − z)V1(z)|z − y|2−ndz.

Since supt>2 t−1+βφt(x − z) ≤ C(1 + |x − z|)−n−2+2β , we have that

sup
y∈Rn


Rn

sup
t>2

|F1(x, y; t)|dx ≤ C


Rn
V1(z)|z − y|2−n dz ≤ C,

where the last inequality comes from Lemma 2.2.
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To deal with F2 we write

F2(x, y; t) =

 t

tβ


Rn

Pt−s(x − z)V1(z)Ks(z, y) dz ds −

 t

tβ


Rn

Pt(x − z)V1(z)Ks(z, y) dz ds

= F ′

2(x, y; t)− F ′′

2 (x, y; t).

Observe that for s ∈ [tβ , t] we have

Ks(z, y) ≤ Ct−βn/2 exp

−|z − y|2/4t


. (3.4)

Also  t

0
Pt−s(x − z) ds =

 t

0
Ps(x − z) ds ≤ C |x − z|2−n exp


−|x − z|2/ct


. (3.5)

As a consequence of (3.4) and (3.5) we obtain

F ′

2(x, y; t) ≤ C


Rn
t−βn/2|x − z|2−n exp


−|x − z|2/ct


V1(z1) exp


−|z − y|2/4t


dz.

Then, for ε > 0,

sup
t>2

t−βn/2 exp

−|x − z|2/ct


exp


−|z − y|2/4t


≤ C sup

t>2
t−1−ε exp


−|x − z|2/ct


· sup

t>2
t−βn/2+1+ε exp


−|z − y|2/4t


≤ C(1 + |x − z|)−2−2ε

|z − y|2+2ε−βn.

Consequently,

sup
y∈Rn


Rn

sup
t>2

F ′

2(x, y; t) dx ≤ C sup
y∈Rn


Rn


Rn

|x − z|2−n

(1 + |x − z|)2+2ε
|z − y|2+2ε−βnV1(z) dx dz

≤ C sup
y∈Rn


Rn

|z − y|2+2ε−βnV1(z1) dz.

If we choose β < 1 close to 1 and ε small, then we can apply Lemma 2.2 and get

sup
y∈Rn


Rn

sup
t>2

F ′

2(x, y; t) dx ≤ C .

We now turn to estimating F ′′

2 (x, y; t). Observe that for ε > 0 we have t

tβ
Ks(z, y) ds ≤ C


∞

tβ
t−βεs−n/2+ε exp


−|z − y|2/(4s)


ds ≤ Ct−βε|z − y|2−n+2ε.

Then from Lemma 2.2 we conclude that

sup
y∈Rn


Rn

sup
t>2

F ′′

2 (x, y; t) dx ≤ C sup
y∈Rn


Rn


Rn

sup
t>2

t−βεPt(x − z)V1(z)|z − y|2−n+2ε dx dz

≤ C sup
y∈Rn


Rn


Rn
(1 + |x − z|)−n−2βεV1(z)|z − y|2−n+2ε dx dz

≤ C sup
y∈Rn


Rn

V1(z)|z − y|2−n+2ε dz ≤ C,

provided ε > 0 is small enough. �

Lemma 3.6. The operator f → supt≤2 |Wt f | is bounded on L1(Rn).

Proof. It is enough to prove that

sup
y∈Rn


Rn

sup
t≤2

|W ⟨1⟩
t (x, y)| dx < ∞.

We have t

0


Rn
(Pt−s(x − z)− Pt(x − z))V1(z)Ks(z, y) dz ds =

 t/2

0
· · · +

 t

t/2
· · · = F3(x, y; t)+ F4(x, y; t).
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To deal with F3 observe that for t ≤ 2, s ≤ t/2 we have

|Pt−s(x − z)− Pt(x − z)| ≤ Cφt(x − z),

where φ ∈ S(Rn), φ ≥ 0. Therefore

sup
t≤2

|F3(x, y; t)| ≤ C sup
t≤2


Rn
φt(x − z)V1(z)|z − y|2−ndz.

Denote byM0
φ the classical local maximal operator associated with φ, that is,

M0
φ f (x) = sup

t≤2
|φt ∗ f (x)|.

