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1. Introduction
Consider the Schrodinger operator

H(t) = —d? /dx* + tV (x)

acting on L%(R), where t > 0 and V is a suitable potential such that H(t) is selfadjoint. Suppose that V is bounded from
below, and that H(t) has eigenvalues Aq(t) < Aa(t) < ---, below its essential spectrum. The problem of the semiclassical
limit is to determine the behavior of the eigenvalues A,(t) as t tends to infinity. There have been many studies on the
semiclassical limit of eigenvalues for double- and multiple-well potentials. The most common situation occurs when the
potential is nonnegative and has several nondegenerate zeros. We mention the work of Harrell [2], Kirsch and Simon [4],
Nakamura [6] and Simon [8]. For related literature on this subject, see Hislop and Sigal [3] and references therein.

The purpose of this paper is to study the semiclassical approximation to the eigenvalue gap of Schrédinger operators with
periodic potentials. Let ¢ be an even potential that is bounded from below. We will actually study two types of operators,
that is,

H(t) = —d? /dx* + q(x) + t cosx (11)

and

H(t) = —d?/dx* + q(x) + A cos(tx) (12)

* Corresponding author,
E-mail address: mjhuang@math.nthu.edu.tw (M.-]. Huang).

0022-247X/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.01.002


http://dx.doi.org/10.1016/j.jmaa.2012.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:mjhuang@math.nthu.edu.tw
http://dx.doi.org/10.1016/j.jmaa.2012.01.002

1252 D.-Y. Chen, M.-J. Huang /J. Math. Anal. Appl. 389 (2012) 1251-1258

defined on L%(R), where A is a constant. Here we assume that H = —d?/dx? + q(x) is selfadjoint. Also, H(t) has at least
two eigenvalues below its essential spectrum; and we denote by A1(t) and A, (t) the lowest eigenvalue and the second one,
respectively. Our main goal in this paper will be to investigate the asymptotics of the gap

I"(t) = 22(t) — A1(t)

in the limit as t — oo. We now state our results. The proofs will be given in Sections 2 and 3.

Theorem 1.1. Under the above hypotheses, suppose in addition that

o0

/ q(x)x%e ™ dx < oo. (1.3)

—00

Then, for sufficiently large t, the eigenvalue gap I" (t) of (1.1) satisfies
I'(t) < Cexp(—av/t),
where C and « are positive constants both independent of t.

Theorem 1.2. Under the above hypotheses, suppose in addition that q € Kﬂoc and q_— € Ki. Then the first two eigenvalues of (1.2)
satisfy

lim Ap(t) =X1p, n=1,2,
t—o00
where A, is the nth eigenvalue of H = —d? /dx? + q(x). In particular,

lim I"'(t) =iy — Aq.
t—o0

We remark that a potential V € K; if and only if sup,cr fxx_“ [V(y)|dy <oo, and V € I<11Oc if and only if V¢ € K for any

@ € C°(R). For a discussion of the class K, we refer to the book by Cycon, Froese, Kirsch and Simon [1]. In the proof of

Theorem 1.2, we shall use the facts that if q € Klloc and q_ € K1, then for any eigenfunction u of H, (i) u(x) — 0 as |x| — oo
(see Theorem 2.4 of [1]), (ii) u(x)u’(x) — 0 as |x| — oo. Here is a proof for (ii), using integration by parts, we have

X X

U(X)U’(X)—u(O)u’(O):/u’(y)zdy+/u(y)u”(y)dy-

0 0
Since u, u’, u” € L*(R), we see that limy_, oo u(x)u’(x) exists. Suppose on the contrary that
lim u(x)u’(x) =a #0.
X—> 00
Then, for sufficiently large x,

||
2u@)|

[u'x)| >

Since u(x) — 0 as x — oo, it follows that |u’(x)| — oo as x — co. However, this is inconsistent with u’ being in L*(R) and
hence o must be zero. The result that limy_, _o u(X)u’(x) =0 is proved in the same way.

