期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:389
On the semiclassical approximation to the eigenvalue gap of Schrodinger operators
Article
Chen, Duo-Yuan1  Huang, Min-Jei1 
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30043, Taiwan
关键词: Schrodinger operator;    Semiclassical limit;    Eigenvalue gap;    Eigenfunction;    Even potential;    Periodic potential;   
DOI  :  10.1016/j.jmaa.2012.01.002
来源: Elsevier
PDF
【 摘 要 】

We consider two types of Schrodinger operators H(t) = -d(2)/dx(2) + q(x)+ t cosx and H(t) = -d(2)/dx(2) + q(x) + A cos(tx) defined on L-2(R), where q is an even potential that is bounded from below, A is a constant, and t > 0 is a parameter. We assume that H(t) has at least two eigenvalues below its essential spectrum: and we denote by lambda(1) (t) and lambda(2) (t) the lowest eigenvalue and the second one, respectively. The purpose of this paper is to study the asymptotics of the gap Gamma(t) = lambda(2)(t) - lambda(1)(t) in the limit as t -> infinity. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_01_002.pdf 143KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次