Then

sup
t≤2

|F3(x, y; t)| ≤ CM0
φ(ξy)(x),

where ξy(z) = V1(z)|z − y|2−n. We claim that

sup
y∈Rn


Rn

sup
t≤2

|F3(x, y)|dx ≤ C sup
y∈Rn


Rn

M0
φ(ξy)(x) dx ≤ C . (3.7)

To obtain (3.7) we write

ξy(z) =

∞
k=1

ξy,k(z),

where

ξy,1(z) = V1(z)|z − y|2−nχB(y,2)(z), ξy,k(z) = V1(z)|z − y|2−nχB(y,2k)\B(y,2k−1)(z), k > 1.

From Lemma 2.2 it follows that there exists s > 1 such that

supp ξy,1 ⊆ B(y, 2) and ∥ξy,1∥Ls(Rn) ≤ C ≤ C |B(y, 2)|−1+1/s. (3.8)

Consider ξy,k for k > 1. Set q < n1/2 such that V1 ∈ Lq(V1). Then

supp ξy,k ⊆ B(y, 2k)

∥ξy,k∥Lq(Rn) ≤ C2k(2−n)
∥V1∥Lq(V1)2

k(n−n1)/q ≤ C |B(y, 2k)|−1+1/q2−ρk, (3.9)

where ρ = n1/q − 2. Now, our claim (3.7) follows from (3.8) and (3.9), and the classical theory of local maximal operators.
It remains to analyze F4 = F5 − F6, where

F5(x, y; t) =

 t

t/2


Rn

Pt−s(x − z)V1(z)Ks(z, y) dz ds,

F6(x, y; t) =

 t

t/2


Rn

Pt(x − z)V1(z)Ks(z, y) dz ds.

Clearly,

sup
s∈[t/2,t]

Ks(z, y) ≤ Ct−n/2 exp

−|z − y|2/ct


.

Therefore, for 0 < t ≤ 2 and 0 < γ < 1 close to 1 we get

F5(x, y; t) ≤ C
 t/2

0


Rn

t−γ Ps(x − z)V1(z)t−n/2+γ exp

−|z − y|2/ct


dz ds

≤ C


Rn
|x − z|2−nt−γ exp


−|x − z|2/ct


V1(z)|z − y|−n+2γ dz

≤ C


Rn
|x − z|2−n−2γ exp


−|x − z|2/c ′


V1(z)|z − y|−n+2γ dz.

Thus, by using Lemma 2.2, we get

sup
y∈Rn


Rn

sup
0<t≤2

F5(x, y; t)dx ≤ C .



J. Dziubański, M. Preisner / J. Math. Anal. Appl. 396 (2012) 173–188 181

To deal with F6 we observe that for 0 < t ≤ 2 and 0 < γ < 1 close to 1 we have

F6(x, y; t) ≤ C


Rn
tPt(x − z)V1(z1)t−n/2 exp


−|z − y|2/ct


dz

≤


Rn

|x − z|2−n−2γ exp

−|x − z|2/c ′


V1(z)|z − y|−n+2γ dz

and, consequently,

sup
y∈Rn


Rn

sup
t<2

F6(x, y; t) dx ≤ C . �

Lemma 3.10. The operator f → supt>2 |Qt f | is bounded on L1(Rn).

Proof. Notice that for ε > 0 and t > 2 we have
∞

t
Ks(z, y) ds ≤ C


∞

t
s−εs−n/2+ε exp


−

|y − z|2

4s


ds ≤ Ct−ε|y − z|2−n+2ε. (3.11)

It causes no loss of generality to consider only Q ⟨1⟩
t (x, y). If t > 2, then

0 ≤ Q ⟨1⟩
t (x, y) ≤ C


Rn

Pt(x − z)V1(z)t−ε|y − z|2−n+2ε dz.

Since supt>2 t−εPt(x − z) ≤ C(1 + |x − z|)−n−2ε , we find that

sup
y∈Rn


Rn

sup
t>2

Q ⟨1⟩
t (x, y) dx ≤ C sup

y∈Rn


Rn


Rn
(1 + |x − z|)−n−2εV1(z)|y − z|2−n+2ε dz dx

≤ C sup
y∈Rn


Rn

V1(z)|y − z|2−n+2ε dz ≤ C . (3.12)

The last inequality follows from Lemma 2.2. �

Lemma 3.13. The operator f → supt≤2 |Qt f | is bounded on L1(Rn).