2. Proof of Theorem 1.1
Lemma 2.1. There are constants a and b, where b < 0, such that
A(t) <a+bt forallt.

Proof. To prove the lemma, we shall use the Rayleigh-Ritz principle [7]:

inf (o, Ht)p)
PeQHM\{0} o Lleit,) (@, @)

where Q (H(t)) is the form domain of H(t), and ¢;(t, x) is the first eigenfunction of H(t) associated to Aq(t). Since the
potential q(x) + t cosx is symmetric, ¢ (t,-) is symmetric, so any antisymmetric function will be orthogonal to ¢(t, -), and

A(t) = , (2.1)
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will therefore be a suitable trial function in (2.1). As a trial function for estimating A, (t), let us take @ (x) = (x —sin x)e"‘z/z,
S0
Aa(t) <a+bt,
where
] o0
’ 2 2
a= P X +q@e”(x) |dx
(@, 9) / [ ]
—00
and
1 oo
b=— / (pz(x)cosxdx. (2.2)
(@, 9)

—00

By hypothesis (1.3), we see that a is finite. It remains to show that b < 0. To compute the integral in (2.2), we use the basic
identities:

1
sin? X Cosx = Z(cosx — €os 3x)
and
o0
Clo) = / cos(ax)e ™ dx = /e */* fora cR.
—00

An elementary calculation then gives that

o0 o0
/(pz(x)cosxdx= f(x—sinx)zcosxe_"zdx
—00 —00
o0
= /( 2cosx—xsin2x)e_"2dx-i—%[C(l)—C(B)]
—00

= / (% COSX — cost)e_"2 dx + %[C(l) -C3)]

1 1
= EC(U -C2) - ZC(3)

1 a1 1 _gp
=Jr| e —e ' —-e
(2 4

~ /7 (—0.004828) <0

where we have used integration by parts twice in the third step. This proves that b < 0 and thus the lemma. O

Note that for each fixed k > 0, A is an eigenvalue for the potential q(x) + t cosx if and only if A/k? is an eigenvalue for
the potential

1 X X
Ver(x) = k_2|:q<E> +fCOS<E>:|,

Thus, if we denote by I'[V; ] the gap between the two lowest eigenvalues of the Schrédinger operator —d?/dx® + V(%)
on L2(R), then

1
Vel = k_ZF(t)' (2.3)
To get estimates on I"(t) for t large, we will consider the specific operator

—d?/dx* + V, g1/4(%), (2.4)

where § > 0. Let ¥ s(x) be the first normalized eigenfunction of (2.4). As a preliminary to a proof of Theorem 1.1, we need:
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Lemma 2.2. Let 0 < 8 < ~/—2b/8%5, where b is given by (2.2). Then, for sufficiently large t,
o
/ Y2 (e dx < A(B, 0)e~PITIANE,

where A(B, 8) > 0is a number independent of t.

Proof. For simplicity of notations, we write V(x) =V, 51/4(X), ¥(x) = ¥ 5(x), and let u be the first eigenvalue of (2.4)
associated to v (x). Then —y” + Vi = uy so that

- / vrx)e P dx = / v (W (x)eP¥ dx — / V@ wxe P dx.
On integrating by parts twice, we obtain
f v p e de= [ [2px0 — /0] (e d

<28 / X¥ (09 (e X dx

o0

—ﬂf 2Bx* — 1)y (x)e” B iy

<282 /x w2 (e P dx.

