科技报告详细信息
From Loops to Trees By-passing Feynman's Theorem
Catani, Stefano ; Gleisberg, Tanju ; Krauss, Frank ; Rodrigo, German ; Winter, Jan-Christopher
Stanford Linear Accelerator Center
关键词: Modifications;    Duality;    Field Theories;    Scattering Amplitudes Phenomenology-Hep,Hepph;    Cross Sections;   
DOI  :  10.2172/927533
RP-ID  :  SLAC-PUB-13218
RP-ID  :  AC02-76SF00515
RP-ID  :  927533
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.

【 预 览 】
附件列表
Files Size Format View
927533.pdf 301KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:6次