Proof. The estimate


∞

t Ks(z, y) ds ≤ C |z − y|2−n implies

sup
t≤2

Qt(x, y) ≤ C sup
t≤2


Rn

Pt(x − z)V (z)|z − y|2−n dz.

We claim that for fixed y ∈ Rn the foregoing function (of variable x) belongs to L1(Rn) and

sup
y∈Rn


Rn

sup
t≤2

Qt(x, y) dx < ∞.

The claim follows by arguments identical to the one that we used to prove (3.7). �

Now, Theorem 1.3 follows directly from Lemmas 3.2, 3.6, 3.10 and 3.13.

4. Proof of Theorem 1.6

Proof. Thanks to (2.20) and Proposition 2.14, for g ∈ L1(Rn), we obtain
Rn
(I − VL−1)(g/ω)(x) dx =


Rn

g(x)
ω(x)

dx −


Rn


Rn

V (x)Γ (x, y)
g(y)
ω(y)

dy dx

=


Rn

g(x)
ω(x)

dx −


Rn

g(y)
ω(y)

dy − w(y)
g(y)
ω(y)

dy


=


Rn

g(y) dy. (4.1)

First, we are going to prove that

∥ωf ∥H1
∆(R

n) ≤ ∥f ∥H1
L (R

n). (4.2)
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Theorem 1.3 combined with (2.8) implies that (4.2) is equivalent to

∥ω(I − V∆−1)f ∥H1
∆(R

n) ≤ C∥f ∥H1
∆(R

n). (4.3)

Assume that a is a classical (1,∞)-atom associated with B = B(y0, r), i.e.,

supp a ⊆ B, ∥a∥∞ ≤ |B|−1,


B
a(x) dx = 0. (4.4)

By the atomic characterization of H1
∆(R

n) the inequality (4.3) will be obtained if we have established that b = ω(I −

V∆−1)a ∈ H1
∆(R

n) and

∥b∥H1
∆(R

n) ≤ C (4.5)

with a constant C > 0 independent of a.
By (2.8), a = (I − VL−1)(b/ω). Hence, using (4.1) we get

Rn
b(x) dx = 0. (4.6)

The proof of (4.5) is divided into two cases.
Case 1: r ≥ 1. Set

b(x) = (b(x)− c1)χ2B(x)+

∞
k=2


b(x)χ2kB\2k−1B(x)+ ck−1χ2k−1B(x)− ckχ2kB(x)


=

∞
k=1

bk(x),

where

ck = −|2kB|−1

(2kB)c

b(x) dx, k = 1, 2, . . . .

Here and throughout, ρB = B(y0, ρr) for B = B(y0, r).
We claim that

∞
k=1

∥bk∥H1
∆(R

n) ≤ C . (4.7)

From Lemma 2.9 and Proposition 2.14 we conclude that there exists σ > 0 such that

|ck| ≤ |2kB|−1

(2kB)c

V (x)|∆−1a(x)| dx ≤ C |2kB|−1

(2kB)c


B
V (x) |x − y|2−n

|a(y)| dy dx

≤ C |2kB|−1

B
|a(y)|


(2kB)c

V (x) |x − y0|2−n dx dy ≤ C |2kB|−1(2kr)−σ . (4.8)

Note that supp bk ⊆ 2kB and


Rn bk(x) dx = 0. Therefore (4.7) follows if we have verified that there exists q > 1 such that

∞
k=1

∥bk∥Lq(Rn)|2kB|1−1/q
≤ C, (4.9)

where C does not depend on a.
If k = 1, then

|b1(x)| ≤ |c1|χ2B(x)+ |a(x)| + V (x)|∆−1a(x)|χ2B(x)

and

∥b1∥Lq(Rn) ≤ C |2B|−1+1/q
+


2B

V (x)q|∆−1a(x)|qdx
1/q

.

Notice that
2B

V (x)q|∆−1a(x)|qdx
1/q

≤ Cr2|B|−1
d

j=1


2B

Vj(x)qdx
1/q

.
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We can consider only the summand with V1. By the Hölder inequality,

r2|B|−1


2B
V1(x)qdx

1/q

≤ Cr2|B|−1rn1/q∥V1∥Lqs(V1)r
n1(1−1/s)/q

= C |B|−1+1/qr2−n1/(sq).

