期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:417
Lower bounds on the eigenvalue gap for vibrating strings
Article
Chen, Duo-Yuan1  Huang, Min-Jei1 
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30043, Taiwan
关键词: Lower bound;    Eigenvalue gap;    Vibrating string;    Symmetric density;    Monotone density;    Bessel function;   
DOI  :  10.1016/j.jmaa.2014.03.045
来源: Elsevier
PDF
【 摘 要 】

We provide lower bounds on the eigenvalue gap for vibrating strings with fixed endpoints depending only on qualitative properties of the density function. For example, if the density rho is symmetric on the interval [0, a], and if lambda(1) and lambda(2) are the first two eigenvalues of u ''(x) + lambda rho(x)u(x) = 0 in (0, a) with u(0) = u(a) = 0 boundary conditions, then lambda(2)-lambda(1) > max{1/integral(a/2)(0) (a/2 - x)rho(x)dx, pi(2)/rho M-a2}, where rho(M) = max 0(<= x <= a) rho(x). The ideas used also lead to applications in the case of monotone densities. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_03_045.pdf 498KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次