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We consider two types of Schrödinger operators H(t) = −d2/dx2 +q(x)+ t cos x and H(t) =
−d2/dx2 + q(x) + A cos(tx) defined on L2(R), where q is an even potential that is bounded
from below, A is a constant, and t > 0 is a parameter. We assume that H(t) has at least
two eigenvalues below its essential spectrum; and we denote by λ1(t) and λ2(t) the lowest
eigenvalue and the second one, respectively. The purpose of this paper is to study the
asymptotics of the gap Γ (t) = λ2(t) − λ1(t) in the limit as t → ∞.
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1. Introduction

Consider the Schrödinger operator

H(t) = −d2/dx2 + tV (x)

acting on L2(R), where t > 0 and V is a suitable potential such that H(t) is selfadjoint. Suppose that V is bounded from
below, and that H(t) has eigenvalues λ1(t) < λ2(t) < · · · , below its essential spectrum. The problem of the semiclassical
limit is to determine the behavior of the eigenvalues λn(t) as t tends to infinity. There have been many studies on the
semiclassical limit of eigenvalues for double- and multiple-well potentials. The most common situation occurs when the
potential is nonnegative and has several nondegenerate zeros. We mention the work of Harrell [2], Kirsch and Simon [4],
Nakamura [6] and Simon [8]. For related literature on this subject, see Hislop and Sigal [3] and references therein.

The purpose of this paper is to study the semiclassical approximation to the eigenvalue gap of Schrödinger operators with
periodic potentials. Let q be an even potential that is bounded from below. We will actually study two types of operators,
that is,

H(t) = −d2/dx2 + q(x) + t cos x (1.1)

and

H(t) = −d2/dx2 + q(x) + A cos(tx) (1.2)
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defined on L2(R), where A is a constant. Here we assume that H = −d2/dx2 + q(x) is selfadjoint. Also, H(t) has at least
two eigenvalues below its essential spectrum; and we denote by λ1(t) and λ2(t) the lowest eigenvalue and the second one,
respectively. Our main goal in this paper will be to investigate the asymptotics of the gap

Γ (t) = λ2(t) − λ1(t)

in the limit as t → ∞. We now state our results. The proofs will be given in Sections 2 and 3.

Theorem 1.1. Under the above hypotheses, suppose in addition that

∞∫
−∞

q(x)x2e−x2
dx < ∞. (1.3)

Then, for sufficiently large t, the eigenvalue gap Γ (t) of (1.1) satisfies

Γ (t) � C exp(−α
√

t ),

where C and α are positive constants both independent of t.

Theorem 1.2. Under the above hypotheses, suppose in addition that q ∈ K 1
loc and q− ∈ K1. Then the first two eigenvalues of (1.2)

satisfy

lim
t→∞λn(t) = λn, n = 1,2,

where λn is the nth eigenvalue of H = −d2/dx2 + q(x). In particular,

lim
t→∞Γ (t) = λ2 − λ1.

We remark that a potential V ∈ K1 if and only if supx∈R

∫ x+1
x−1 |V (y)|dy < ∞, and V ∈ K 1

loc if and only if V ϕ ∈ K1 for any
ϕ ∈ C∞

0 (R). For a discussion of the class K v , we refer to the book by Cycon, Froese, Kirsch and Simon [1]. In the proof of
Theorem 1.2, we shall use the facts that if q ∈ K 1

loc and q− ∈ K1, then for any eigenfunction u of H, (i) u(x) → 0 as |x| → ∞
(see Theorem 2.4 of [1]), (ii) u(x)u′(x) → 0 as |x| → ∞. Here is a proof for (ii), using integration by parts, we have

u(x)u′(x) − u(0)u′(0) =
x∫

0

u′(y)2 dy +
x∫

0

u(y)u′′(y)dy.

Since u, u′, u′′ ∈ L2(R), we see that limx→∞ u(x)u′(x) exists. Suppose on the contrary that

lim
x→∞ u(x)u′(x) = α �= 0.