Choosing q, s > 1 such that V1 ∈ Lqs(V1) and 2 − n1/(qs) < 0 we get

∥b1∥Lq(Rn) ≤ C |2B|−1+1/q. (4.10)

For k > 1, by the definition of bk, we get that

∥bk∥Lq(Rn) ≤ |ck−1∥2k−1B|1/q + |ck∥2kB|1/q + ∥b∥Lq(2kB\2k−1B).

From (4.8) we see that first two summands can be estimated by C |2kB|−1+1/q2−kσ . Then it remains to deal with the last
summand. By using Lemma 2.9 there exists σ ′ > 0 such that for q ∈ (1, 1 + ε] we have

∥b∥Lq(2kB\2k−1B) ≤ C


2kB\2k−1B


B
V (x)|x − y|2−n

|a(y)| dy
q

dx
1/q

≤ C


(2k−1B)c
V (x)q|x − y0|q(2−n)dx

1/q

≤ C(2kr)−σ
′

= C |2kB|−1+1/q(2kr)−σ
′
+n−n/q

≤ C |2kB|−1+1/q2−kδ (4.11)

provided that δ = −σ ′
+ n − n/q > 0.

The estimate (4.9) follows from (4.10) and (4.11). This ends Case 1.
Case 2: r < 1. Fix N ∈ N ∪ {0} such that 1/2 < 2N r ≤ 1. Then

b(x) = (a(x)ω(x)− c0χB(x))+

N
i=1

c0|B|

|2i−1B|−1χ2i−1B(x)− |2iB|−1χ2iB(x)


+


b(x)− a(x)ω(x)+ c0|B ∥ 2NB|−1χ2NB(x)


= d0(x)+

N
i=1

di(x)+ b′(x),

where

c0 = |B|−1

B
a(x)ω(x) dx.

By using

B a = 0 and property (a) from Proposition 2.14, we obtain

|c0| ≤ |B|−1

B
|a(x) ∥ ω(x)− ω(y0)|dx ≤ rδ|B|−1. (4.12)

Observe that supp d0 ⊆ B,

B d0 = 0, and ∥d0∥∞ ≤ C |B|−1. Similarly, for i = 1, . . . ,N , supp di ⊆ 2iB,


di = 0 and

∥di∥∞ ≤ Crδ|2iB|−1. Therefore

N
i=0

∥di∥H1
∆(R

n) ≤ C + CNrδ ≤ C − Crδ log2 r ≤ C .

Define B′
= 2NB. Obviously |B′

| ∼ 1. To deal with b′(x)we apply the method from Case 1 with respect to B′, i.e.,

b′
= (b′(x)− c ′

1)χ2B′(x)+

∞
k=2


b′(x)χ2kB′\2k−1B′(x)+ c ′

k−1χ2k−1B′(x)− c ′

kχ2kB′(x)


=

∞
k=1

b′

k,

where

c ′

k = −|2kB′
|
−1


(2kB′)c

b′(x) dx.

The arguments that we used in Case 1 also give

|c ′

k| ≤ C |2kB′
|
−12−kσ for k = 1, 2, . . . and

∞
k=2

∥b′

k∥H1
∆(R

n) ≤ C . (4.13)
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It remains to obtain that

∥b′

1∥H1
∆(R

n) ≤ C . (4.14)

It is immediate that supp b′

1 ⊆ 2B′ and

2B′ b′

1 = 0. Also,

∥b′

1∥Lq(Rn) ≤


2B′

V (x)q|∆−1a(x)|q
1/q

+ C |c0∥B∥2B′
|
−1+1/q

+ C |c ′

1 ∥ 2B′
|
1/q. (4.15)

By (4.12) and (4.13) only the first summand needs to be estimated. Observe that

|∆−1a(x)| ≤


B
|x − y|2−n

|a(y)| dy ≤


Cr2−n if |x − y0| < 2r
C |x − y0|2−n if |x − y0| > 2r


≤ C |x − y0|2−n.