Hence

i f v 0e P dx < / [2822 — V(0 ]y e dx. (2.5)

Now let mg = inf{q(x)/x € R}. Then

1 X
V(X) 2 82—\/E|:mq +tCOS<W>i|

so that, by (2.5),

oo

2 o0
[—M (ﬂM) \[+812ﬂ:;[] / 1/,z(x)e—ﬂxz dx < /[Zﬂzxz (ﬂSn) f—£c05<8t)](/4>j|1/,2(x)eﬁx2 dx

—o0

_ f N / . (2.6)

X<t 4y 2 x> (8tV/Am) /2

The first integral on the right of (2.6) is nonpositive, since
87)?
2822 (,3 ) WPOR) Jt and cos((S 1/4> >0 for x| < (5t"/4m)/2.

It follows that

B (ﬂSn)z mg r 20 B 2,2 ﬂ 20— B
[ - \[+82«[] / Y2 (e P dx < / [2/3 X+ 82}# (x)e™ " dx. (2.7)

x|>(8t1/47)/2

We now let ¢ be such that (8t"/47)/2 > 1//B. Then, since the function g(x) = 28%x?e#¥* is monotone decreasing on
the interval [1/4/B, 00), the integral on the right of (2.7) is less than
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2 2
x|>(8t1/47) /2 IX|>(8t1/47) /2

Since ¥ (x) is normalized, it follows from (2.7) that

2 % 2
[‘M— (ﬂﬁzn L iy D ” ¢2<x>e—ﬁx2dx<[(ﬂ8”) +l}ﬁe—<ﬂ52”2/‘“ﬁ (2.8)

824/t 2 52

Recall that w is the first eigenvalue of the operator (2.4). Hence
rM@)  Ap(t) a+bt
n= < <
52\/{ 52\/{- 52\/{
by Lemma 2.1, and so
sm)? m mg—a [—b sm)?
R M myza [h o
2 82Vt 82t ) 2

Since 0 < B < ~/—2b /82w, the right-hand side here is positive if t is large enough. Hence, from (2.8), we obtain

2+ (B8°7) e (B2 /4
[2(mg — a)/t] +[—2b — (B8%7)?]

o0
f Y2 (x)e P dx <
—00

< A(B, 5)6—(.352772/4)«/E

if t is large enough, A(B, §) being a positive number independent of t. O
We are now able to complete the proof of Theorem 1.1.

Proof. As in the proof of Lemma 2.2, we set ¥/ (x) = v s5(x), the first normalized eigenfunction of the operator (2.4), and
V(x) =V, s/ (%), where § > 0 will be specified in a moment. Then, by (2.3),

It)=8Vtrv). (2.9)

To get estimates on I"(t) for ¢t large, we shall use the following variational principle, which was first exploited by Thompson
and Kac [9] (see also Kirsch and Simon [5]).

L2 f1 @)%y (x) dx
JZo0 2@ W2 (x) dx

F[V]:inf{

/ f(x)wz(x>dx=0=.

As a trial function for estimating I'[V], we take
X
f =/e*y2/2 dy.
0

Since the potential V is symmetric, the same is true for v (x), so ffooo FeO)w2(x)dx = 0. It follows that

I ey (x)dx
[0, PPy dx

Now from the inequality

vl (2.10)

o0
/e’yz/z dy <212 forx>0,
X

we obtain

o0
f(x)+2e”‘2/22fe’y2/2dy:,/% forx>0
0
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so that
F2(x) + e ¥ /2 [maxf(x)] +4e>" forallxeRr.
xeR 2

Since ¥ (x) is normalized, this gives
o [e¢] o
2 2 T 28, —X2)2 2/ —x T
/ ff®y (x)dx+4\/;/ ve(x)e dx+4/ ve(x)e ™ dx > 7 (2.11)
—00 —00 —o0

To apply Lemma 2.2 with 8 =1/2 and B8 =1, we now choose § so small that

0<68 < (—2b/m?)"*,

Then, for sufficiently large ¢,
o0
/ I/IZ(X)E*XZ/Z dx< Clei(azﬂz/s)\/?
—00
and
[o.¢]
/ Y2 (e ™ dx < e~ @V -
—00

C1 and C; being positive constants independent of t. These together with (2.11) imply that there is a constant C3 indepen-
dent of ¢t such that