Then, for sufficiently large x,

∣∣u′(x)
∣∣ >

|α|
2|u(x)| .

Since u(x) → 0 as x → ∞, it follows that |u′(x)| → ∞ as x → ∞. However, this is inconsistent with u′ being in L2(R) and
hence α must be zero. The result that limx→−∞ u(x)u′(x) = 0 is proved in the same way.

2. Proof of Theorem 1.1

Lemma 2.1. There are constants a and b, where b < 0, such that

λ2(t) � a + bt for all t.

Proof. To prove the lemma, we shall use the Rayleigh–Ritz principle [7]:

λ2(t) = inf
ϕ∈Q (H(t))\{0},ϕ⊥ϕ1(t,·)

〈ϕ, H(t)ϕ〉
〈ϕ,ϕ〉 , (2.1)

where Q (H(t)) is the form domain of H(t), and ϕ1(t, x) is the first eigenfunction of H(t) associated to λ1(t). Since the
potential q(x) + t cos x is symmetric, ϕ1(t, ·) is symmetric, so any antisymmetric function will be orthogonal to ϕ1(t, ·), and
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will therefore be a suitable trial function in (2.1). As a trial function for estimating λ2(t), let us take ϕ(x) = (x− sin x)e−x2/2,

so

λ2(t) � a + bt,

where

a = 1

〈ϕ,ϕ〉
∞∫

−∞

[
ϕ′(x)2 + q(x)ϕ2(x)

]
dx

and

b = 1

〈ϕ,ϕ〉
∞∫

−∞
ϕ2(x) cos x dx. (2.2)

By hypothesis (1.3), we see that a is finite. It remains to show that b < 0. To compute the integral in (2.2), we use the basic
identities:

sin2 x cos x = 1

4
(cos x − cos 3x)

and

C(α) ≡
∞∫

−∞
cos(αx)e−x2

dx = √
πe−α2/4 for α ∈ R.

An elementary calculation then gives that

∞∫
−∞

ϕ2(x) cos x dx =
∞∫

−∞
(x − sin x)2 cos xe−x2

dx

=
∞∫

−∞

(
x2 cos x − x sin 2x

)
e−x2

dx + 1

4

[
C(1) − C(3)

]

=
∞∫

−∞

(
1

4
cos x − cos 2x

)
e−x2

dx + 1

4

[
C(1) − C(3)

]

= 1

2
C(1) − C(2) − 1

4
C(3)

= √
π

(
1

2
e−1/4 − e−1 − 1

4
e−9/4

)
≈ √

π(−0.004828) < 0

where we have used integration by parts twice in the third step. This proves that b < 0 and thus the lemma. �
Note that for each fixed k > 0, λ is an eigenvalue for the potential q(x) + t cos x if and only if λ/k2 is an eigenvalue for

the potential

Vt,k(x) ≡ 1

k2

[
q

(
x

k

)
+ t cos

(
x

k

)]
.

Thus, if we denote by Γ [Vt,k] the gap between the two lowest eigenvalues of the Schrödinger operator −d2/dx2 + Vt,k(x)
on L2(R), then

Γ [Vt,k] = 1

k2
Γ (t). (2.3)

To get estimates on Γ (t) for t large, we will consider the specific operator

−d2/dx2 + Vt,δt1/4(x), (2.4)

where δ > 0. Let ψt,δ(x) be the first normalized eigenfunction of (2.4). As a preliminary to a proof of Theorem 1.1, we need:
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Lemma 2.2. Let 0 < β <
√−2b/δ2π, where b is given by (2.2). Then, for sufficiently large t,

∞∫
−∞

ψ2
t,δ(x)e−βx2

dx � A(β, δ)e−(βδ2π2/4)
√

t,

where A(β, δ) > 0 is a number independent of t.