Therefore, by using Lemma 2.2, we get

∥b′

1∥Lq(Rn) ≤ C

and (4.14) follows, which finishes Case 2 and the proof of (4.2).
In order to finish the proof of Theorem 1.6 it remains to prove that

∥f ∥H1
L (R

n) ≤ C∥ωf ∥H1
∆(R

n). (4.16)

By virtue of Theorem 1.3, the inequality (4.16) is equivalent to(I − VL−1) (g/ω)

H1
∆(R

n)
≤ C∥g∥H1

∆(R
n). (4.17)

Assume that a is an H1
∆(R

n)-atom (see (4.4)). Set b = (I −VL−1)(a/ω). The proof will be finished if we have obtained that

∥b∥H1
∆(R

n) ≤ C (4.18)

with C independent of atom a. By (4.1), we have
Rn

b(x) dx =


Rn

a(x) dx = 0.

Note that the proof of (4.5) only relies on estimates of Γ0(x, y) from above by C |x − y|2−n. The same estimates hold for
Γ (x, y). Moreover, the weight 1/ω has the same properties as ω, that is, boundedness from above and below by positive
constants and the Hölder condition. Therefore the proof of (4.18) follows by the same arguments. Details are omitted. �

5. Proof of Theorem 1.8

By (2.1) we get a formula similar to (3.1):

Kt − Pt(I − VL−1) = Q ′

t − W ′

t , (5.1)

where

W ′

t =

 t

0
Pt−s V Ks ds, Q ′

t =


∞

0
Pt V Ks ds.

Recall that for i = 1, . . . , n we denote by ∂i the derivative in the direction of ith standard coordinate. For f ∈ L1(Rn),
from (3.1) and (5.1) we get ε−1

ε

∂iKt f
dt
√
t

−

 ε−1

ε

∂iPt(I − VL−1)f
dt
√
t

= W ′

i,εf + Q′

i,εf + Wi,εf + Qi,εf , (5.2)

Qi,ε =

 ε−1

2
∂iQt

dt
√
t
, Q′

i,ε =

 2

ε

∂iQ ′

t
dt
√
t
,

Wi,ε = −

 ε−1

2
∂iWt

dt
√
t
, W ′

i,ε = −

 2

ε

∂iW ′

t
dt
√
t
.

All the operators above are well-defined and bounded on L1(Rn). By the theory of the classical Hardy spaces, R∆,if =

limε→0
 ε−1

ε
∂iPt f dt

√
t

∈ L1(Rn) for every i = 1, . . . , n, exactly when f ∈ H1
∆(R

n). Moreover,

∥f ∥H1
∆(R

n) ∼ ∥f ∥L1(Rn) +

n
i=1

∥R∆,if ∥L1(Rn). (5.3)
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The subsequent four lemmas prove that the operators Qi,ε,Q
′

i,ε,Wi,ε,W
′

i,ε converge strongly as ε → 0 in the space of
L1(Rn)-bounded operators.

Lemma 5.4. For every i = 1, . . . , n the operators Qi,ε converge as ε → 0 in norm-operator topology.

Proof. The operators Qi,ε have the integral kernels

Qi,ε(x, y) =

 ε−1

2


∞

t


Rn
∂iPt(x − z)V (z)Ks(z, y) dz ds

dt
√
t
.

The lemma will be proved when we have obtained

sup
y∈Rn


Rn

Q(j)
i (x, y)dx ≤ C,

where

Q(j)
i (x, y) =


∞

2


∞

t


Rn

|∂iPt(x − z)|Vj(z)Ks(z, y) dz ds
dt
√
t
.

Since |∂iPt(x − z)| ≤ Ct−1/2φt(x − z) for some φ ∈ S(Rn)we get
Rn

Q(j)
i (x, y)dx ≤ C


Rn


∞

2


∞

t


Rn

t−1/2φt(x − z)Vj(z)Ks(z, y) dz ds
dt
√
t
dx

≤ C


∞

2


∞

t


Rn

t−1Vj(z)Ks(z, y) dz ds dt

≤ C


∞

2


∞

t


Rn

t−1−εVj(z)s−n/2+ε exp(−|z − y|2/4s) dz ds dt

≤ C


∞

2
t−1−εdt


·


Rn

Vj(z)|z − y|2−n+2ε dz


≤ C, (5.5)

where in the last inequality we used Lemma 2.2, and C does not depend on y ∈ Rn. �

Lemma 5.6. For every i = 1, . . . , n the operators Wi,ε converge as ε → 0 in norm-operator topology.

Proof. The operators Wi,ε have the integral kernels

Wi,ε(x, y) =

 ε−1

2

 t

0


Rn
∂i (Pt−s(x − z)− Pt(x − z)) V (z)Ks(z, y) dz ds

dt
√
t
.