/ FAy2x)dx>C3 >0,

if t is sufficiently large. It follows from this and (2.10) and (2.12) that
rvi< 2(3—((32712/4%/E
C3
and so, by (2.9),

2
r© < 28 Jre- P VE ¢ comavt
C3

provided that t is sufficiently large, where C and « are positive constants both independent of t. All this proves Theo-
rem 1.1. O

3. Proof of Theorem 1.2

We denote by ¢n(x) and ¢,(t, x), respectively, the normalized eigenfunctions corresponding to A, and A,(t). By the
Rayleigh-Ritz principle [7]:

(@, H)p) = inf (@, Hp)
PpeQHONMO) (@, @) PeQ(H\(0} (@, @)

As a trial function for estimating A1 (t), we take ¢ = ¢1; and for estimating A, we take ¢ = ¢ (t, -). It then follows that

A1) =

o0

A / @2 (t, x) cos(tx) dx < A1(t) — A1 < A / @? (%) cos(tx) dx. (3.1)

But
/(p%(x) cos(tx)dx=_T2 / <p1(x)go{(x) sin(tx) dx

on integrating by parts and using the fact that ¢;(x) — 0 as |x| — co. Hence
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e}

/ @? (x) cos(tx) dx

—00

2 oo
<7 f |o1(X)9] ()] dx — 0 (32)

as t — oo, since ¢ and gog are in LZ(R). On the other hand, we have

o0

oo
-2
/w%(t,x)cos(tx)dx:T / <p1(t,x)(p{(t,x)sin(tx)dx,
—00

—00

where @] means the x-derivative of ¢;. Hence

o0 o0
/(plz(t,x)cos(tx)dx g%/|¢1(t,x)<p{(t,x)|dx
—00 —00
o0
g%[w / (pg(t,x)zdx:| (3.3)
—00

since @1 (t, -) is normalized. Now let mg = inf{q(x)/x € R}, and note that q 4 A cos(tx) € K1105 and [q + Acos(tx)]— € K1. On

integrating by parts and using the fact that ¢q(t, x)¢](t,x) — 0 as |x| — oo, the differential equation and the right-hand
inequality of (3.1), we find

/(pﬁ(t,x)zdx:— / 1, )] (t, x)dx
=A1() — / q(x)wlz(t,x)dx—A f (p%(t,x)cos(tx)dx

< M) —mg +1A]
<A+ 2|A] —my.

Hence (3.3) gives

o0
/ @3 (t, x) cos(tx) dx — 0
—00

as t — oo. This together with (3.1) and (3.2) shows that
lim Aq(t) = Aq.
t—o00

The proof of the corresponding result for A,(t) is similar. By the Rayleigh-Ritz principle,

in (g, HHp)
PEQHE\(0}, pLoi(t,) (@, )
in (¢, Hp)
PeQH\(0}, 0 Lo1 (@, @)
Since the potentials q(x) and q(x) + Acos(tx) are symmetric, the first eigenfunctions @1 and @1(t,-) are symmetric; while

the second eigenfunctions ¢, and @, (t,-) are antisymmetric. We take ¢ = ¢, in the Rayleigh-Ritz principle as applied to
A2(t), and take ¢ = @ (t, -) as applied to A;. It then follows that

A2 (t) =

’

Ay =

A / @3 (t, %) cos(tx) dx < Aa(t) — A < A / @3 (%) cos(tx) dx. (34)

Again using integration by parts and the facts that ¢ (x) — 0 and @, (t, X)@,(t, x) — 0 as |x| — oo, we obtain

o0 o0
lim /(p%(t,x)cos(tx)dx: lim /ga%(x)cos(tx)dx:o.
t—00 t—o00
00 )
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This together with (3.4) implies that
lim Ay (t) = Ao
t—00
The proof of Theorem 1.2 is now complete.
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