Proof. For simplicity of notations, we write V (x) = Vt,δt1/4(x), ψ(x) = ψt,δ(x), and let μ be the first eigenvalue of (2.4)
associated to ψ(x). Then −ψ ′′ + V ψ = μψ so that

−μ

∞∫
−∞

ψ2(x)e−βx2
dx =

∞∫
−∞

ψ ′′(x)ψ(x)e−βx2
dx −

∞∫
−∞

V (x)ψ2(x)e−βx2
dx.

On integrating by parts twice, we obtain

∞∫
−∞

ψ ′′(x)ψ(x)e−βx2
dx =

∞∫
−∞

[
2βxψ(x) − ψ ′(x)

]
ψ ′(x)e−βx2

dx

� 2β

∞∫
−∞

xψ(x)ψ ′(x)e−βx2
dx

= β

∞∫
−∞

(
2βx2 − 1

)
ψ2(x)e−βx2

dx

� 2β2

∞∫
−∞

x2ψ2(x)e−βx2
dx.

Hence

−μ

∞∫
−∞

ψ2(x)e−βx2
dx �

∞∫
−∞

[
2β2x2 − V (x)

]
ψ2(x)e−βx2

dx. (2.5)

Now let mq = inf{q(x)/x ∈ R}. Then

V (x) � 1

δ2
√

t

[
mq + t cos

(
x

δt1/4

)]
so that, by (2.5),

[
−μ − (βδπ)2

2

√
t + mq

δ2
√

t

] ∞∫
−∞

ψ2(x)e−βx2
dx �

∞∫
−∞

[
2β2x2 − (βδπ)2

2

√
t −

√
t

δ2
cos

(
x

δt1/4

)]
ψ2(x)e−βx2

dx

=
∫

|x|�(δt1/4π)/2

+
∫

|x|>(δt1/4π)/2

. (2.6)

The first integral on the right of (2.6) is nonpositive, since

2β2x2 � (βδπ)2

2

√
t and cos

(
x

δt1/4

)
� 0 for |x| � (

δt1/4π
)
/2.

It follows that[
−μ − (βδπ)2

2

√
t + mq

δ2
√

t

] ∞∫
−∞

ψ2(x)e−βx2
dx �

∫
|x|>(δt1/4π)/2

[
2β2x2 +

√
t

δ2

]
ψ2(x)e−βx2

dx. (2.7)

We now let t be such that (δt1/4π)/2 > 1/
√

β. Then, since the function g(x) = 2β2x2e−βx2
is monotone decreasing on

the interval [1/
√

β,∞), the integral on the right of (2.7) is less than
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∫
|x|>(δt1/4π)/2

[
g

(
δt1/4π

2

)
+

√
t

δ2
e−β(δt1/4π/2)2

]
ψ2(x)dx =

[
(βδπ)2

2
+ 1

δ2

]√
te−(βδ2π2/4)

√
t

∫
|x|>(δt1/4π)/2

ψ2(x)dx.

Since ψ(x) is normalized, it follows from (2.7) that

[
−μ − (βδπ)2

2

√
t + mq

δ2
√

t

] ∞∫
−∞

ψ2(x)e−βx2
dx �

[
(βδπ)2

2
+ 1

δ2

]√
te−(βδ2π2/4)

√
t . (2.8)

Recall that μ is the first eigenvalue of the operator (2.4). Hence

μ = λ1(t)

δ2
√

t
<

λ2(t)

δ2
√

t
� a + bt

δ2
√

t

by Lemma 2.1, and so

−μ − (βδπ)2

2

√
t + mq

δ2
√

t
>

mq − a

δ2
√

t
+

[−b

δ2
− (βδπ)2

2

]√
t.

Since 0 < β <
√−2b/δ2π, the right-hand side here is positive if t is large enough. Hence, from (2.8), we obtain

∞∫
−∞

ψ2(x)e−βx2
dx � 2 + (βδ2π)2

[2(mq − a)/t] + [−2b − (βδ2π)2]e−(βδ2π2/4)
√

t

� A(β, δ)e−(βδ2π2/4)
√

t

if t is large enough, A(β, δ) being a positive number independent of t. �
We are now able to complete the proof of Theorem 1.1.