Set

W(j)
i (x, y) =


∞

2

 t

0


Rn

|∂i (Pt−s(x − z)− Pt(x − z))| Vj(z)Ks(z, y) dz ds
dt
√
t
.

The lemma will be proved when we have obtained that

sup
y∈Rn


Rn

W(j)
i (x, y)dx ≤ C . (5.7)

For fixed y ∈ Rn and 0 < β < 1, β will be determined later on; we write
Rn

W(j)
i (x, y)dx ≤


Rn


∞

2

 t

0


Rn

∂i (Pt−s(x − z)− Pt(x − z))
Vj(z)Ks(z, y) dz ds

dt
√
t
dx

≤

 tβ

0
· · · ds +

 t

tβ
· · · ds = J1 + J2.
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Observe that there exist ψ ∈ S(Rn), ψ ≥ 0 such that for s ∈ (0, tβ) and t > 2 we have

|∂i (Pt−s(x)− Pt(x))| ≤ st−3/2ψt(x).

Thus by using Lemma 2.2 we get

J1 ≤


Rn


∞

2

 tβ

0


Rn

st−2ψt(x − z)Vj(z)Ks(z, y) dz ds dt dx

≤ C


∞

2
t−2+β dt ·


Rn

Vj(z)|z − y|2−ndz ≤ C1. (5.8)

Note that if t > 2 and s ∈ [tβ , t] then Ks(z) ≤ Ct−βn/2 exp(−|z|2/ct). Choosing 0 < β < 1, β close to 1, and applying
Lemma 2.2 we obtain

J2 ≤


Rn


∞

2

 t

tβ


Rn


ψt−s(x − z)

√
t − s

+
ψt(x − z)

√
t


Vj(z)Ks(z, y) dz ds

dt
√
t
dx

≤ C


∞

2

 t

0


Rn


((t − s)t)−1/2

+ t−1 Vj(z)t−βn/2 exp(−|z − y|2/ct) dz ds dt

≤ C


∞

2


Rn

Vj(z)t−βn/2 exp(−|z − y|2/ct) dz dt ≤ C


Rn
Vj(z)|z − y|2−βndz ≤ C2. (5.9)

Notice that the constants C1 and C2 in (5.8) and (5.9) respectively do not depend on y ∈ Rn. Thus (5.7) follows. �

Lemma 5.10. For i = 1, . . . , n the operators W ′

i,ε converge as ε → 0 in norm-operator topology.

Proof. The operators W ′

i,ε have the integral kernel

W ′

i,ε(x, y) =

 2

ε

 t

0


Rn
∂iPt−s(x − z)V (z)Ks(z, y) dz ds

dt
√
t
.

The lemma will be proved if we have shown that

sup
y∈Rn


Rn

W(j)′
i (x, y) dx ≤ C, (5.11)

where

W(j)′
i (x, y) =

 2

0

 t

0


Rn

∂iPt−s(x − z)
Vj(z)Ks(z, y) dz ds

dt
√
t
.

Fix y ∈ Rn. Observe that
Rn

W(j)′
i (x, y)dx ≤


Rn

 2

0

 t

0


Rn

∂iPt−s(x − z)
Vj(z)Ks(z, y) dz ds

dt
√
t
dx

≤

 t/2

0
· · · ds +

 t

t/2
· · · ds = J3 + J4.

There exist ψ ∈ S(Rn), ψ ≥ 0, such that

J3 ≤


Rn

 2

0

 t/2

0


Rn
(t(t − s))−1/2ψt−s(x − z)Vj(z)Ks(z, y) dz ds dt dx

≤ C
 2

0

 t

0


Rn

t−1Vj(z)Ks(z, y) dz ds dt

≤ C
 2

0


Rn

t−1Vj(z)|z − y|2−n exp

−|z − y|2/ct


dz dt

≤ C


|z−y|>1/2
Vj(z)|z − y|2−ndz +


|z−y|≤1/2

Vj(z)|z − y|2−n
| log |z − y ∥ dz ≤ C3

and

J4 ≤ C


Rn

 2

0

 t

t/2


Rn
(t(t − s))−1/2ψt−s(x − z)Vj(z)t−n/2 exp


−

|z − y|2

ct


dz ds dt dx
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≤ C
 2

0

 t/2

0


Rn
(ts)−1/2Vj(z)t−n/2 exp


−

|z − y|2

ct


dz ds dt

≤ C


Rn
Vj(z)


∞

0
t−n/2 exp


−

|z − y|2

ct


dt dz ≤ C


Rn

Vj(z)|z − y|2−ndz ≤ C4

with constants C3 and C4 independent of y ∈ Rn. So we have obtained (5.11). �

Lemma 5.12. For i = 1, . . . , n the operators Q′

i,ε converge strongly as ε → 0.