Proof. As in the proof of Lemma 2.2, we set ψ(x) = ψt,δ(x), the first normalized eigenfunction of the operator (2.4), and
V (x) = Vt,δt1/4(x), where δ > 0 will be specified in a moment. Then, by (2.3),

Γ (t) = δ2
√

tΓ [V ]. (2.9)

To get estimates on Γ (t) for t large, we shall use the following variational principle, which was first exploited by Thompson
and Kac [9] (see also Kirsch and Simon [5]).

Γ [V ] = inf

{∫ ∞
−∞ f ′(x)2ψ2(x)dx∫ ∞
−∞ f 2(x)ψ2(x)dx

∣∣∣∣
∞∫

−∞
f (x)ψ2(x)dx = 0

}
.

As a trial function for estimating Γ [V ], we take

f (x) =
x∫

0

e−y2/2 dy.

Since the potential V is symmetric, the same is true for ψ(x), so
∫ ∞
−∞ f (x)ψ2(x)dx = 0. It follows that

Γ [V ] �
∫ ∞
−∞ e−x2

ψ2(x)dx∫ ∞
−∞ f 2(x)ψ2(x)dx

. (2.10)

Now from the inequality

∞∫
x

e−y2/2 dy � 2e−x2/2 for x � 0,

we obtain

f (x) + 2e−x2/2 �
∞∫

e−y2/2 dy =
√

π

2
for x � 0
0
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so that

f 2(x) + 4e−x2/2
[

max
x∈R

f (x)
]
+ 4e−x2 � π

2
for all x ∈ R.

Since ψ(x) is normalized, this gives

∞∫
−∞

f 2(x)ψ2(x)dx + 4

√
π

2

∞∫
−∞

ψ2(x)e−x2/2 dx + 4

∞∫
−∞

ψ2(x)e−x2
dx � π

2
. (2.11)

To apply Lemma 2.2 with β = 1/2 and β = 1, we now choose δ so small that

0 < δ <
(−2b/π2)1/4

.

Then, for sufficiently large t,

∞∫
−∞

ψ2(x)e−x2/2 dx � C1e−(δ2π2/8)
√

t

and

∞∫
−∞

ψ2(x)e−x2
dx � C2e−(δ2π2/4)

√
t, (2.12)

C1 and C2 being positive constants independent of t. These together with (2.11) imply that there is a constant C3 indepen-
dent of t such that

∞∫
−∞

f 2(x)ψ2(x)dx � C3 > 0,

if t is sufficiently large. It follows from this and (2.10) and (2.12) that

Γ [V ] � C2

C3
e−(δ2π2/4)

√
t

and so, by (2.9),

Γ (t) � C2δ
2

C3

√
te−(δ2π2/4)

√
t � Ce−α

√
t

provided that t is sufficiently large, where C and α are positive constants both independent of t. All this proves Theo-
rem 1.1. �
3. Proof of Theorem 1.2

We denote by ϕn(x) and ϕn(t, x), respectively, the normalized eigenfunctions corresponding to λn and λn(t). By the
Rayleigh–Ritz principle [7]:

λ1(t) = inf
ϕ∈Q (H(t))\{0}

〈ϕ, H(t)ϕ〉
〈ϕ,ϕ〉 , λ1 = inf

ϕ∈Q (H)\{0}
〈ϕ, Hϕ〉
〈ϕ,ϕ〉 .