Proof. The kernels of Q′

i,ε are given by

Q′

i,ε(x, y) =

 2

ε


∞

0


Rn
∂iPt(x − z)V (z)Ks(z, y) dz ds

dt
√
t
.

For f ∈ L1(Rn)we have

Q′

i,εf (x) =


Rn

Q′

i,ε(x, y)f (y) dy.

Note that Q′

i,ε(x, y) = Hi,ε ∗ φy(x), where φy(z) = V (z)Γ (z, y) and Hi,ε(x) =
 2
ε
∂iPt(x) dt

√
t
.

It follows from the theory of singular integrals operators that for g ∈ Lr(Rn), r > 1, the limits limε→0 Hi,ε ∗g(x) = Hig(x)
exist for a.e. x and in Lr(Rn) norm. Obviously, Hi are Lr(Rn)-bounded operators. Moreover, sup

0<ε<2
|Hi,ε ∗ g|


Lr (Rn)

≤ C∥g∥Lr (Rn). (5.13)

Notice that for |z| > 1/2 we have

sup
0<ε<2

|Hi,ε(z)| ≤ CN |z|−N . (5.14)

From (5.13) and (5.14) we deduce that if a is a function supported in a ball B(y0, R), R > 1/2, and ∥a∥Lr (Rn) ≤ τ |B|−1+1/r ,
r > 1, then sup

0<ε<2
|Hi,ε ∗ a|


L1(Rn)

≤ Cτ . (5.15)

Using Lemma 2.2 we get that for every y ∈ Rn the limit limε→0 Q ′

i,ε(x, y) = Q ′

i (x, y) exists for a.e. x ∈ Rn. The lemmawill
be proved by using Lebesgue’s dominated convergence theorem if we have established that

sup
y∈Rn


Rn

sup
0<ε<2

|Q′

i,ε(x, y)| dx ≤ C and (5.16)

lim
ε→0


Rn

|Q′

i,ε(x, y)− Q′

i(x, y)| dx = 0 for every y. (5.17)

For fixed y ∈ Rn let

φ1(z) = φy(z)χB(y,2)(z), φk(z) = φy(z)χB(y,2k)\B(y,2k−1)(z), k ≥ 2.

Then φy =


∞

k=1 φk, where the series converges in L1(Rn) and Lr(Rn) norm for r slightly bigger than 1. Notice that
suppφk ⊆ B(y, 2k), ∥φ1∥Lr (Rn) ≤ C , and

∥φk∥
r
Lr (Rn) =


B(y,2k)\B(y,2k−1)

V1(z)r |z − y|(2−n)r dz ≤ 2k(2−n)r

B(y,2k)

V1(z)r dz

≤ C2k(2−n)r2k(n−n1)∥V1∥
r
Lrq(V1)

2kn1/q′

= C(2k)−nr+n+2r−n1/q. (5.18)

Therefore, for q < n1/2r such that V1 ∈ Lrq(V1), we get

∥φk∥Lr (Rn) ≤ C |B(y, 2k)|−1+1/r2−σk, (5.19)
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where σ = n1/(qr)− 2 > 0. By using (5.15) combined with (5.19) we obtain
Rn

sup
0<ε<2

|Q′

i,ε(x, y)| dx =


Rn

sup
0<ε<2

|Hi,εφy(x)| dx

≤

∞
k=1


Rn

sup
0<ε<2

|Hi,εφk(x)| dx

≤ C
∞
k=1

2−σk
≤ C, (5.20)

which implies (5.16), since the last constant C does not depend on y. Additionally (5.17) is a consequence of (5.16) and
Lebesgue’s dominated convergence theorem. �

Now, Theorem 1.8 follows directly by applying (5.2) and (5.3), and Theorem 1.3.
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