As a trial function for estimating λ1(t), we take ϕ = ϕ1; and for estimating λ1, we take ϕ = ϕ1(t, ·). It then follows that

A

∞∫
−∞

ϕ2
1(t, x) cos(tx)dx � λ1(t) − λ1 � A

∞∫
−∞

ϕ2
1(x) cos(tx)dx. (3.1)

But

∞∫
−∞

ϕ2
1(x) cos(tx)dx = −2

t

∞∫
−∞

ϕ1(x)ϕ′
1(x) sin(tx)dx

on integrating by parts and using the fact that ϕ1(x) → 0 as |x| → ∞. Hence
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∣∣∣∣∣
∞∫

−∞
ϕ2

1(x) cos(tx)dx

∣∣∣∣∣ � 2

t

∞∫
−∞

∣∣ϕ1(x)ϕ′
1(x)

∣∣dx → 0 (3.2)

as t → ∞, since ϕ1 and ϕ′
1 are in L2(R). On the other hand, we have

∞∫
−∞

ϕ2
1(t, x) cos(tx)dx = −2

t

∞∫
−∞

ϕ1(t, x)ϕ′
1(t, x) sin(tx)dx,

where ϕ′
1 means the x-derivative of ϕ1. Hence∣∣∣∣∣
∞∫

−∞
ϕ2

1(t, x) cos(tx)dx

∣∣∣∣∣ � 2

t

∞∫
−∞

∣∣ϕ1(t, x)ϕ′
1(t, x)

∣∣dx

� 1

t

[
1 +

∞∫
−∞

ϕ′
1(t, x)2 dx

]
(3.3)

since ϕ1(t, ·) is normalized. Now let mq = inf{q(x)/x ∈ R}, and note that q + A cos(tx) ∈ K 1
loc and [q + A cos(tx)]− ∈ K1. On

integrating by parts and using the fact that ϕ1(t, x)ϕ′
1(t, x) → 0 as |x| → ∞, the differential equation and the right-hand

inequality of (3.1), we find

∞∫
−∞

ϕ′
1(t, x)2 dx = −

∞∫
−∞

ϕ1(t, x)ϕ′′
1 (t, x)dx

= λ1(t) −
∞∫

−∞
q(x)ϕ2

1(t, x)dx − A

∞∫
−∞

ϕ2
1(t, x) cos(tx)dx

� λ1(t) − mq + |A|
� λ1 + 2|A| − mq.

Hence (3.3) gives

∞∫
−∞

ϕ2
1(t, x) cos(tx)dx → 0

as t → ∞. This together with (3.1) and (3.2) shows that

lim
t→∞λ1(t) = λ1.

The proof of the corresponding result for λ2(t) is similar. By the Rayleigh–Ritz principle,

λ2(t) = inf
ϕ∈Q (H(t))\{0},ϕ⊥ϕ1(t,·)

〈ϕ, H(t)ϕ〉
〈ϕ,ϕ〉 ,

λ2 = inf
ϕ∈Q (H)\{0},ϕ⊥ϕ1

〈ϕ, Hϕ〉
〈ϕ,ϕ〉 .

Since the potentials q(x) and q(x) + A cos(tx) are symmetric, the first eigenfunctions ϕ1 and ϕ1(t, ·) are symmetric; while
the second eigenfunctions ϕ2 and ϕ2(t, ·) are antisymmetric. We take ϕ = ϕ2 in the Rayleigh–Ritz principle as applied to
λ2(t), and take ϕ = ϕ2(t, ·) as applied to λ2. It then follows that

A

∞∫
−∞

ϕ2
2(t, x) cos(tx)dx � λ2(t) − λ2 � A

∞∫
−∞

ϕ2
2(x) cos(tx)dx. (3.4)

Again using integration by parts and the facts that ϕ2(x) → 0 and ϕ2(t, x)ϕ′
2(t, x) → 0 as |x| → ∞, we obtain

lim
t→∞

∞∫
ϕ2

2(t, x) cos(tx)dx = lim
t→∞

∞∫
ϕ2

2(x) cos(tx)dx = 0.
−∞ −∞
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This together with (3.4) implies that

lim
t→∞λ2(t) = λ2.

The proof of Theorem 1.2 is now complete.
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